

S. No.	CONTENTS	Page
1.	Amines	93
2.	Aniline	98
3.	Nitro-benzene	102
4.	Exercise-I (Conceptual Questions)	105
5.	Exercise-II (Previous Years Questions)	110
6.	Exercise-III (Analytical Questions)	114
7.	Exercise-IV (Assertion & Reason)	116

NITROGEN CONTAINING COMPOUND

NEET SYLLABUS

Ε

Amines : Nomenclature, classification, structure, methods of preparation, physical and chemical proeprties, uses, identification of primary secondary and tertiary amines. **Cyanides and Isocyanides** (will be mentioned at relevant places) **Diazonium salt :** preparation, chemical reactions and importance in synthetic organic chemistry.

OBJECTIVES

After studying this unit, we will be able to :

- Describe amines as derivatives of ammonia having a pyramidal structure;
- Classify amines as primary, secondary and tertiary;
- Name amines by common names and IUPAC system;
- Describe some of the important methods of preparation of amines;
- Explain the properties of amines;
- Distinguish between primary, secondary and tertiary amines;
- Describe the method of preparation of diazonium salts and their importance in the synthesis of a series of aromatic compounds including azo dyes.

"Learning gives creativity Creativity leads to thinking Thinking provides knowledge Knowledge makes you great."

A.P.J. Abdul Kalam

NITROGEN CONTAINING COMPOUND

1.0 Amines

Amines are derivatives of ammonia in which one or more hydrogen atoms are replaced by alkyl group(s).

Amines are classified as primary, secondary and tertiary depending on the number of alkyl groups attached to nitrogen atom.

2.0 General methods of preparation

- (1) Ammonolysis of alkyl halides and alcohols :
 - (a) From Ammonolysis of alkyl halides [Hofmann's ammonolysis] : When an aqueous solution of ammonia is heated with alkyl halide all the three types of amines and quaternary ammonium salt are formed.

$$R \xrightarrow{NH_3} R \xrightarrow{NH_2} R \xrightarrow{R-X} R_2 N H \xrightarrow{R-X} R_3 N \xrightarrow{R-X} R_4 N X^{\oplus \Theta}$$

(Quaternary ammonium salt)

If ammonia is taken in excess, 1° amine is the main product.

(b) Ammonolysis of alcohols : When ROH and NH₃ are passed over Al₂O₃ or ThO₂ at 350° C all the three types of amines are formed.

$$R \longrightarrow OH \xrightarrow{NH_3} R \longrightarrow R \longrightarrow NH_2 \xrightarrow{R-OH} R_2NH \xrightarrow{R-OH} Al_2O_3 \rightarrow R_3N$$

- Quaternary ammonium hydroxide is not formed.
- If excess of ammonia is used, then main product will be primary amine.
- (2) By reduction :
 - (a) With RCONH_2 : RCONH_2 $\xrightarrow{\text{LiAlH}_4}$ RCH_2NH_2
 - (b) With RCN : $RCN + 4[H] \xrightarrow{Na/C_2H_5OH} RCH_2NH_2$

This reaction (b) is called mendius reaction.

The reduction of alkyl isocynides gives secondary amines.

 $R - NC + 4[H] \xrightarrow{C_2H_5OH/Na} RNHCH_3$

- (c) With Oximes : $R-CH=N-OH+4[H] \xrightarrow{\text{LiAlH}_4 \text{ or}} RCH_2-NH_2 + H_2O$
- (d) With RNO_2 : RNO_2 + 6[H] $\xrightarrow{\text{Sn/HCl}} \text{RNH}_2$ + 2H₂O

Sn/HCl is used in laboratory preparation

(3) By hydrolysis of :

(a) **R—NC**: Alkyl isocyanide undergoes hydrolysis with mineral acid and forms alkyl amine.

R—NC + $2H_2O$ _HC RNH₂ + HCOOH

(b) RNCO : Alkyl isocyanate undergoes hydrolysis on heating with KOH and forms alkyl amine.

$$\begin{array}{ccc} & \text{KOH} \\ \text{RNCO} + & & \longrightarrow \text{RNH}_2 + \text{ } \text{K}_2\text{CO}_3 \\ & & \text{KOH} \end{array}$$

(4) By Hofmann's bromamide reaction (Hofmann's Hypobromite reaction) : This is a general method for the conversion of alkanamides into primary amines having one less carbon.

$$\begin{array}{c} O \\ II \\ R - C - NH_2 + Br_2 + 4KOH \longrightarrow R - NH_2 + K_2CO_3 + 2KBr + 2H_2O \end{array}$$

(5) From Grignard reagent : Alkyl magnesium iodide reacts with chloramine to yield alkyl amine.

$$R-Mg-I + CI-NH_2 \longrightarrow R-NH_2 + Mg < I_{CI}$$

(6) Gabriel phthalimide synthesis : Phthalimide is first treated with KOH to obtain potassium phthalimide which is then treated with alkyl iodide. Then alkyl phthalimide on hydrolysis yields alkylamine. This method is used in the formation of pure aliphatic primary amines.

Phthalic acid

* Aniline is not formed by this reaction.

(7) Curtius reaction :

(8) Schmidt reaction : In presence of conc. H_2SO_4 alkanoic acid reacts with hydrazoic acid (N_3H) followed by hydrolysis to yield alkylamine.

 $R - COOH + N_{3}H \xrightarrow{(1) N_{3}H, H_{2}SO_{4}} R - NH_{2} + N_{2} + CO_{2}$

distillation

GOLDEN KEY POINTS

$$2^{\circ}, 3^{\circ} \text{ amine } + R_4 \text{NX}$$

1°.

Mixture of 1°, 2°, 3° amine

 R_4NX does not undergo distillation.

Mixture of 1°, 2°, 3° amine can be separated by following methods.

94

95

- (i) **Fractional distillation :** The mixture of amines may be separated by fractional distillation because their boiling points are quite different. It is used in industry.
- (ii) Hinsberg method : In this method mixture of amines is seperated by using benzene sulphonyl chloride (Hinsberg's reagent).

 $\begin{array}{ccc} C_{6}H_{5}SO_{2}Cl+1^{\circ} \text{ amine} & & \text{Product} & \xrightarrow{\text{KOH}} & \text{Soluble} \\ & & (\text{ppt.}) \end{array}$ $C_{6}H_{5}SO_{2}Cl+2^{\circ} \text{ amine} & & \text{Product} & \xrightarrow{\text{KOH}} & \text{insoluble} \\ & & (\text{ppt.}) \end{array}$

3° amine does not react with benzene sulphonyl chloride. (No ppt. formed)

(iii) Hofmann method : In this method mixture of amines is separated by using ethyl oxalate.

 1° amine + ethyl oxalate \longrightarrow solid product

- 2° amine + ethyl oxalate \longrightarrow liquid product
- 3° amine + ethyl oxalate \longrightarrow No reaction

3.0 PHYSICAL PROPERTIES

ALLEN

- (i) CH_3NH_2 is gas and $C_2H_5NH_2$ is a volatile liquid.
- (ii) Higher amines have fishy smell.
- (iii) H-Bonding (weaker as compared to H—O—H).

In 3° amine (due to absence of H-atom) H-bonding is not possible.

(iv) Boiling point : Due to weak intermolecular H-bonding the B.P. of 1° and 2° amines are lower than those of alcohols of comparable molecular weight. The boiling point of 3° amines which form no H-bonds are near to those of alkanes of comparable molecular weight.

