2. POLYNOMIALS

1. From the given graph y = p(x). Find the number of zeroes of the polynomial p(x). What are the zeroes? \downarrow y

- 2. What will be the nature of the graph of the following polynomials
 - (i) $ax^2 + bx + c$ when a > 0
 - (ii) $ax^2 + bx + c$ when a < 0
- **3.** What is the relation between a and b, if sum of the zeroes of the quadratic polynomial $a x^2 + b x + c$ ($a \ne 0$) is equal to the product of the zeroes.
- **4.** What is the degree of the polynomial whose graph intersect the x axis at four points .
- 5. If -1 is one of the zeroes of the quadratic polynomial $ax^2 + bx + c$ ($a \ne 0$), write at least one of its factor with justification.
- **6.** If p and q are the zeroes of the quadratic polynomial $ax^2 + bx + c$ ($a \neq 0$) , find the value of pq + (p+q)
- 7. Find the zeroes of the polynomial $2x^2-3\sqrt{3}x+3$
- **8.** For what value of k, (-4) is a zero of the polynomial $x^2 2x (3k + 3)$?
- 9. If α and β are the zeroes of the polynomial $x^2-4x-12$, then find the value of $\frac{1}{\alpha}+\frac{1}{\beta}-2$ α β without finding actual zeroes.
- **10.** What should be subtracted from the polynomial of $p(x) = x^2 3 a x + 3 a 7$ so that , (x + 2) is a factor of the polynomial p(x) and hence also find the value of a
- 11. If one of the zero of the polynomial $2x^2 4x 2k$ is reciprocal of the other ,Find the value of k.
- 12. If α and β are the zeroes of the polynomial $2x^2-5x-10$, then find the Value of $\alpha^{-2}+\beta^{-2}$ (by using algebraic identity)
- **13.** Find the zeroes of the quadratic polynomial $2x^2 9 3x$ and verify the relationship between the zeroes and the coefficients
- **14.** If two zeroes of the polynomial x^3 $4x^2$ -3x + 12 are $\sqrt{3}$ and $-\sqrt{3}$, then find its third zero.
- **15.** If α and β are the zeroes of the polynomial $f(x) = x^2 + px + q$ then form a polynomial whose zeroes are $\frac{1}{\alpha}$ and $\frac{1}{\beta}$.
- **16.** If the zeroes of the polynomial $x^2 + px + q$ are double in value to the zeroes of $2x^2 5x 3$, Find the value of p and q.
- 17. If α and β are the zeroes of the polynomial $f(x) = x^2 9x + a$, find the value of α if $5\alpha + 4\beta = 40$
- **18.** If -2 and the 3 are the zeroes of the polynomial $ax^2 + bx 6$, then find the value of a and b
- **19.** If the polynomial $f(x) = x^3 + 2x^2 5x + 1$ is divided by another polynomial x + 3, then the remainder comes out to be ax + b. Find the values of a and b (without doing actual division)
- **20.** If 2 and -3 are the zeroes of the quadratic polynomial $x^2 + (a+1)x + b$, Then find the value of a and b.

ANSWER

- 1. 3 zeroes, Zeroes are 2, 0, 2
- 2. (i) a parabola opening upward (ii) a parabola opening downward
- 3. $\frac{-b}{a} = \frac{c}{a}$ i.e b + c = 0
- Degree is 4(since it has 4 zeroes)
- **5.** By Factor theorem (x+1) will be one of its factors if $x+1=0 \Rightarrow x=-1$
- **6.** $pq + (p+q) = \frac{c}{a} + \frac{-b}{a} = \frac{c-b}{a}$
- 7. $2x^2-3\sqrt{3}x+3=(2x-\sqrt{3})(x-\sqrt{3})$ Zeroes $x = \sqrt{3}/2$ and $x = \sqrt{3}$
- 8. $p(x) = x^2 2x (3k + 3)$
 - $p(-4) = (-4)^2 2(-4) (3k+3)$ $\Rightarrow 0 = 21 - 3k$
- So, k = 7
- **9.** $p(x) = x^2 4x 12$
 - $\frac{1}{\alpha} + \frac{1}{\beta} 2 \alpha \beta = \frac{\beta + \alpha}{\alpha \beta} 2 \alpha \beta = \frac{4}{-12} 2 (-12) = \frac{-4}{12} + 24 = \frac{-4 + 288}{12} = \frac{284}{12} = \frac{142}{6}$
- 10. If the polynomial $p(x) = x^2 3ax + 3a 7$ is divided by x + 2, then by Remainder theorem, remainder is p(-2).
 - P(-2) = 9a 3
 - ∴ 9 a -3 should be subtracted
 - If x + 2 is a factor of p(x), then by Factor theorem p(-2) = 0
 - $\Rightarrow 9a-3 = 0$
 - So, $a = \frac{1}{3}$
- **11.** Let α and $\frac{1}{\alpha}$ be the zeroes of the polynomial $p(x) = 2x^2 4x 2k$
 - $\therefore \alpha \times \frac{1}{\alpha} = \frac{-2k}{2} \quad \text{so, } k = -1$
- **12.** $p(x) = 2x^2 5x 10$
 - $\alpha^{-2} + \beta^{-2} = \frac{1}{\alpha^2} + \frac{1}{\beta^2} = \frac{\beta^2 + \alpha^2}{(\alpha \beta)^2} = \frac{(\alpha + \beta)^2 2\alpha \beta}{(\alpha \beta)^2} = \frac{\left(\frac{5}{2}\right)^2 2\left(\frac{-10}{2}\right)}{\left(\frac{-10}{2}\right)^2}$
 - $\frac{\frac{25}{4}+10}{\frac{100}{100}} = \frac{\frac{65}{4}}{\frac{100}{100}} = \frac{13}{20}$
- 13. $p(x) = 2x^2 3x 9 = (2x + 3)(x 3)$ [factorising by splitting of the middle term]
 - Now, p(x) = 0 so, $x = \frac{-3}{2}$ and 3
 - Sum of the zeroes = $\frac{-3}{2}$ + 3 = $\frac{3}{2}$ = $\frac{-coefficient of x}{coefficient of x^2}$ Product if zeroes = $\frac{-3}{2}$ × 3 = $\frac{-9}{2}$ = $\frac{constant tterm}{coefficient of x^2}$
- **14.** As $\sqrt{3}$ and $-\sqrt{3}$ are the zeroes of the polynomial x^3 4x 3x + 12,
 - The quadratic polynomial forming by the given zeroes = $(x \sqrt{3})((x + \sqrt{3}))$

