DPP - 03 CLASS - 12th

TOPIC - PRACTICE QUESTION

Q.1	The rate constant of the reaction A gives 2B is 1.0×10^{-3} mol lit ⁻¹ min ⁻¹ , if the initial concentration of A is 1.0 mole lit ⁻¹ what would be the concentration of B after 100 minutes.	
	(A) 0.1 mol lit ⁻¹	
	(B) 0.2 mol lit ⁻¹	
	(C) 0.9 mol lit ⁻¹	
	(D) 1.8 mol lit ⁻¹	
Q.2		mL) contains 3.0×10^{-6} moles of H ⁺ . If the rate constant of mole litre ⁻¹ sec ⁻¹ . How long would it take for H ⁺ in drop to
	(A) $6 \times 10^{-8} \text{ sec}$	
	(B) $6 \times 10^{-9} \text{ sec}$	
	(C) $6 \times 10^{-7} \text{ sec}$	
	(D) $6 \times 10^{-10} \text{ sec}$	
Q.3	For a reaction $2A + B$ product, rate law is $-d[A]/dt = k[A]$. At a time when $t = 1/k$, concentration of the reactant is : $(C0 = initial concentration)$	
	(A) C0/e	
	(B) C0e	
	(C) $C0/e^2$	
	(D) 1/C0	
Q.4	Two substances A ($t1/2 = 5$ min) and B ($t1/2 = 15$ min) are taken in such a way that initially	
	[A] = 4[B]. The time after which both the concentration will be equal is: Assume that reaction is first order	
	(A) 5 min	(B) 15 min
	(C) 20 min	(D) concentration can never be equal

CHEMICAL KINETICS

DPP - 03 CLASS - 12th TOPIC - PRACTICE QUESTION

Sol.1 Correct option is C)

 $k = 1 \times 10^{-3} \text{ mol lit}^{-1} \text{min}^{-1}$

So it is Zero Order Reaction.

$$k = \frac{A_0 - A}{t}$$

 $t = 100 \text{ min, } [A_o] = 1 \text{mole lit}^{-1}$

On substituting,

$$[A] = 1-0.1 \ 0.9 \text{mol lit}^{-1}$$

Sol.2 Correct option is B)

$$k = 10^7 \text{ molL}^{-1} \text{ sec}^{-1}$$

[H⁺]=k=
$$\frac{3\times10^{-6}}{0.05\times10^{-3}}$$
mol L⁻¹ = $\frac{3}{5}\times10^{-1}$ mol L⁻¹

$$t_{99\%} = \frac{In\left(\frac{A_0}{A}\right)}{k}$$

$$= \frac{\ln\left(\frac{3/5\times10^{-1}}{3/5\times10^{-3}}\right)}{10^7}$$

$$=9.212\times10^{-3}$$
 sec

SO,

$$V = k[H^+] = 0.6 \times 10^{-1} \times 10^7$$

$$=0.6 \times 10^6$$

$$=0.6\times10^5 \text{ mol}^2 \text{ L}^{-1}\text{s}^{-1}$$

$$t = 6 \times 10^{-9} \text{ sec for } \frac{3}{5} \times 10^{-1} \text{ mol L}^{-1}$$

Sol.3 Correct operation is)

$$2A+B ----> productus -d[A]/dt=k[A]$$

$$A=A_0e^{kt}$$
 when t_2l/k

$$A = A_0 e^1$$
 $A = A_0/e$

Sol.4 Correct opetion is B)

$$C_1 = C_0 e^{-kt}$$

According to the question, $C_A = C_B$

$$C_{\scriptscriptstyle A} e^{-k_{\scriptscriptstyle A} t} = C_{\scriptscriptstyle B} \, e^{-k_{\scriptscriptstyle B} t}$$

$$\frac{C_A}{C_B} \frac{e^{-k_A t}}{e^{-k_A t}} \Longrightarrow \frac{C_A}{C_B} e K_A - K_B t$$

$$4 = e \left[\frac{In2}{5} - \frac{In2}{15} \right] \times t$$

$$In4 = e \left[\frac{In2}{5} - \frac{In2}{15} \right] t$$

In
$$2^{2} = e \left[\frac{In2}{5} - \frac{In2}{15} \right] t$$

$$2\ln 2 = e \left[\frac{\ln 2}{5} - \frac{\ln 2}{15} \right] t$$

$$2 = \left[\frac{1}{5} - \frac{1}{15}\right]t$$

$$2 = \frac{2}{15} \times t$$

t = 15 minutes

Hence, option B is correct.