TARGET JEE-MAINS

50 Min

SYLLABUS: SIMPLE HARMONIC MOTION

- The equation of motion of a particle of mass 1 g is $\frac{d^2x}{dt^2} + \pi^2x = 0$ where x is displacement(in m) 1. from mean position. The frequency of oscillation is (in Hz):
 - (A) $\frac{1}{2}$
- (B) 2
- (C) $5\sqrt{10}$
- (D) $\frac{1}{5\sqrt{10}}$
- 2. According to a scientists, he applied a force $F = -cx^{1/3}$ on a particle and the particle is performing SHM. No other force acted on the particle. He refuses to tell whether c is a constant or not. Assume that he had worked only with positive x then:
 - (A) as x increases c also increases
- (B) as x increases c decreases
- (C) as x increases c remains constant
 - (D) the motion cannot be SHM
- 3. The displacement of a particle in simple harmonic motion in one time period is
 - (A) A
- (B) 2A
- (C) 4A
- (D) zero
- A particle performing SHM takes time equal to T (time period of SHM) in consecutive 4. appearances at a perticular point. This point is:
 - (A) An extreme position
 - (B) The mean position
 - (C) Between positive extreme and mean position
 - (D) Between negative extreme and mean position
- 5. Two bodies performing S.H.M. have same amplitude and frequency. Their phases at a certain instant are as shown in the figure. The phase difference between them is

- (A) $\frac{11}{6}\pi$
- (B) π
- (C) $\frac{5}{3}\pi$
- (D) $\frac{3}{5}\pi$

6.	Which of the following straight line?	g quantities are always	(C) $\vec{r} \times \vec{a}$ (D) $\vec{r} \times \vec{F}$ time graph of a particle executing S.H.M. If the time period							
	(A)	(B) _v . _r	(C) ā. r	(D) F. r						
7.	The quantities which are always Zero for a particle performing linear SHM :									
	(A) $\vec{a} \times \vec{F}$	(B) $\vec{r} \times \vec{v}$	(C) $\vec{r} \times \vec{a}$	(D) $\vec{r} \times \vec{F}$						
8.	The figure shows the displacement time graph of a particle executing S.H.M. If the time period of oscillation is 2 s the equation of motion of its SHM is									
	(A) $x = 10\sin(\pi t + \pi/3)$ (B) $x = 10\sin \pi t$ (C) $x = 10\sin(\pi t + \pi/6)$ (D) $x = 10\sin(2\pi t + \pi/6)$ Two SHM's are represented by $y = a\sin(\omega t - kx)$ and $y = b\cos(\omega t - kx)$. The phase difference between the two is : (A) $\frac{\pi}{2}$ (B) $\frac{\pi}{4}$ (C) $\frac{\pi}{6}$ (D) $\frac{3\pi}{4}$ A particle is made to under go simple harmonic motion. Find its average acceleration in one time period.									
	(A) $x = 10\sin(\pi t + \pi/3)$	3)	(B) x = 10sin πt							
	(C) $x = 10\sin(\pi t + \pi/6)$	3)	(D) $x = 10 \sin (2\pi t + 1)$	π/6)						
9.										
	(A) $\frac{\pi}{2}$	(B) $\frac{\pi}{4}$	(C) $\frac{\pi}{6}$	(D) $\frac{3\pi}{4}$						
10.	Ø€4.									
	(A) ω ² A	(B) $\frac{\omega^2 A}{2}$	(C) $\frac{\omega^2 A}{\sqrt{2}}$	(D) zero						
11.		small mass executes linear S.H.M. about O with amplitude 'a' and period 'T'. Its displacement om O at time T/8 after passing through O is								
	(A) a/8	(B) $\frac{a}{2\sqrt{2}}$	(C) a/2	(D) $\frac{a}{\sqrt{2}}$						
12.	A particle performing	(C) a/2 (D) $\sqrt{2}$								
	(A) A	(B) B	(C) A + B	(D) $\sqrt{A^2 + B^2}$						
13.	from same mean pos	particles execute S.H.M. of same amplitude and frequency along the same straight line n same mean position. They cross one another without collision, when going in opposite ctions, each time their displacement is half of their amplitude. The phase-difference between m is								

