## EXERCISE

1. In Fig. 13, the pulley is massless and frictionless. The relation between  $T_1$ ,  $T_2$ , and  $T_3$  will be



(a) 
$$T_1 = T_2 \neq T_3$$
 (b)  $T_1 \neq T_2 = T_3$ 

(c) 
$$T_1 \neq T_2 \neq T_3$$
 (d)  $T_1 = T_2 = T_3$ 

2. In Q.1, the relation between  $W_1$  and  $W_2$  will be (a)  $W_2 = \frac{W_1}{2\cos\theta}$  (b)  $2W_1 \cos\theta$ 

(c) 
$$W_2 = W_1$$
 (d)  $W_2 = \frac{2\cos\theta}{W_1}$ 

3. In Fig. 14 the masses of the blocks A and B are same and each is equal to m. The tensions in the strings OA and AB are  $T_2$  and  $T_1$ , respectively. The system is in equilibrium with a constant horizontal force mg on B. The tension  $T_1$  is





crate of mass M (Fig. 15). He pulls on a light rope passing over a smooth light pulley. The other end of the rope is attached to the crate. For the system to be in equilibrium, the force exerted by the men on the rope will be

(a) 
$$(M + m)g$$
  
(b)  $\frac{1}{2}(M + m)g$   
(c)  $Mg$   
(d)  $mg$ 

The force-time (F-t) curve of a particle executing 8. linear motion is as shown in Fig. 16. The momentum acquired by the particle in time interval from 0 to 8 s will be



| (a) -2 N-s | (b) +4 N-s |
|------------|------------|
| (c) 6 N-s  | (d) Zero   |

9. A rocket has a mass of 100 kg. 90% of this is fuel. It ejects fuel vapors at the rate of 1 kg/s with a velocity of 500 m/s relative to the rocket. It is supposed that the rocket is outside the gravitational field. The initial upthrust on the rocket when it just starts moving upwards is

| (a) Zero   | (b) 500 N  |
|------------|------------|
| (c) 1000 N | (d) 2000 N |

10. The ratio of the weight of a man in a stationary lift and when it is moving downward with uniform acceleration a is 3 : 2. The value of ais (g:acceleration due to gravity on the earth)

(a) 
$$\frac{3}{2}g$$
 (b)  $\frac{g}{3}$  (c)  $\frac{2}{3}g$  (d) g

Two blocks are in contact on a frictionless table. 11. One has a mass m and the other 2m as shown in Fig. 17. When force F is applied on mass 2m, the system moves toward right. Now the same force Fis applied on m. The ratio of the force of contact between the two blocks will be





A monkey of mass 20 kg is holding a vertical 12. rope. The rope will not break when a mass of 25 kg is suspended from it but will break if the mass exceeds 25 kg. What is the maximum acceleration with which the monkey can climb up along the rope  $(g = 10 \text{ m/s}^2)$ ? (b)  $25 \text{ m/s}^2$ 

(d)  $5 \text{ m/s}^2$ The two pulley arrangements shown in Fig. 18 13. are identical. The mass of the rope is negligible. In (a), the mass m is lifted up by attaching a mass 2m to the other end of the rope. In (b), m is lifted up by pulling the other end of the rope with a constant downward force of 2mg. The ratio



## For Problems 14-20

In Fig. 19,  $m_1 = 4m_2$ . The pulleys are smooth and light. At time t = 0, the system is at rest.



14. If the system is released and if the acceleration of mass  $m_1$  is *a*, then the acceleration of  $m_2$  will be

(c) a/2

(d) 2a

(a) g

- 15. The value of a will be (a) g (b) g/2 (c) g/4 (d) g/8
- 16. The tension T in the string will be



17. The time taken by  $m_1$  in coming to rest position will be

| (a) 0.2 s | (b) 0.4 s |
|-----------|-----------|
| (c) 0.6 s | (d) 0.8 s |

- 18. The distance covered by  $m_2$  in 0.4 s will be (a) 40 cm (b) 20 cm (c) 10 cm (d) 80 cm
- 19. The velocity acquired by  $m_2$  in 0.4 s will be (a) 100 cm/s (b) 200 cm/s
  - (c) 300 cm/s (d) 400 cm/s
- 20. The additional distance traversed by  $m_2$  in coming to rest position will be

| (a) 20 cm | (b) 40 cm |
|-----------|-----------|
|           | (1) 00 am |

- (c) 60 cm (d) 80 cm
- A bird is sitting on stretched telephone wires. If its weight is W, then the additional tension produced by it in the wires will be