Boiling point α molecular weight

Order of B.P.: 1° amine 2° amine 3° amineso order of volatility: 3° amine 2° amine 1° amine

(v) **Solubility :** Low molecular weight amines are soluble in water. The water solubility of amines decreases with increasing size of alkyl group.

T:\NODE02\B0AI-B0\TARGET\CHEM\ENG\WODULE-6\03 NITROGEN\01-THEORY.P65

4.0 Chemical properties

- (i) Basic character of amines is due to the presence of lone pair of electrons on the N atom.
- (ii) Basic strength depends on electron donating tendency.
- (iii) Order of basic character in aqueous solution :

:
$$(CH_3)_2 \text{ NH} > CH_3 \text{ NH}_2 > (CH_3)_3 \text{ N} > \text{NH}_3$$

 $(C_2H_5)_2 \text{ NH} > (C_2H_5)_3 \text{ N} > C_2H_5 \text{ NH}_2 > \text{NH}_3$

In secondary amine

GOLDEN KEY POINTS

- Tertiary amine is less basic then secondary due to following reasons :
 - (i) **Steric hindrance :** In tertiary amines (R_3N) , three alkyl groups attached to N are bulkier and as such exert steric hindrance.
 - (ii) **Decrease in hydration :**

In tertiary amine

$$R_{3} \overset{\oplus}{N} - H \cdots O < \overset{H}{H}$$

Protonated t-amine can form H-bonding with water molecule only at one point [less stable] Protonated s-amine can form H-bonding with water molecules at two points (more stable)

 $R_2 N < H O < H O < H O < H O < H O < H O < H O < H O < H O < H O < H O < H O < H O < H O < H O < H O < H O < H O < H O < H O < H O < H O < H O < H O < H O < H O < H O < H O < H O < H O < H O < H O < H O < H O < H O < H O < H O < H O < H O < H O < H O < H O < H O < H O < H O < H O < H O < H O < H O < H O < H O < H O < H O < H O < H O < H O < H O < H O < H O < H O < H O < H O < H O < H O < H O < H O < H O < H O < H O < H O < H O < H O < H O < H O < H O < H O < H O < H O < H O < H O < H O < H O < H O < H O < H O < H O < H O < H O < H O < H O < H O < H O < H O < H O < H O < H O < H O < H O < H O < H O < H O < H O < H O < H O < H O < H O < H O < H O < H O < H O < H O < H O < H O < H O < H O < H O < H O < H O < H O < H O < H O < H O < H O < H O < H O < H O < H O < H O < H O < H O < H O < H O < H O < H O < H O < H O < H O < H O < H O < H O < H O < H O < H O < H O < H O < H O < H O < H O < H O < H O < H O < H O < H O < H O < H O < H O < H O < H O < H O < H O < H O < H O < H O < H O < H O < H O < H O < H O < H O < H O < H O < H O < H O < H O < H O < H O < H O < H O < H O < H O < H O < H O < H O < H O < H O < H O < H O < H O < H O < H O < H O < H O < H O < H O < H O < H O < H O < H O < H O < H O < H O < H O < H O < H O < H O < H O < H O < H O < H O < H O < H O < H O < H O < H O < H O < H O < H O < H O < H O < H O < H O < H O < H O < H O < H O < H O < H O < H O < H O < H O < H O < H O < H O < H O < H O < H O < H O < H O < H O < H O < H O < H O < H O < H O < H O < H O < H O < H O < H O < H O < H O < H O < H O < H O < H O < H O < H O < H O < H O < H O < H O < H O < H O < H O < H O < H O < H O < H O < H O < H O < H O < H O < H O < H O < H O < H O < H O < H O < H O < H O < H O < H O < H O < H O < H O < H O < H O < H O < H O < H O < H O < H O < H O < H O < H O < H O < H O < H O < H O < H O < H O < H O < H O < H O < H O < H O < H O < H O < H O < H O < H O < H O < H O < H O < H O < H O < H O < H O < H O < H O < H O < H O < H O < H O < H O < H O < H O < H O < H O < H O < H O < H O < H O < H O < H O < H O < H O < H O < H O < H$

Conjugate acid of 3° amine are less stable as compare to 2° amine due to low hydration so less basic.

• The basic strength of aniline is less than aliphatic amines as the lone pair of electron present on N– atom interact with the delocalized π - orbital of benzene ring. Hence it is less available for protonation on N–atom.

(1) Reactions showing basic nature :

It reacts with acids to form salts.

 $RNH_2 + HCl \longrightarrow [RNH_3] \overset{\Theta}{Cl} \xrightarrow{\Delta} R-Cl + NH_3$

Alkyl ammonium chloride

(Acidic salt)

 $2RNH_2 \xrightarrow{H_2SO_4} (RNH_3)_2 SO_4^{-2}$ Alkyl ammonium sulphate

(2) **Reaction with alkyl halides :** Alkyl amine reacts with alkyl halides and form sec., ter. amines and quaternary ammonium salt.

 $RNH_2 + R - X \xrightarrow{-HX} R_2NH \xrightarrow{RX} R_3N \xrightarrow{RX} R_4NX$

(3) Acetylation : Acetylation takes place when alkyl amine combines with acetyl chloride or acetic anhydride.

$$RNH_2 + CICOCH_3 \longrightarrow RNHCOCH_3 + HCI$$

(N –alkyl acetamide)

 $RNH_2 + (CH_3CO)_2O \longrightarrow RNHCOCH_3 + CH_3COOH_3$

(N –alkyl acetamide)

(4) Benzoylation (Schotten Baumann reaction) :

$$\bigcirc + H - NH - R \xrightarrow{NaOH} \bigcirc + HCI$$

Benzoylchloride

llen

N-alkyl benzamide

(5) Acidic nature : Amines are very weak acids only 1° and 2° amines show acidic nature with active metals.

$$R - NH_2 + Na \longrightarrow R \overset{\Theta}{N} \overset{\oplus}{H} \overset{\oplus}{N} a + \frac{1}{2}H_2$$

N– alkyl sodamide

(6) Reaction with Tilden reagent :

 $R - M_2 + NOCl \longrightarrow RCl + N_2 + H_2O$

(7) Reaction with aldehydes :

$$R-NH_2 + O = C - R \xrightarrow{-H_2O} RCH = NR (Schiff's base)$$

(8) Carbylamine Reaction (Isocyanide test) : When alkyl amine heated with chloroform and alc. KOH alkyl isocyanide is formed which has very bad smell.

This test is also given by aniline . This is a test for p-amines.

 $R-NH_2 + CHCl_3 + 3 \text{ KOH} \longrightarrow R - N \cong C + 3KCl + 3H_2O$

(9) Hofmann's mustard oil test : When alkyl amine is heated with carbon disulphide and mercuric chloride alkyl isothiocyanate is formed which has smell like mustard oil.

$$R-NH_{2} + C=S \longrightarrow R-NH-C-SH \xrightarrow{H_{gCl_{2}}} R-N=C=S + HgS + 2HCl$$

Alkyl isothiocyanate

$$R_3N + C = S$$
 — No reaction

(10) Reaction with HNO_2 :

(a) Primary amines react with nitrous acid to produce nitrogen gas [seen as bubbles]

$$\begin{array}{cccc} R & - NH_2 + HONO & \longrightarrow & R - OH + N_2 \uparrow & + H_2O \\ CH_3 NH_2 + HNO_2 & \longrightarrow & CH_3 - O - CH_3 \\ (b) & R_2 NH + HONO & \longrightarrow & R_2 N - NO + H_2O \\ & & & & & & & & \\ & & & & & & & & \\ & & & & & & & & \\ \end{array}$$
(c) $R_3N + HONO & \longrightarrow & R_3N HNO_2^{\Theta}$ Trialkyl ammonium nitrite (Soluble in water)

The 2:\NODE02\B0al-B0\Target\CHEM\BNG\MODULE-6\03 NITROGEN\01-THEORY.P65

Points to Remember :

- (i) Nitrosoamines are carcinogens (Cancer causing agents)
- (ii) Amines can have chiral N-atom but cannot be resolved into enantiomeric forms because of rapid inversion of one enantiomeric form into the other.
- (iii) The Schiff's bases formed by reaction of 1°-amines and aldehyde/ketones are also called anils.
- (iv) The mixture of 1°, 2°, 3° amines can be distinguished by Hofmann's test or Hinsberg's reagent or nitrous acid test.

