SEQUENCE & SERIES

1. ARITHMETIC PROGRESSION (AP):

- (a) n^{th} term of this AP $T_n = a + (n-1)d$, where $d = T_n T_{n-1}$
- **(b)** The sum of the first n terms : $S_n = \frac{n}{2}[2a + (n-1)d] = \frac{n}{2}[a + \ell]$ where ℓ is the last term.
- (c) Also nth term $T_n = S_n S_{n-1}$

Note:

- (i) Sum of first n terms of an A.P. is of the form An² + Bn i.e. a quadratic expression in n, in such case the common difference is twice the coefficient of n². i.e. 2A
- (ii) nth term of an A.P. is of the form An + B i.e. a linear expression in n, in such case the coefficient of n is the common difference of the A.P. i.e. A
- (iii) Three numbers in AP can be taken as a d, a, a + d; four numbers in AP can be taken as a 3d, a d, a + d, a + 3d five numbers in AP are a 2d, a d, a, a + d, a + 2d & six terms in AP are a 5d, a 3d, a d, a + d, a + 3d, a + 5d etc.
- (iv) If for A.P. p^{th} term is q, q^{th} term is p, then r^{th} term is = p + q r & $(p + q)^{th}$ term is 0.
- (v) If a_1 , a_2 , a_3 and b_1 , b_2 , b_3 are two A.P.s, then $a_1 \pm b_1$, $a_2 \pm b_2$, $a_3 \pm b_3$ are also in A.P.
- (vi) (a) If each term of an A.P. is increased or decreased by the same number, then the resulting sequence is also an A.P. having the same common difference.

- (b) If each term of an A.P. is multiplied or divided by the same non zero number (k), then the resulting sequence is also an A.P. whose common difference is kd & d/k respectively, where d is common difference of original A.P.
- (vii) Any term of an AP (except the first & last) is equal to half the sum of terms which are equidistant from it.

$$T_r = \frac{T_{r-k} + T_{r+k}}{2}, k < r$$

2. GEOMETRIC PROGRESSION (GP):

GP is a sequence of numbers whose first term is non-zero & each of the succeeding terms is equal to the preceeding terms multiplied by a constant. Thus in a GP the ratio of successive terms is constant. This constant factor is called the **COMMON RATIO** of the series & is obtained by dividing any term by the immediately previous term. Therefore a, ar, ar², ar³, ar⁴, is a GP with 'a' as the first term & 'r' as common ratio.

- (a) n^{th} term $T_n = a r^{n-1}$
- **(b)** Sum of the first n terms $S_n = \frac{a(r^n 1)}{r 1}$, if $r \neq 1$
- (c) Sum of infinite GP when $|r| < 1 & n \to \infty$, $r^n \to 0$

$$S_{\infty} = \frac{a}{1-r}; |r| < 1$$

- (d) Any 3 consecutive terms of a GP can be taken as a/r, a, ar; any 4 consecutive terms of a GP can be taken as a/r³, a/r, ar, ar³ & so on.
- (e) If a, b, c are in $GP \Rightarrow b^2 = ac \Rightarrow loga, logb, logc, are in A.P.$

Note:

(i) In an G.P. product of kth term from beginning and kth term from the last is always constant which equal to product of first term and last term.

(ii) Three numbers in G.P. : a/r, a, ar

Five numbers in **G.P.** : a/r^2 , a/r, a, ar, ar^2 Four numbers in **G.P.** : a/r^3 , a/r, ar, ar, ar^3

Six numbers in G.P. : a/r^5 , a/r^3 , a/r, ar, ar³, ar⁵

(iii) If each term of a **G.P.** be raised to the same power, then resulting series is also a **G.P.**

(iv) If each term of a G.P. be multiplied or divided by the same non-zero quantity, then the resulting sequence is also a G.P.

(v) If a_1 , a_2 , a_3 and b_1 , b_2 , b_3 , be two G.P.'s of common ratio r_1 and r_2 respectively, then a_1b_1 , a_2b_2 and

 $\frac{a_1}{b_1}, \frac{a_2}{b_2}, \frac{a_3}{b_3}$ will also form a G.P. common ratio will be r_1 r_2

and $\frac{r_1}{r_2}$ respectively.

(vi) In a positive G.P. every term (except first) is equal to square root of product of its two terms which are equidistant from it.

i.e. $T_r = \sqrt{T_{r-k}T_{r+k}}$, k < r

(vii) If a_1 , a_2 , a_3 a_n is a G.P. of non zero, non negative terms, then $\log a_1$, $\log a_2$,..... $\log a_n$ is an A.P. and vice-versa.

3. HARMONIC PROGRESSION (HP):

A sequence is said to HP if the reciprocals of its terms are in AP.