 - Now, $x^3 4x 3x + 12 = x^2(x-4) 3(x-4) = (x^2 3)(x-4)$ $=(x-\sqrt{3})((x+\sqrt{3})(x-4)$
 - So the third zero of the given polynomial is 4
- **15.** α and β are the zeroes of the polynomial $f(x) = x^2 + px + q$
 - $\alpha + \beta = \frac{-p}{1} = -p$ and $\alpha \times \beta = \frac{q}{1} = q$
 - so, $\frac{1}{\alpha} + \frac{1}{\beta} = \frac{\beta + \alpha}{\alpha \beta} = \frac{-p}{q}$ and $\frac{1}{\alpha} \times \frac{1}{\beta} = \frac{1}{\alpha \beta} = \frac{1}{q}$

The required polynomial is $p(x) = k [x^2 - (\text{sum of zeroes})x + \text{product of zeroes}]$

$$= k \left[x^2 + \frac{p}{q} x + \frac{1}{q} \right]$$

Taking k = q $p(x) = q x^2 + p x + 1$

16. The zeroes of the polynomial $2x^2 - 5x - 3$ are given by

$$2x^2 - 5x - 3 = 0$$

$$(2x+1)(x-3)=0$$
 so, $x=3$ and $\frac{-1}{2}$

The zeroes of the polynomial $x^2 + px + q$ are 6 and -1

Sum of the zeroes = 6+(-1)

$$-p=5$$
 : $p=-5$

Product of the zeroes = $6 \times (-1)$

$$\therefore q = -6$$

17. α and β are the zeroes of the polynomial $f(x) = x^2 - 9x + \alpha$

$$\alpha + \beta = \frac{-(-9)}{1} = 9$$

$$5 \alpha + 4 \beta = 40$$
 $\Rightarrow \alpha + 4 \alpha + 4 \beta = 40$

$$\Rightarrow \alpha + 4(\alpha + \beta) = 40$$

\Rightarrow \alpha + 4\times 9 = 40 \Rightarrow \alpha = 4

Putting the value of α in $5\alpha + 4\beta = 40$ we get $\beta = 5$

So, product of the zeroes $\alpha \times \beta = \frac{a}{1}$ $\Rightarrow a = 4 \times 5 = 20$

18. Let, $p(x) = ax^2 + bx - 6$

-2 and the 3 are the zeroes of the polynomial

Sum of the zeroes = -2 + 3

$$\Rightarrow \frac{-b}{a} = 1$$
 $\Rightarrow a = -b$(i)

Product of the zeroes = -2×3

$$\Rightarrow \frac{c}{a} = -6$$
 $\Rightarrow \frac{-6}{a} = -6$ so, $a = 1$

From (i) we have b = -119. If $f(x)=x^3+2x^2-5x+1$ is divided by another polynomial x+3

So , by remainder theorem , remainder is f(-3)

Now,
$$f(-3)=(-3)^3+2(-3)^2-5(-3)+1$$

But , remainder = ax + b (given)(ii)

Comparing (i) and (ii) we have ,

$$ax + b = 0.x + 7$$
 so, $a = 0$ and $b = 7$

20. Let, $p(x) = x^2 + (a+1)x + b$

2 and -3 are the zeroes of p(x)

so,
$$p(2) = 0$$

$$\Rightarrow 2^2 + (a+1) \times 2 + b = 0$$

$$\Rightarrow 2a + b = -6$$
(i)

and
$$p(-3) = 0$$

$$\Rightarrow$$
 (-3)²+ (a+1)×(-3) + b =0

$$\Rightarrow$$
 -3a + b = -6(i)

Solving equation (i) and (ii) we have a = 0 and b = -6