5.0 ANILINE (C₆H₅NH₂)

5.1 General Methods of Preparation

(1) Lab method:

$$C_6H_5NO_2 \xrightarrow{Sn+HCl} C_6H_5NH_2 + H_2O_1$$

(2) Industrial method :

$$C_6H_5 \longrightarrow NO_2 \longrightarrow C_6H_5 \longrightarrow NH_2 + H_2O$$

(3) From Phenol :

$$C_6H_5OH + NH_3 \xrightarrow{ZnCl_2} C_6H_5NH_2 + H_2O$$

(4) From benzamide (Hofmann's bromamide reaction):

$$C_6H_5CONH_2 + Br_2 + 4KOH \longrightarrow C_6H_5NH_2 + K_2CO_3 + 2KBr + 2H_2O_3$$

(5) From benzoic acid (Schmidt reaction) :

$$\begin{array}{ccc} C_{6}H_{5}COOH + N_{3}H & \xrightarrow{Conc.H_{2}SO_{4}} & C_{6}H_{5}NH_{2} + N_{2}\uparrow + CO_{2}\uparrow \\ (Hydrazoic acid) & \xrightarrow{H_{2}O} & C_{6}H_{5}NH_{2} + N_{2}\uparrow + CO_{2}\uparrow \end{array}$$

(6) From Grignard reagent :

(7) From phenyl isocyanide :

 $C_6H_5N \cong C + 2H_2O \longrightarrow C_6H_5NH_2 + HCOOH$

5.2 Physical Properties

- (i) Fresh, aniline is a colourless oily liquid. On standing the colour becomes dark brown due to action of air and light.
- (ii) It's B.P. is 183°C.
- (iii) It is heavier than water.
- (iv) It has characteristic unpleasent odour. It is toxic in nature.

Reactions due to -NH₂ group

(1) **Basic nature :** Aniline is weak base but it forms salt with strong acids. It accepts a proton.

$C_6H_5NH_2$ + H ⁺ \longrightarrow	$C_{6}H_{5}N\overset{\oplus}{H}_{3}$	Anilinium ion
$C_6H_5NH_2 + HCl \longrightarrow$	$C_6H_5 \overset{\oplus}{NH_3} \overset{\Theta}{Cl}$	Anilinium hydrochloride
$2C_6H_5NH_2 + H_2SO_4 \longrightarrow$	$(C_6H_5 \overset{\oplus}{N}H_3)_2SO_4$	Anilinium sulphate
$2C_6H_5NH_2 + H_2PtCl_6 \longrightarrow$ Chloroplatinic acid	$(C_6H_5 \overset{\oplus}{N}H_3)_2PtCl_6^{-2}$	Anilinium platinic chloride

(2) Alkylation : Aniline reacts with alkyl halides forming secondary, tertiary and quaternary ammonium salts depending on the concentration of alkyl halides.

 $\begin{array}{rcl} C_{6}H_{5}NH_{2} \ + \ CH_{3}I & \longrightarrow & C_{6}H_{5}\mbox{--}NH\mbox{--}CH_{3}\ + \ HI \\ & (N\mbox{--}methyl aniline) \\ \\ C_{6}H_{5}NH \ - \ CH_{3}\ + \ CH_{3}I \ \longrightarrow & C_{6}H_{5}N(CH_{3})_{2}\ + \ HI \\ & (N,N\mbox{--}dimethyl aniline) \end{array}$

$$C_6H_5N(CH_3)_2 + CH_3I \longrightarrow C_6H_5(CH_3)_3N \overset{\oplus \Theta}{I}$$

(Trimethyl phenyl ammonium iodide)

(3) Acylation : Aniline reacts with acid chlorides or anhydrides to form corresponding amides called anilides. [The reaction of $C_6H_5NH_2$ with benzoyl chloride is example of "Schotten Baumann reaction"]

$$C_6H_5NH_2 + Cl - C - CH_3 \xrightarrow{Base} C_6H_5 - NH - C - CH_3$$
 (Acetanilide)

(4) Carbylamine reaction :

ALLEN

$$C_6H_5NH_2 + CHCl_3 + 3KOH \longrightarrow C_6H_5NC + 3KCl + 3H_2O$$

Phenyl isocyanide (Foul smell compound)

Note : (1) Intermediate species is dichloro carbene [: CCl₂].

(2) This is test of aniline and other primary amine, known as Isocynide test.

(5) Hoffmann's mustard oil reaction : When aniline is heated with alc. CS₂ and excess of HgCl₂ phenyl isothiocyanate having a characteristic smell of mustard oil is formed.

 $C_6H_5NH_2 + S = C = S \xrightarrow{HgCl_2} C_6H_5N = C = S$

Phenyl isothiocyanate

This is a test of aniline and other primary amines.

(6) Reaction with aldehydes : Aniline condenses with aldehydes to form schiff's base.

 $\begin{array}{cccc} C_{_{6}}H_{_{5}}NH_{_{2}} + & H-C_{_{6}}-C_{_{6}}H_{_{5}} & \longrightarrow & C_{_{6}}H_{_{5}}N = CHC_{_{6}}H_{_{5}} + H_{_{2}}O \\ & & & \\ O & & & \\ & & & \\ O & & & \\ & &$

(7) Reaction with Hinsberg's reagent :

 C_6H_5 \longrightarrow $C_6H_5SO_2NHC_6H_5$ \longrightarrow $C_6H_5SO_2NHC_6H_5$

(N-Phenylbenzene sulphonamide)

(8) Diazotisation :Diazotisation is a reaction in which ice cooled solution of aniline in an inorganic acid reacts with sodium nitrite solution leading to the formation of diazonium salt.

 $C_6H_5NH_2$ + NaNO₂ + HCl $\xrightarrow{0^\circ-5^\circ C} -H_2O$ $C_6H_5N_2Cl$

Benzene diazonium chloride is a useful synthetic reagent. It is used in the preparation of many organic compounds

99

(1) Halogenation : In polar and nonpolar medium Chlorine and bromine react with aniline and form trichloro and tribromo aniline respectively.

Note : However, monobromo or chloro derivative of aniline can be prepared if $-NH_2$ group is first protected by acetyl group. Here the reactivity decreases due less +M effect on benzene ring.

o- and p-Bromo aniline

(2) Nitration :

ALLEN

(3) Sulphonation : Aniline reacts with furning H_2SO_4 to give sulphanilic acid. (p-Amino-benzene sulphonic acid)

Sulphanilic acid

- This process is called baking.
- Sulphanilic acid is an important intermediate in the manufacturing of dyes and drugs.
- The compounds in which both proton donating & proton accepting groups present are called ampholite (dipolar ion).