If the sequence a_1 , a_2 , a_3 ,, a_n is an HP then $1/a_1$, $1/a_2$,....., $1/a_n$ is an AP & converse. Here we do not have the formula for the sum of the n terms of an HP. The general form of a

Note: No term of any H.P. can be zero. If a, b, c are in

$$HP \Rightarrow b = \frac{2ac}{a+c} \text{ or } \frac{a}{c} = \frac{a-b}{b-c}$$

4. MEANS

(a) Arithmetic mean (AM):

If three terms are in AP then the middle term is called the AM between the other two, so if a, b, c are in AP, b is AM of a & c.

n-arithmetic means between two numbers:

If a,b are any two given numbers & a, A_1 , A_2 ,, A_n , b are in AP then A_1 , A_2 ,.... A_n are the n AM's between a & b, then

$$A_1 = a + d$$
, $A_2 = a + 2d$,...., $A_n = a + nd$, where $d = \frac{b - a}{n + 1}$

Note: Sum of n AM's inserted between a & b is equal to n times the single AM between a & b i.e. $\sum_{r=1}^{n} A_r = nA$ where A is the single AM between a & b.

(b) Geometric mean (GM):

If a, b, c are in GP, b is the GM between a & c, $b^2 = ac$, therefore $b = \sqrt{ac}$

n-geometric means between two numbers:

If a, b are two given positive numbers & a, G_1 , G_2 ,, G_n , b are in GP then G_1 , G_2 , G_3 ,...... G_n are n GMs between a & b. G_1 = ar, G_2 = ar², G_n = arⁿ, where r= (b/a)^{1/n+1}

Note: The product of n GMs between a & b is equal to nth power of the single GM between a & b i.e. $\prod_{r=1}^{n} G_r = (G)^n$ where G is the single GM between a & b

(c) Harmonic mean (HM):

If a, b, c are in HP, then b is HM between a & c, then $b = \frac{2ac}{a+c}$.

Important note:

(i) If A, G, H, are respectively AM, GM, HM between two positive number a & b then

(a)
$$G^2 = AH(A, G, H \text{ constitute a GP})$$
 (b) $A \ge G \ge H$

(c)
$$A = G = H \Rightarrow a = b$$

(ii) Let a₁, a₂,....., a_n be n positive real numbers, then we define their arithmetic mean (A), geometric mean (G) and harmonic

mean (H) as A =
$$\frac{a_1 + a_2 + + a_n}{n}$$

G =
$$(a_1 a_2....a_n)^{1/n}$$
 and H = $\frac{n}{\left(\frac{1}{a_1} + \frac{1}{a_2} + \frac{1}{a_3} + + \frac{1}{a_n}\right)}$

It can be shown that $A \ge G \ge H$. Moreover equality holds at either place if and only if $a_1 = a_2 = \dots = a_n$

5. ARITHMETICO - GEOMETRIC SERIES :

Sum of First n terms of an Arithmetico-Geometric Series:

Let
$$S_n = a + (a + d)r + (a + 2d)r^2 + \dots + [a + (n-1)d]r^{n-1}$$

then
$$S_n = \frac{a}{1-r} + \frac{dr(1-r^{n-1})}{(1-r)^2} - \frac{[a+(n-1)d]}{1-r}, r \neq 1$$

Sum to infinity:

If
$$|r| < 1$$
 & $n \to \infty$ then $\lim_{n \to \infty} r^n = 0$ \Rightarrow $S_{\infty} = \frac{a}{1-r} + \frac{dr}{(1-r)^2}$

6. SIGMA NOTATIONS

Theorems:

(a)
$$\sum_{r=1}^{n} (a_r \pm b_r) = \sum_{r=1}^{n} a_r \pm \sum_{r=1}^{n} b_r$$
 (b) $\sum_{r=1}^{n} k a_r = k \sum_{r=1}^{n} a_r$

(c)
$$\sum_{r=1}^{n} k = nk$$
; where k is a constant.

7. RESULTS

- (a) $\sum_{r=1}^{n} r = \frac{n(n+1)}{2}$ (sum of the first n natural numbers)
- **(b)** $\sum_{r=1}^{n} r^2 = \frac{n(n+1)(2n+1)}{6}$ (sum of the squares of the first n natural numbers)
- (c) $\sum_{r=1}^{n} r^3 = \frac{n^2(n+1)^2}{4} = \left[\sum_{r=1}^{n} r\right]^2$ (sum of the cubes of the first n natural numbers)
- (d) $\sum_{r=1}^{n} r^4 = \frac{n}{30}(n+1)(2n+1)(3n^2+3n-1)$