(B) 120°

(A) 0°

(C) 180°

(D) 135°

- 14. The displacement of a particle executing SHM is given by $x = 0.01 \sin 100\pi (t + 0.05)$. The time period is in seconds and amplitude of the particle is in meters
 - (A) Time period of the particle is 0.02 sec. (B) Amplitude of the particle is 0.01 m
 - (C) Time period of the particle is 0.01 sec. (D) Amplitude of the particle is 0.02 m
- 15. Displacement of a particle is $x = 3 \sin 2t + 4\cos 2t$, the amplitude and the maximum velocity will be :-
 - (A) 5, 10
- (B) 3, 2
- (C) 4, 2
- (D) 3, 8
- 16. A body executing SHM passes through its equilibrium. At this instant, it has
 - (A) maximum potential energy
- (B) maximum kinetic energy
- (C) minimum kinetic energy
- (D) maximum acceleration
- 17. A point particle of mass 0.1 kg is executing S.H.M. of amplitude of 0.1 m. When the particle passes through the mean position, its kinetic energy is 8 × 10⁻³ J. The equation of motion of this particle when the initial phase of oscillation is 45° can be given by
 - (A) $0.1 \cos \left(4t + \frac{\pi}{4}\right)$ (B) $0.1 \sin \left(4t + \frac{\pi}{4}\right)$ (C) $0.4 \sin \left(t + \frac{\pi}{4}\right)$ (D) $0.2 \sin \left(\frac{\pi}{2} + 2t\right)$

- Acceleration a versus time t graph of a body in SHM is given by a curve shown below. T is the 18. time period. Then corresponding graph between kinetic energy KE and time t is correctly represented by

- In SHM particle oscillates with frequency v then find the frequency of oscillation of its kinetic 19. energy.
 - (A) υ

- (B) v/2
- (C) 2v
- (D) zero

20. A particle performs S.H.M. of amplitude A along a straight line. When it is at a distance $\frac{\sqrt{3}}{2}$ A from mean position, its kinetic energy gets increased by an amount $\frac{1}{2}$ m ω^2 A² due to an impulsive

force. Then its new amplitude becomes:

- 21. A particle performing SHM with amplitude 10cm. At What distance from mean position the kinetic energy of the particle is thrice of its potential energy?
 - (A) \pm 2 cm (B) \pm 3 cm (C) \pm 5 cm (D) None of these
- 22. Two spring mass systems having equal mass and spring constant k_1 and k_2 . If the maximum velocities in two systems are equal then ratio of amplitude of 1st to that of 2nd is:
 - (A) $\sqrt{k_1/k_2}$ (B) k_1/k_2 (C) k_2/k_1 (D) $\sqrt{k_2/k_1}$
- 23. A mass of 1 kg attached to the bottom of a spring has a certain frequency of vibration. The following mass has to be added to it in order to reduce the frequency by half:
 - (A) 1 kg (B) 2 kg (C) 3 kg (D) 4 kg
- **24.** Frequency of a block in spring mass system is υ. If it is taken in a lift moving with constant acceleration upward, then frequency will :
- (A) decrease (B) increase (C) remain constant (D) none
- 25. The length of a spring is α when a force of 4 N is applied on it and the length is β when 5 N force is applied. Then the length of spring when 9 N force is applied is-
 - (A) $5\beta 4\alpha$ (B) $\beta \alpha$ (C) $5\alpha 4\beta$ (D) 9 $(\beta \alpha)$

ANSWER KEY												
1.	(A)	2.	(A)	3.	(D)	4.	(A)	5 .	(C)			
6.	(CD)	7.	(ABCD)	8.	(C)	9.	(A)	10.	(D)			
11.	(D)	12.	(B)	13.	(B)	14.	(AB)	15.	(A)			
16.	(B)	17.	(B)	18.	(A)	19.	(C)	20.	(C)			
21.	(C)	22.	(D)	23.	(C)	24.	(C)	25.	(A)			