(4) **Catalytic hydrogenation :** Aniline undergoes hydrogenation in presence of Ni at high temp. to form cyclohexanamine.

$$\overset{\text{NH}_2}{\bigcirc} + 3H_2 \xrightarrow{\text{Ni}} \overset{\text{Ni}}{\longrightarrow}$$

5.3 Tests of Aniline

(i) Carbylamine test : Aniline gives carbylamine test or Isocyanide test.

 $C_6H_5NH_2 + CHCl_3 + KOH \longrightarrow C_6H_5NC$

(Bad smelling)

- (ii) **Dye test :** Aniline is first diazotised. On adding alkaline solution. of β -naphthol to the diazotised product a red-orange dye is formed.
- (iii) On heating with bromine water, a white ppt. is formed.

2.

BEGINNER'S BOX-1

1. Which one of following reaction is Schotten–Baumann reaction

(1) Acetylation of RNH_2	(2) Acylation of RNH_2
(3) Benzoylation of RNH_2	(4) All of them
Which of the following pair will yield primary amin	ne on hydrolysis
(1) CH ₃ NCO, CH ₃ NC	(2) CH ₃ CN, CH ₃ NC
(3) (CH ₃) ₂ NH, CH ₃ —CH=NOH	(4) None of the above

- **3.** Methylamine on treatment with chloroform and ethanolic caustic alkali gives foul smelling compound, the compound is
 - (1) $CH_{3}NCO$ (2) $CH_{3}CNO$ (3) $CH_{3}CN$ (4) $CH_{3}NC$

6.0 NITRO BENZENE [C₆H₅NO₂]

It is also called as artificial oil of bitter almonds or oil of mirbane as its odour is like that of bitter almonds.

6.1 General Methods of Preparation

(1) Lab method :

(2) From diazonium salt :

6.2 Physical Properties

- (i) Nitro benzene is light yellow oily liquid
- (ii) It has smell of bitter almonds
- (iii) It is steam voltile. It's vapours are poisonous in nature.
- (iv) It is heavier than water
- (v) It's B. P. is 211℃
- (vi) Smell of nitro benzene and benzaldehyde is same

6.3 Chemical Properties

Nitrobezene shows following chemical reactions -

- (1) Reactions due to NO_2 group.
- (2) Reactions due to benzene ring : (A) Electrophilic substitution (B) Nucleophilic substitution

ALLEN

6.4 **Test of Nitrobenzene**

Mullikan Barker Test : Ethanolic solution of nitrobenzene is treated with zinc dust and NH₄Cl solution. The mixture is heated and filter in a test tube containing Tollen's reagent a grey or black pricipitate (Ag mirror) is formed.

 $\xrightarrow{\text{Tollen's reagent}} C_6 H_5 \text{NO} + \text{Silver mirror}$ $C_6H_5NO_2 + Zn + NH_4Cl \longrightarrow C_6H_5NH-OH$ Nitroso benzene (Ag↓)

Phenyl hydroxyl amine

6.5 Uses

(i) As a solvent (ii) In manufacture of aniline and azo dye

The 2:\NODE02\B0AI-B0\TARGET\CHEM\ENG\WODULE-6\03 NITROGEN\01-THEORY.P65

BEGINNER'S BOX-2												
Nitration of which of th	e following compound is	difficult :-										
(1) Benzene	(2) Nitrobenzene	(3) Toluene	(4) Phenol									
Nitration of nitrobenzen	e in presence of fuming	nitric acid will generate a	:-									
(1) Solid product	(2) Gaseous product	(3) Semi-solid product	(4) Liquid product									
$C_6H_5NO_2 \xrightarrow{Sn/HCl} A$	$\xrightarrow{\text{NaNO}_2/\text{HCl}} B; \text{ To obtain}$	n benzene from B, the sui	itable reagent is :									
(1) SnCl ₂ + HCl	(2) H ₃ PO ₂	(3) $C_2 H_5 N_2 Cl$	(4) Methanol									
When nitrobenzene is h	leated with conc. HNO_3 a	and conc. H_2SO_4 the proc	duct would be obtained :-									
(1) T.N.T.	(2) D.N.B.	(3) D.D.T.	(4) T.E.L.									
Which of the following	has the maximum value of	of dipole moment ?										
CI I	NO ₂		NO ₂									
(1)	(2) \bigcirc NO ₂	(3)	(4)									
Cl			I NO ₂									
	Nitration of which of the (1) Benzene Nitration of nitrobenzene (1) Solid product $C_6H_5NO_2 \xrightarrow{Sn/HCl} A \rightarrow A^{-1}$ (1) SnCl ₂ + HCl When nitrobenzene is he (1) T.N.T. Which of the following Cl Cl Cl	BEGINNENitration of which of the following compound is(1) Benzene(2) NitrobenzeneNitration of nitrobenzene in presence of fuming(1) Solid product(2) Gaseous product $C_6H_5NO_2 \xrightarrow{Sn/HCl} A \xrightarrow{NaNO_2/HCl} B$; To obtain(1) SnCl_2 + HCl(2) H_3PO_2When nitrobenzene is heated with conc. HNO3 at(1) T.N.T.(2) D.N.B.Which of the following has the maximum value of $\begin{pmatrix} Cl \\ Q \\ Cl \end{pmatrix} \xrightarrow{Cl} NO_2$	BEGINNER'S BOX-2Nitration of which of the following compound is difficult :-(1) Benzene(2) Nitrobenzene(3) TolueneNitration of nitrobenzene in presence of fuming nitric acid will generate a(1) Solid product(2) Gaseous product(3) Semi-solid product $C_6H_5NO_2 \xrightarrow{Sn/HCl} A \xrightarrow{NaNO_2/HCl} B$; To obtain benzene from B, the suit(1) SnCl_2 + HCl(2) H_3PO_2(3) $C_2H_5N_2Cl$ When nitrobenzene is heated with conc. HNO3 and conc. H_2SO_4 the product(1) T.N.T.(2) D.N.B.(3) D.D.T.Which of the following has the maximum value of dipole moment ? $\begin{pmatrix} Cl \\ Q \\ Q \\ Cl \end{pmatrix}$ $\begin{pmatrix} Cl \\ Q \\ Q \\ Q \end{pmatrix}$ $\begin{pmatrix} Cl \\ Q \\ Q \\ Q \end{pmatrix}$ $\begin{pmatrix} Cl \\ Q \\ Q \\ Q \end{pmatrix}$ $\begin{pmatrix} Cl \\ Q \\ Q \\ Q \end{pmatrix}$ $\begin{pmatrix} Cl \\ Q \\ Q \\ Q \end{pmatrix}$ $\begin{pmatrix} Cl \\ Q \\ Q \\ Q \end{pmatrix}$ $\begin{pmatrix} Cl \\ Q \\ Q \\ Q \end{pmatrix}$ $\begin{pmatrix} Cl \\ Q \\ Q \\ Q \end{pmatrix}$ $\begin{pmatrix} Cl \\ Q \\ Q \\ Q \end{pmatrix}$ $\begin{pmatrix} Cl \\ Q \\ Q \\ Q \end{pmatrix}$ $\begin{pmatrix} Cl \\ Q \\ Q \\ Q \end{pmatrix}$ $\begin{pmatrix} Cl \\ Q \\ Q \\ Q \end{pmatrix}$ $\begin{pmatrix} Cl \\ Q \\ Q \\ Q \end{pmatrix}$ $\begin{pmatrix} Cl \\ Q \\ Q \\ Q \end{pmatrix}$ $\begin{pmatrix} Cl \\ Q \\$									