(a) 
$$T = W$$
 (b)  $T > W$   
(c)  $T < W$  (d)  $T = 0$ 

$$(c) I < W$$

22. One end of a massless rope, which passes over a massless and frictionless pulley P is tied to a hook C, while the other end is free (Fig. 20). Maximum tension that the rope can bear is 360 N. With what value of maximum safe acceleration (in  $m/s^2$ ) can a man of 60 kg climb on the rope?



(a) 16 (b) 6 (c) 4 (d) 8

23. When forces  $F_1$ ,  $F_2$ ,  $F_3$  are acting on a particle of mass *m* such that  $F_2$  and  $F_3$  are mutually perpendicular, then the particle remains stationary. If the force  $F_1$  is now removed, then the acceleration of the particle is

| (a) $F_1/m$ |    |       | (b) $F_2F_3/mF_3$ |      |  |
|-------------|----|-------|-------------------|------|--|
|             | 10 | 22.24 | 1.8               | 7.13 |  |

- (c)  $(F_2 F_3)/m$  (d)  $F_2/m$
- 24. A lift is moving down with acceleration a. A man in the lift drops a ball inside the lift. The acceleration of the ball as onserved by the man in the lift and a man standing stationary on the around is, respectively,

(a) 
$$g, g$$
 (b)  $(g - a), (g - a)$   
(c)  $(g - a), g$  (d)  $a, g$ 

- 25 A light string bassing over a smooth light pulley connects two blocks of masses  $m_1$  and  $m_2$ (vertically). If the acceleration of the system is g/8, then the ratio of the masses is: (a) 8:1 (b) 9:7
  - (c) 1:8 (d) 7:9
- 26. A light spring balance hangs from the hook of the other light spring balance and a block of mass *M* kg hangs from the former one. Then the true statement about the scale reading is
  - (a) Both the scales read M/2 kg each
  - (b) Both the scales read M kg each
  - (c) The scale of the lower one reads M kg and of the upper one zero.
  - (d) The reading of the two scales can be anything but the sum of the reading will be M kg.
- 27. A block of mass *M* is pulled along a horizontal frictionless surface by a rope of mass *m*. If a force

8

*P* is applied at the free end of the rope, the force exerted by the rope on the block is

- (a)  $\frac{PM}{M+m}$  (b)  $\frac{Pm}{M+m}$ (c)  $\frac{Pm}{M-m}$  (d) P
- 28. A spring balance is attached to the ceiling of a lift. A man hangs his bag on the spring and the spring reads 49 N, when the lift is stationary. If the lift moves downward with an acceleration of 5 m/s<sup>2</sup>, the reading of the spring balance will be (a) 49 N (b) 24 N
  - (c) 74 N (d) 15 N
- 29. A rocket with a lift-off mass  $3.5 \times 10^4$  kg is blasted upward with an initial acceleration of 10 m/s<sup>2</sup>. Then the initial thrust of the blast is (a)  $1.75 \times 10^5$  N (b)  $3.5 \times 10^5$  N (c)  $7.0 \times 10^5$  N (d)  $1.40 \times 10^5$  N
- 30. A machine gun fires a bullet of mass 40 g with a velocity of 1200 m/s. The man holding it can exert a maximum force of 144 N on the gun. How many bullets can he fire per second at the most?
  - (a) Two (b) Four (c) One (d) Three
- 31. Two masses  $m_1 = 5$  kg and  $m_2 = 4.8$  kg tied to a string are hanging over a light frictionless pulley (Fig. 21). What is the acceleration of the masses when left free to move? (g = 9.8 m/s<sup>2</sup>)



