JEE (2023)

Atomic Structure

- 1. A hydrogen atom and a Li^{2+} ion are both in the second excited state. If l_H and l_{Li} are their respective electronic angular momenta, and E_H and E_{Li} their respective energies, then
 - (1) $l_H > l_{Li}$ and $|E_H| > |E_{Li}|$
 - (2) $l_H = l_{Li}$ and $|E_H| < |E_{Li}|$
 - (3) $l_H = l_{Li}$ and $|E_H| > |E_{Li}|$
 - (4) $l_H < l_{Li}$ and $|E_H| > |E_{Li}|$
- **2.** As an electron makes a transition from an excited state to the ground state of a hydrogen like atom/ion
 - (1) Kinetic energy, potential energy and total energy decrease
 - (2) Kinetic energy decreases, potential energy increases but total energy remains same
 - (3) Kinetic energy and total energy decrease but potential energy increases
 - (4) Its kinetic energy increases but potential energy and total energy decrease
- 3. As per Bohr model, the minimum energy (in eV) required to remove an electron from the ground state of doubly ionized Li atom (Z = 3) is

(1)	1.51	(2)	13.6
(3)	40.8	(4)	122.4

4. An electron in a hydrogen atom undergoes a transition from an orbit with quantum number n_i to another with quantum number $n_f \cdot v_i$ and v_f are respectively the initial and final potential energies of

the electron. If $\frac{v_i}{v_f} = 6.25$, then the smallest possible n_f is
(1) 5 (2) 3

(1)	5	(2)	3
(3)	2	(4)	1

- 5. How many times does the electron go round the first Bohr orbit of hydrogen atoms in 1 s?
 - (1) $6.62 \times 10^{15} Hz$ (2) $5.60 \times 10^5 Hz$
 - (3) $3.31 \times 10^5 Hz$ (4) None

6. Find the ratio of ionization energy of Bohr's hydrogen atom and doubly ionized lithium ion (Li²⁺).
(1) 1/9
(2) 1

- (3) 1/3 (4) 1/6
- 7. A doubly ionized lithium atom is hydrogen-like with atomic number 3. Find the wavelength of the radiation required to excite the electron in Li^{++} from first to the third Bohr orbit. The ionization energy of the hydrogen atom is 13.6 *eV*. (in Å)

(1)	113.74	(2)	212.68
(3)	110.04	(4)	118.90

8. The first excitation potential of a hypothetical hydrogen-like atom is 15 *V*. Find the third excitation potential of the atom.

(1)	13/6	(2)	115/4
(3)	15/2	(4)	75/4

- 9. Hydrogen $(_1H^1)$, deuterium $(_1H^2)$, singly ionised helium $(_2He^4)^+$ and doubly ionised lithium $(_3Li^8)^{++}$ all have one electron around the nucleus. Consider an electron transition from n = 2 to n = 1. If the wavelengths of emitted radiation are λ_1 , λ_2 , λ_3 , and λ_4 respectively for four elements, then approximately which one of the following is correct?
 - (1) $4 \lambda_1 = 2 \lambda_2 = 2 \lambda_3 = \lambda_4$
 - (2) $\lambda_1 = 2 \lambda_2 = 2 \lambda_3 = \lambda_4$
 - $(3) \quad \lambda_1=\lambda_2=4 \ \lambda_3=9 \ \lambda_4$
 - (4) $\lambda_1 = 2 \lambda_2 = 3 \lambda_3 = 4 \lambda_4$
- 10. In a hydrogen like atom electron makes transition from an energy level with quantum number n to another with quantum number (n - 1). If n >> 1, the frequency of radiation emitted is proportional to
 - (1) 1/n (2) $1/n^2$
 - (3) $1/n^4$ (4) $1/n^3$

Answer Key			
1.	(2)	6. (1)	
2.	(4)	7. (1)	
3.	(4)	8. (4)	
4.	(1)	9. (3)	
5.	(1)	10. (4)	