ANSWER KEY												
BEGINNER'S BOX-1	Que.	1	2	3								
	Ans.	4	1	4								
BEGINNER'S BOX-2	Que.	1	2	3	4	5						
BEOMALK O BOX-2	Ans.	2	1	2	2	2						

ALI	LEN		Pre-Medical : Chemistry
E	XERCISE-I (Conceptual Questions)		Build Up Your Understanding
	AMINE	7.	Tertiary amine is obtained in the reaction :-
1.	Among the following which one is not formed in Hoffmann degradation(1) RNCO(2) $R - \dot{N}H_2$ (3) RCONHBr(4) RNC		(1) Aniline $\xrightarrow{CH_{3}I}$ $\xrightarrow{CH_{3}I}$ (2) Aniline $\xrightarrow{CH_{3}I}$ (3) Nitrobenzene $\xrightarrow{Sn/HCl}$
2.	$CH_{a}CH_{a}CONH_{a} \xrightarrow{NaOH} A,$		(4) None of the above
2	Aqueous solution of A (1) Turns blue litmus to red (2) Turns red litmus to blue (3) Does not affect the litmus (4) Decolourise the litmus	9.	$\begin{array}{llllllllllllllllllllllllllllllllllll$
5.	compound is heated with $[KOH + Br_2]$ (1) Ethanamide (2) Methanamide (3) Propionamide (4) All the above	10.	 (3) Imides (4) Aliphatic amide Gabriel phthalimide reaction is used in the synthesis of (1) Primary aromatic amines (2) Secondary amines
4.	 CH₃CONH₂ → T → A → T → B Reaction II is called (1) Clemensen (2) Stephen (3) Mendius (4) Bauveault-blank reduction 	11.	 (2) Occontaily unlines (3) Primary aliphatic amines (4) Tertiary amines The reaction : [C₂H₅Br + NH₃] is in fact an example of (1) Ammonolysis only (2) Nucleophilic substitution only
5.	CH ₃ CONH ₂ , Br ₂ & KOH give CH ₃ NH ₂ as the product. The intermediates of the reaction are :- O (a) CH ₃ -C-NHBr (b) CH ₃ -N=C=O	12.	 (3) Ammonolysis as well as nucleophilic substitution (4) None Melting points are normally the highest for (1) Tertiary amides (2) Secondary amides (3) Primary amides (4) Amines
6.	(c) CH_3NHBr (d) $CH_3-C-N < Br Br Br$ The correct answer is :- (1) a, b (2) a, c (3) b, d (4) c, d In which case alkylamine is not formed :- (1) $R-X + NH_3 \rightarrow$ (2) $R-CH=NOH + [H] \rightarrow Na Alc. \rightarrow$	13. 14.	Solubility of ethylamine in water is due to (1) Low molecular weight (2) Ethyl group is present in ethyl alcohol (3) Formation of H-bonding with water (4) Being a derivative of ammonia Which of the following compound liberates CO ₂ when treated with NaHCO ₃
	(3) R—CN + H_2O <u>H^+</u> (4) RCONH ₂ + 4[H] <u>$LiAIH_4$</u>		(1) $CH_{3}COCH_{2}NH_{2}$ (2) $CH_{3}NH_{2}$ (3) $(CH_{3})_{4}^{\oplus}NOH$ (4) $CH_{3}^{\oplus}NH_{3}Cl$ 105

15.	The product obtained by the alkaline hydrolysis of C_2H_5 —N=C=O when treated with t-butyl magnesiumbromide, the compound obtained will									
	be (1) t–butylamine (3) Isobutane (4) n–butane									
16.	$C_{2}H_{5}NH_{2} \xrightarrow{HNO_{2}} a$ $C_{4}H_{5}CHO = b$ $NOCl = c$ $C_{4}H_{5}SO_{2}Cl = d$	23								
	Which product is a Schiff's base :-									
	(1) a (2) b (3) c (4) d									
17.	Acidic nature of amino group is shown by the reaction :- (1) R-NH ₂ + NOCl \rightarrow RCl + N ₂ + H ₂ O (2) 2RNH ₂ + 2Na \rightarrow 2RNH.Na + H ₂ (3) R.CH ₂ NH ₂ + HNO ₂ \rightarrow R.CH ₂ OH + N ₂ + H ₂ O									
	(4) $\text{R.NH}_2 + \text{HCl} \rightarrow \text{RNH}_3 \overset{\circ}{\text{Cl}}$									
18.	The reagent used in the conversion of $C_2H_5NH_2$ to C_2H_5Cl would be									
	(1) SO_2Cl_2 (2) $SOCl_2$	24								
	(3) NOCI (4) All									
19.	Hydrogen attached to nitrogen is released in the reaction (1) RCONH ₂ + NaNH ₂ (2) RNH ₂ + Na (3) Both the above (4) None of the abvoe									
20.	If primary amines are treated with ketones the	25								
	product is (1) Urea (2) Guanidine (3) Amide (4) Schiff's base									
21.	Reactants of reaction – I are CH ₃ CONH ₂ , KOH, Br ₂ Reactants of reaction–II are CH ₃ NH ₂ , CHCl ₃ , KOH The intermediate species of reaction–I and reaction–II are respectively (1) Carbonium ion, carbene (2) Nitrana, carbone	A. B. C. D.								
	(3) Carbene, nitrene									
	(4) Carbocation, carbanion									

- 22. N, N–dimethyl acetamide is obtained in the reaction
 - (1) Acetyl chloride and methanamine
 - (2) Acetyl chloride and ethanamine
 - (3) Acetyl chloride and dimethylamine
 - (4) Acetyl chloride and diethylamine
- **23.** This compound does not respond to carbylamine reaction :-

(1)
$$CH_3$$
-CH-NH₂
CH₃

(2)
$$C_2H_5 - NH - C_2H_5$$

(3)
$$CH_{3}$$
-C-NH₂
CH₃

(4)
$$CH_3$$
-CH-CH_2-CH_3
NH_2

- 24. Blue litmus can be turned to red by the compound(1) ROH
 - (2) RNH₂

(3)
$$R \overset{\oplus}{N} H_3 \overset{\Theta}{O} H$$

(4)
$$RNH_{3} \overset{\Theta}{Cl}$$

25. Match List I with List II and select the correct answer using the codes given below :-

	List	t I		List II [Used as test reagent for]						
	[Reage	ent]	[U:							
A. An	nmonica	al AgNC	О ₃ а.	Primary	amine					
B. HI	O ₄		b.	Aldehyd	le					
C. Co	old dil. <i>I</i>	Alkaline	с.	Vicinal-	OH groups	5				
KM	InO4									
D. Ch	lorofor	m + Na	OH d.	Double	bond					
	Cod	es :								
		А	В	С	D					
	(1)	b	с	а	d					
	(2)	d	b	а	с					
	(3)	b	с	d	а					
	(4)	d	с	b	а					
		-								

Z:\NODE02\B0AI-B0\TARGET\CHEM\ENG\WODULE-6\03 NITROGEN\02-EXERCISE.P65

- **26.** Which one of the following aromatic amino compound gives alcohol with HNO₂ :-
 - (1) N,N–Dimethylaniline (2) Benzylamine
 - (3) N–methylaniline (4) Aniline