32. A player caught a cricket ball of mass 150 g moving at a rate of 20 m/s. If the catching process is completed in 0.1 s, the force of the blow exerted by the ball on the hand of the player is equal to

| (a) 30 N  | (b) 300 N |
|-----------|-----------|
| (c) 150 N | (d) 3 N   |

33. A ball of mass 0.2 kg is thrown vertically upwards by applying a force by hand. If the hand moves 0.2 m while applying the force and the ball goes upto 2 m height further, find the magnitude of the force. Consider g = 10 ms.
(a) 20 N
(b) 22 N

| (c) 4 N | (d) 16 |
|---------|--------|
|         |        |

a body of mass m = 3. 513 kg is moving along the x-axis with a speed of 5.00 m/s. The magnitude of its momentum is recorded as
(a) 17.6 kg-m/s
(b) 17.565 kg-m/s

N

- (a) 17.6 kg-m/s (b) 17.565 kg-m/s (c) 17.56 kg-m/s (d) 17.57 kg-m/s
- Figure 22 shows the position-time (x-t) graph of one-dimensional motion of a body of mass 0.4 kg.



36. Two fixed frictionless inclined planes making an angle  $30^{\circ}$  and  $60^{\circ}$  with the vertical are shown in the Fig. 23. Two blocks A and B are placed on the two planes. What is the relative vertical acceleration of A with respect to B?



- (a) 4.9 m/s<sup>2</sup> in horizontal direction
   (b) 9.8 m/s<sup>2</sup> in vertical direction
- (c) zero
- (d) 4.9 m/s in vertical direction



8.(d) Momentum acquired by the particle is numerically equal to the area enclosed between the F-t curve and time Axis. For the given diagram, area in the upper half is positive and in the lower half is negative (and equal to the upper half). So net area is zero. Hence, the momentum acquired by the particle will be zero.

**9.(b)** Upthrust force, 
$$F = u \left( \frac{dm}{dt} \right) = 500 \times 1 = 500 \text{ N}$$

Weight of a man in stationary lift

$$= \frac{mg}{m(g-a)} = \frac{3}{2}$$
  
$$\therefore \qquad \frac{g}{g-a} = \frac{3}{2} \implies 2g = 3g - 3a \text{ or } a = \frac{g}{3}$$

11.(b) When the force is applied on mass 2m, contact

force 
$$f_1 = \frac{m}{m+2m}g = \frac{g}{3}$$

When the force is applied on mass m, contact

force. 
$$f_2 = \frac{2m}{m+2m}g = \frac{2}{3}g$$
  
Ratio of contact forces  $\Rightarrow \frac{f_1}{f_2} = \frac{1}{2}$ 

12.(c) Maximum tension that string can bear  $(T_{max}) = 25$  $\times g N = 250 N$ 

> Tension in rope when the monkey climbes up, T = m(g + a)

For limiting condition,

$$T = T_{\text{max}} \Rightarrow m(g + a) = 250$$

$$\Rightarrow \quad 20(10 + a) = 250 \Rightarrow a = 2.5 \text{ m/s}^2$$

13.(c) For first case,

$$a_1 = \frac{m_2 - m_1}{m_1 + m_2}g = \frac{2m - m}{m + 2m} = \frac{g}{3}$$
 (i)

For second case, from free body diagram of m,



$$a_2 = g$$
  
From (i) and (ii),  $\frac{a_1}{a_1} = \frac{g/3}{a_1} = 1/3$ 

(ii)

in

(i)

(ii)

$$a_2$$
 g  
14.(d) Since mass  $m_2$  travels double distance in  
comparison to mass  $m_1$ , therefore its acceleration  
will be double, i.e.,  $2a$ 

15.(c) By drawing the free body diagram (Fig. 29) of m1 and  $m_2$ 



$$m_1 = m_{18} = 21$$
  
 $m_2 (2a) = T - m_2 g$ 

By solving (i) and (ii), a = g/416.(d) From the solution of Q.15,

$$T = \frac{3}{2}m_2g$$

17.(b) Time taken by mass  $m_2$  to cover the distance 20 cm

$$t = \sqrt{\frac{2h}{a}} = \sqrt{\frac{2 \times 0.2}{g/4}} = \sqrt{\frac{2 \times 0.2}{2.5}} = 0.4$$

18.(a) Since  $m_2$  mass covers double distances therefore  $S = 2 \times 20 = 40 \text{ cm}$ 

19.(b) Velocity acquired by mass  $m_2$  in 0.4 sec

From 
$$v = u + at$$
  $\left[ as \ a = \frac{g}{2} = \frac{10}{2} = 5 \text{m/s}^2 \right]$ 

$$= 0 + 5 \times 0.4 = 2$$
 m/s  $= 200$  cm/s

20.(a) When  $m_2$  mass acquired velocity of 200 cm/s, it will move upward till its velocity becomes zero.

$$H = \frac{v^2}{2g} = \frac{(200)^2}{2 \times 100} = 20 \,\mathrm{cm}$$

21.(b) For equilibrium



$$2T \sin \theta = W$$
$$T = \frac{W}{2\sin\theta}$$

Since  $\theta$  lies between 0 to 90°, i.e.  $\sin < 1 \Rightarrow T$ > W.