ANILINE

- **27.** Electrolytic reduction of nitrobenzene in weakly acidic medium gives
 - (1) Aniline
 - (2) p–Hydroxyaniline
 - (3) N–Phenylhydroxylamine
 - (4) Nitrosobenzene
- **28.** $C_6H_5NH_2 \xrightarrow{Br_2/CCl_4}$? The product is :-
 - (1) Only o- bromoaniline
 - (2) 2, 4, 6-triboromoaniline
 - (3) o-and p-bromoaniline
 - (4) Only p-bromoaniline
- **29.** Before proceeding for the nitration of aminobenzene, the NH_2 group is first protected by:-
 - (1) Alkylation
 - (2) Acetylation
 - (3) Formylation
 - (4) Chloromethylation
- 30. Aniline is purified by :-
 - (1) Azeotropic distillation
 - (2) Steam distillation
 - (3) distillation in presence of magnesium
 - (4) Fractional distillation
- **31.** Reaction $C_6H_5NH_2 + HAuCl_4 \longrightarrow$
 - $[C_6H_5^{\oplus}M_3]AuCl_4$ shows ... behaviour of aniline :-(1) Acidic (2) Neutral (3) Basic (4) Amphoteric
- **32.** Aniline on treatment with bromine water yields white precipitate of :-
 - (1) o-Bromoaniline
 - (2) p–Bromonailine
 - (3) 2, 4, 6-Tribromoaniline
 - (4) m–Bromoaniline

33. Which compound does not show diazo reaction:-

(1)
$$\bigcirc$$
-NH₂ (2) H₃C- \bigcirc -NH₂
(3) O₂N- \bigcirc -NH₂ (4) \bigcirc -CH₂-NH₂

34. Which of the following amines give N-nitroso derivative with NaNO₂ and HCl :-

(1)
$$C_2H_5NH_2$$
 (2) $O-NH_2$
(3) $O-N-H$ (4) NH_2

- **35.** Which of the following involves nitrene as an intermediate ?
 - (1) Carbylamine reaction
 - (2) Hofmann bromamide reaction
 - (3) Reimer Tiemann reaction
 - (4) Friedal crafts reaction
- **36.** Which of the following does not reduce Tollen's reagent :-

(1) CH ₃ CHO	(2) HCOOH
(3) C ₆ H ₅ NHOH	(4) $C_6 H_5 N H_2$

- **37.** Aniline can be obtained by :-
 - (1) Benzoyl chloride and ammonia
 - (2) Reduction of benzamide
 - (3) Phenol and ammonia in presence of ${\rm ZnCl}_{\rm 2}$
 - (4) Benzoic anhydride and ammonia
- 38. Aniline on direct nitration produces :-
 - (1) o–Nitroaniline (2) m–Nitroaniline
 - (3) p–Nitroaniline (4) All
- 39. Nitration of acetanilide followed by hydrolysis gives(1) o–Nitroaniline(2) p–Nitroaniline
 - (3) o– & p–Nitroaniline (4) o–Nitroanilinium ion
- **40.** $C_6H_5NH_2 \xrightarrow{NaNO_2/HCl} A$, Which is the incorrect structure of the product 'A' :-

(1) $C_6H_5 \rightarrow N = N \rightarrow Cl$ (2) $[C_6H_5N_2] \stackrel{\Theta}{Cl}$ (3) $[C_6H_5 \rightarrow N \equiv N] \stackrel{\Theta}{Cl}$ (4) $[C_6H_5 \rightarrow N \equiv N] \stackrel{\Theta}{Cl}$

i ie	Medicul . Chemisii y		ALLEN
41.	Chloroform and ethanolic KOH is used as a reagent in the following reaction :-	46.	$\phi - X \xrightarrow{\text{NaNO}_2/\text{HCl}} C_6 H_5 N_2 Cl \xrightarrow{\text{Water}} \phi - Y,$
	(a) Hoffmann carbylamine reaction		In the above sequence X and Y are :-
	(b) Hoffmann degradation reaction		(1) o-, p- and m-directing
	(c) Reimer–Tiemann reaction		(2) o-, p- and o-, p-directing
	(d) Hoffmann mustard oil reaction		(3) m and m directing
	Code is :-		(4) m and o, p directing
	(1) Only for a (2) Only for a and b	47.	Which of the following compound gives an explosive
	(3) Only for b and d (4) Only for a and c		on decarboxylation :-
42.	Acetanilide when treated with bromine in acetic		(1) 2,4, 6-Trinitrobenzoicacid
	acid mainly gives :-		(2) 2, 4-Dinitrobenzoicacid
	(1) o-Bromoacetanilide		(3) o-Aminobenzoicacid
	(2) N–Bromoacetanilide		(4) o-Hydroxybenzoicacid
	(3) p-Bromoacetanilide	48.	The gas leaked from a storage tank of the Union
43.	(4) m-Bromoacetanilide Aromatic nitriles (ArCN) are not prepared by		Carbide plant in Bhopal gas tragedy was:- (1) Methylisocyanate (2) Methylamine (3) Ammonia (4) Phosgene
	(1) $ArX + KCN$		ĊH ₃
	(2) $\operatorname{ArN}_{2}^{+}$ + CuCN	49.	$CH_{3} \xrightarrow{-C-NC} \xrightarrow{reduction} ?$ CH_{3}
	(3) ArCONH ₂ + P_2O_5		
	(4) $ArCONH_2 + SOCl_2$		CH ₃
N	ITRO GROUP, CYANIDE & ISOCYANIDE		(1) CH_3-C-NH_2
44.	Aniline in a set of reactions yielded end product D		
	$\bigcirc \overset{\text{NH}_2}{\longrightarrow} \overset{\text{NaNO}_2 + \text{HCI}}{\xrightarrow{0-5^{\circ}\text{C}}} A \overset{\text{CuCN}}{\longrightarrow} B \overset{\text{H}_2}{\xrightarrow{\text{Ni}}} \rightarrow$		(2) CH_3 -C-NH-CH ₃
	$C \xrightarrow{HNO_2} D$		CH_3
	The structure of the product D would be		ĊH ₃
	(1) $C_6H_5CH_2OH$ (2) $C_6H_5CH_2NH_2$		(3) $CH_3 - C - NH - CH_2 CH_3$
	(3) C_6H_5NHOH (4) $C_6H_5NHCH_2CH_3$		${}^{ m L}_{ m H_3}$
45.	In the reaction sequence identify the functional group present in A, B, C :-		(4) None
	$S_{\rm D}/{\rm HCl} = {\rm HNO}_{\rm D} = {\rm CoH}_{\rm COH}$	50.	Reaction of RCN with sodium and alcohol leads to

the formation of :-

(1) RCONH_2

(3) RCH₂NH₂

 $A \xrightarrow{\text{Sn/HCl}} B \xrightarrow{\text{HNO}_2} C \xrightarrow{\text{C}_2\text{H}_5\text{OH}} C_6\text{H}_6$ (1) NO₂, NH₂, N=N
(2) NO₂, NH₂, OH
(3) -OH, -NH₂, -NO
(4) -NH₂, -NO₂, -N=N108

Z:\NODE02\EQ4I+80\TARGET\CHEM\ENS\WODULE-6\03 NITROGEN\02-EXERCISE.P65

(2) RCOO⁻NH₄⁺

(4) R(CH₂)₃NH₂

51.	$C_6H_5NO_2 \xrightarrow{SnCl_2/HCl} \rightarrow$	$A \xrightarrow{\text{NaNO}_2/\text{HCl}} B; \text{ In the}$	54.	Match list I with II and choose the correct answer from the codes given below :-					
	above sequence Benze	ne from B, is suitably		List	I		List II		
	obtained by using :-			(A) An	iline	õ	a. Used in making azo		
	(1) Ethanol						uyes	1	
	(2) H ₃ PO ₂			(B) Nit	robenze	ene	o. Sulpha	i drug	
	(3) Both the above		(C) Sulphanilamide c. Solvent in the Frie Crafts reaction					edel	
	(4) Methanol			(D) Tri	nitrotolı	uene o	d. Used a	as explosive	
52.	Which reagent is used to benzene diazonium acid s (1) CuBr, Δ (3) KI, Δ	o get iodo benzene from sulphate [C ₆ H ₅ N ₂ HSO ₄] : (2) Cu powder + HI (4) None		(1) (2)	e is :- A a a	В с b	C b c	D d d	
53.	 (3) KI, Δ (4) None Which of the following is used as a solvent in the Friedel–Crafts reaction :- (1) Toluene (2) Nitrobenzene (3) Benzene (4) Aniline 		55.	(3) (4) In the S of diazo (1) Hali (3) —O	c d Sandme onium s ide grou PH grou	d c yer's re alt is r ıp p	a b action, – eplaced b (2) N (4) –	b a -N=N-X y :- itro group -NHNH ₂ gro	group Dup

EXERCISE-I (Conceptual Questions)													ANS	WER	KEY
Que.	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
Ans.	4	2	3	3	1	3	1	3	3	3	3	3	3	4	3
Que.	16	17	18	19	20	21	22	23	24	25	26	27	28	29	30
Ans.	2	2	3	3	4	2	3	2	4	3	2	1	2	2	2
Que.	31	32	33	34	35	36	37	38	39	40	41	42	43	44	45
Ans.	3	3	4	3	2	4	3	4	3	1	4	3	1	1	1
Que.	46	47	48	49	50	51	52	53	54	55					
Ans.	2	1	1	2	3	3	3	2	1	1					
															100

ALLEN -

ALLEN

AIPMT/NEET & AIIMS (2006-2018)

AIPMT 2009

4. Predict the product :

AIPMT 2010

- 5. Which of the following statements about primary amines is 'False' ?
 - (1) Alkyl amines are stronger bases than ammonia
 - (2) Alkyl amines are stronger bases than aryl amines
 - (3) Alkyl amines react with nitrous acid to produce alcohols
 - (4) Aryl amines react with nitrous acid to produce phenols
- **6.** Acetamide is treated with the following reagents separately. Which one of these would yield methyl amine ?

$1) \operatorname{PCl}_5 \tag{2}$	NaOH/Br ₂
3) Sodalime (4)	Hot conc. H_2SO_4

AIIMS 2010

7. Which of the following gives a soluble complex on reaction with benzene sulphonyl chloride (which of the following compounds after reacting with benzene suphonyl chloride is soluble in alkali solution) :-

(1) CH₃ CH₂ CH₂ - NH₂
 (2) CH₃CH₂-NH-CH₃
 (3) CH₃CH₂-OH
 (4) (CH₃)₃N

ALLEN

AIPMT Pre. 2011

8. What is the product obtained in the following

AIPMT Mains 2012

- 9. An organic compound C₃H₉N (A), when treated with nitrous acid, gave an alcohol and N₂ gas was evolved. (A) on warming with CHCl₃ and caustic potash gave (C) which on reduction gave isopropylmethylamine. Predict the structure of (A):
 - (1) $CH_3 N CH_3$ (2) $CH_3CH_2CH_2 NH_2$ CH_3

$$(3) \xrightarrow{CH_3} CH - NH_2$$

NEET UG 2013

10. In the reaction
$$\underset{\oplus N_2 Cl^{\oplus}}{\overset{NO_2}{\underset{\oplus}{}}} \xrightarrow{A} \underset{Br}{\overset{NO_2}{\underset{\oplus}{}}} \xrightarrow{Br} A$$
 is

- (1) H^+/H_2O (2) $HgSO_4/H_2SO_4$ (3) Cu_2Cl_2 (4) H_3PO_2 and H_2O
- Nitrobenzene on reaction with conc. HNO₃/H₂SO₄ at 80-100°C forms which one of the following products ?
 - (1) 1, 2, 4-Trinitrobenzene
 - (2) 1, 2-Dinitrobenzene
 - (3) 1, 3-Dinitrobenzene
 - (4) 1, 4-Dinitrobenzene

AIIMS 2013

12. Reaction of aniline with HNO₂ followed by treatment of dilute acid gives :-

(4) $C_6 H_6$

- (1) C_6H_5NHOH (2) C_6H_5OH
- (3) C₆H₅NHNH₂

- **13.** Which of the following will give carbylamine test?
 - (1) CH_3NH_2 (2) CH_3NHCH_3 (3) $(CH_3)NHCH_3$ (4) CH_3CH_3

(3) $(CH_3)_3N$ (4) CH_3CONH_2

AIPMT 2014

14. In the following reaction, the product (A)

- 15. Which of the following will be most stable diazonium salt $RN_2^+X^-$?
 - (1) $CH_3 N_2^+ X^-$ (2) $C_6 H_5 N_2^+ X^-$
 - (3) $CH_3CH_2N_2^+X^-$ (4) $C_6H_5CH_2N_2^+X^-$

AIPMT 2015

- **16.** The electrolytic reduction of nitrobenzene in strongly acidic medium produces :-
 - (1) Azoxybenzene (2) Azobenzene
 - (3) Aniline (4) p-Aminophenol

RE-AIPMT 2015

17. The following reaction

is known by the name \colon

- (1) Acetylation reaction
- (2) Schotten-Baumann reaction
- (3) Friedel–Craft's reaction
- (4) Perkin's reaction

- **18.** Method by which Aniline cannot be prepared is :-
 - (1) reduction of nitrobenzene with H_2/Pd in ethanol
 - (2) potassium salt of phthalimide treated with chlorobenzene followed by hydrolysis with aqueous NaOH solution
 - (3) hydrolysis of phenylisocyanide with acidic solution
 - (4) degradation of benzamide with bromine in alkaline solution

AIIMS 2015

NEET-II 2016

- **20.** Which one of the following nitro-compounds does not react with nitrous acid ?
 - H₃C (1) H₃C-C-NO₂ H₃C

21. A given nitrogen-containing aromatic compound (A) reacts with Sn/HCl, followed by HNO_2 to give an unstable compound (B). (B), on treatment with phenol, forms a beatiful coloured compound (C) with the molecular formula $C_{12}H_{10}N_2O$. The structure of compound (A) is :-

22.
$$(\bigcirc^{NO_2} \longrightarrow \text{Aniline})$$

NO

Aniline will not be prepared in presence of :-

H₂/Pd

(1) Sn + HCl (2) Fe + HCl

(3)
$$Zn + NH_4Cl$$
 (4)

NEET(UG) 2017

- 23. Which of the following reactions is appropriate for converting acetamide to methanamine ?
 (1) Hoffmarnn hypobromamide reaction
 (2) Stephens reaction
 - (3) Gabriels phthalimide synthesis
 - (4) Carbylamine reaction

AIIMS 2017

24.
$$() \xrightarrow{\text{NH}_2}_{\text{CH}_3} \xrightarrow{\text{H}_2\text{SO}_4}_{200^\circ\text{C}} \rightarrow \text{Major Product}$$

Major product of this reaction is :-

AIIMS 2018

LiAlH₄ CH_3 -CH=CH- CH_2 -CH=N- CH_3 25. H₂O

product.

- (1) CH_3 -CH=CH-CH₂-CH₂-NH-CH₃
- (2) CH_3 - CH_2 - CH_2 - CH_2 - CH_2 -NH- CH_3
- (3) CH_3 - CH_2 - CH_2 - CH_2 - $CH=N-CH_3$
- (4) CH₃-CH=CH-CH₂-CH=N-CH₃

Select the correct sequence of reagents for the above conversion.

- (1) H₂-Pd/c ; Br₂/KOH, Tollen's Reagent
- (2) Tollen's Reagent, Br₂/KOH, H₂-Pd-c
- (3) Br₂/KOH, Tollen's Reagent, Br₂/KOH
- (4) H₂-Pd-c, Tollen's Reagent, Br₂/KOH

- Which of the following is incorrect statement 27. regarding diazo salt :-
 - (1) On reaction with C_2H_5OH , it form benzene
 - (2) on reaction with HCN/CuCN it forms \bigcirc
 - (3) It gives nitrobenzene with $NaNO_2$
 - (4) It gives iodobenzene with KI/ Δ

EXERCISE-II (Previous Year Questions)												ANS	WER	KEY	
Que.	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
Ans.	4	1	2	2	4	2	1	1	3	4	3	2	1	4	2
Que.	16	17	18	19	20	21	22	23	24	25	26	27			
Ans.	4	2	2	2	1	4	3	1	1	1	2	3			
													113		

Z:\NODE02\B0AI-B0\TARGET\CHEM\ENG\WODULE-6\03 NITROGEN\02-EXERCISE.P65

Pre	-Medical: Chemistry	I	Allen					
E	XERCISE-III (Analytical Questions)	1	Check Your Understanding					
1.	$A \xrightarrow{NH_3} B \xrightarrow{\Delta} C \xrightarrow{B_{F_2^+}} CH_3CH_2NH_2$	4.	$C_2H_5Br \xrightarrow{AgCN} A \xrightarrow{H_3O^+} HCOOH + B;$					
	A is :-		$B \xrightarrow[KOH]{CHCl_3} A \xrightarrow[Reduction]{Reduction} C$					
	 (1) CH₃COOH (2) CH₃CH₂CH₂COOH (3) CH₃-CH-COOH 		 A, B, C respectively in the above sequence are (1) Ethane amine, methane nitrile and diethyl amine (2) Carbyl amino ethane, ethane amine and 					
	СН ₃ (4) СН ₃ СН ₂ СООН		(3) Ethyl isocyanide, ethyl amine and methyl isocyanate					
2.	The correct set of the products obtained in the following reactions		(4) Carbylamino ethane, ethanamine and ethyl methyl amine					
	$\begin{array}{ccc} RCN & \underline{ reduction } (A) \ , \ RCN & \underline{ (i)CH_3MgBr} \\ \hline & (ii)H_2O \end{array} \end{array} (B),$	5.	$ \underbrace{\bigcirc}_{CO} \overset{CO}{\underset{(ii)C_2H_5Br}{(ii)C_2H_5Br}} A \xrightarrow{H_3O^{\oplus}} B + C $					
	RNC $\xrightarrow{hydrolysis}$ (C), RNH ₂ $\xrightarrow{HNO_2}$ (D) The answer is A B C D		B and C in the above sequence are (1) Benzoic acid + aniline (2) Phthalic acid + ethylamine					
	(1) 2°Amine Methyl ketone 1° Amine Alcohol(2) 1°Amine Methyl ketone 1° Amine Alcohol		(3) Phthalic acid + aniline (4) Benzoic acid + ethylamine					
	(3) 2°Amine Methyl ketone 2° Amine Acid(4) 1°Amine Methyl ketone 2° Amine Aldehyde	6.	The end-product in the reaction sequence would be :					
3.	The final product C, obtained in this reaction would be		Ethyl amine $\xrightarrow{HNO_2} A \xrightarrow{PCl_5} B \xrightarrow{NH_3} C$ (1) Ethyl cyanide (2) Ethyl amine (3) Methyl amine (4) Acetamide					
	$ \xrightarrow{Ac_2O} A \xrightarrow{Br_2} B \xrightarrow{H_2O} C $	7.	A $\xrightarrow{H_2NOH}$ B $\xrightarrow{reduction}$ C \xrightarrow{NOCI} CH ₃ CH ₂ Cl, A and C in the above sequence respectively are:-					
	(1) $(H_3)^{H_2}$ (2) $(H_3)^{H_2}$ (2) $(H_3)^{H_2}$		 Methanal, Methylamine Acetone, ethanamine Ethanal, dimethylamine Acetoldabuda, ethylamina 					
	(3) H_2 H_2 H_3 $HCOCH_3$ $HCOCH_$	8.	A compound of mol. wt. 180 gm is acetylated to give a compound of mol. wt. 390. The number of amino groups in the compound are :-					
			(1) 2 (2) 4					
	4		(3) 5 (4) 6					

- 9. In the reaction sequence A, B and C are :- $A \xrightarrow{SnCl_2} B \xrightarrow{NaNO_2/HCl} C \xrightarrow{H_2O/\Delta} C_6H_5OH$
 - (1) Benzene, nitrobenzene, aniline
 - (2) Nitrobenzene, aniline and azo-compound
 - (3) Nitrobenzene, benzene, aniline
 - (4) Benzene, amino compound, aniline
- **10.** Which one of the following tests can be used to identify primary amino group in a given organic compound
 - (1) Iodoform test (2) Victor Meyer's test
 - (3) Carbylamine reaction (4) Libermann's reaction
- 11. At 0°C temperature reaction of aniline with HNO_2 and subsequent treatment with alkaline β -naphthol solution produces a precipitate whose colour would be :-
 - (1) Black (2) Purple
 - (3) White (4) Orange
- **12.** $CH_{3}Cl \xrightarrow{KCN} \xrightarrow{+4H} A \xrightarrow{NaNO_{2}/HCl}$ Ethanol + ?

Apart from ethanol as the main product, the other products would be

(1) $H_2C = CH_2$	(2) CH ₃ CH ₂ -ONO
(3) CH ₂ CH ₂ -Cl	(4) All the above

13. Identify B, X and R respectively in the following sequence of reactions $C_{a}H_{c}MgBr \xrightarrow{CICN} A \xrightarrow{H_{3}O^{+}} B.$

$$CH_{3}COCH_{3} \xrightarrow{l_{2}} X \xrightarrow{Ag} Y$$

$$C_{6}H_{5}NH_{2} \xrightarrow{NaNO_{2}/HCI} P \xrightarrow{CuCN} Q \xrightarrow{Na} R$$

$$(1) C_{2}H_{5}COOH, CHI_{3}, C_{6}H_{5}CH_{2}NH_{2}$$

$$(2) C_{2}H_{5}COOH, CH_{3}I, C_{6}H_{5}COOH$$

$$(3) C_{2}H_{5}CH_{2}NH_{2}, CH_{3}I, C_{6}H_{5}COOH$$

14. Using Fe/HCl, which one of the following reaction is possible [Here $\phi = C_6H_5$] (1) ϕ -NO₂ $\rightarrow \phi$ -NH-NH- ϕ (2) ϕ -NO₂ $\rightarrow \phi$ -NH₂ (3) ϕ -NO₂ $\rightarrow \phi$ -NHOH (4) ϕ -NO₂ $\rightarrow \phi$ -N=N- ϕ

(4) C₂H₅COOH, C₂H₅I, C₆H₅CONH₂

15. An aromatic compound A on treatment with Zn/NH₄Cl, and subsequent filtration in ammonical silver nitrate solution gives a black precipitate. Hence compound A bears the group :-

(1) –COOH	(2) –NO ₂
(3) –CHO	(4) $-NH_{2}$

EXERCISE-III (Analytical Questions)							s)						ANSV	VER	KEY
Que.	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
Ans.	4	2	3	4	2	2	4	3	2	3	4	4	1	2	2
														115	