- 22.(c) Apparent weight:  $W_1 = m(g a)$ , But  $W_1 = 360$ N
  - $\therefore 360 = 60(10 a)$

or  $a = 4 \text{ m/s}^2$ 

23.(a) For the equilibrium of the body,  $F_1$  must act opposite to  $F_2$  and  $F_3$  and must be equal and opposite to the resultant of  $F_2$  and  $F_3$ . So on removing  $F_1$ ,

$$a = (\text{resultant of } F_2 \text{ and } F_3)/m = F_1/m$$

24.(c) As the lift is descending with an acceleration a, so the man also has acceleration a. Hence, the acceleration of the ball wrt the man in the lift will be (g - a) and wrt the stationary man on the ground will be g.

25.(b) Here, 
$$a = \frac{m_1 - m_2}{m_1 + m_2} g$$
, if  $m_1 > m_2$ . But  $a = g/8$ .  
$$\frac{g}{8} = \left(\frac{m_1 - m_2}{m_1 + m_2}\right) g \quad \text{or} \quad m_1 : m_2 = 9 : 1$$

26.(b) Reading of both the spring balances will be same as they are being pulled by the same force.

- 27.(a) Required force, F = Ma = MP/(M + m)
- **28.(b)** Here mg = 49 or m = 5 kg.

Required reading: R = 5(9.8 - 5) = 24 N

29.(c) Here thrust on the rocket is

$$F = m(g + a)$$
  
= 3.5 × 10<sup>4</sup> (10 + 10) = 7.0 × 10<sup>5</sup> N

**30.(d)** 
$$F = mnu \Rightarrow 144 = \frac{40}{1000} \times n \times 1200 \Rightarrow n = 3$$

**31.(c)** 
$$a = \left(\frac{m_1 - m_2}{m_1 + m_2}\right)g = \left(\frac{5 - 4.8}{5 + 4.8}\right)9.8 = 0.2 \text{ m/s}^2$$
  
**32.(a)**  $F_{av} = \frac{\Delta P}{\Delta t} = \frac{0.150 \times 20}{0.1} = 30 \text{ N}$ 

**33.(b)** From *B* to *C*:  
$$v^2 = u_1^2 - 2 \times 10 \times 2$$

$$\Rightarrow 0 = u_1^2 - 40$$

$$\Rightarrow u_1 = \sqrt{40} \text{ m/s}$$
From A to B:  
Let acceleration is a  

$$u_1^2 = u^2 + 2a \times 0.2$$

$$\Rightarrow 40 = 0^2 + 0.4a$$

$$\Rightarrow a = 100 \text{ m/s}^2$$
Now F - mg = ma  

$$\Rightarrow F = m(g + a)$$

$$= 0.2 [10 + 100]$$

$$= 22 \text{ N}$$
34.(a)  
P - mv  

$$= 0.513 \times 5.00$$

$$v = 0 \circ C$$

$$u_1$$

$$u_2$$

$$u_1$$

$$u_3$$

$$u_4$$

$$= 17.565 \approx 17.6$$
 kgm/s

(rounding off to three significant figures)

35.(b) From the graph, it is a suraight line, so uniform motion. Because of impulse, direction of velocity changes as can be seen from the slope of the graph.

Initial velocity 
$$=\frac{2}{2}=1$$
 m/s  
Final velocity  $=-\frac{2}{2}=-1$  m/s

$$\vec{P}_{i} = 0.4 N - s$$

$$\vec{P}_{jj} = -0.4 N - s$$
  
 $\vec{J} = \vec{P}_{e} - \vec{P}_{i} = -0.4 - 0.4 = -0.8 N-s (J = impulse)$ 

$$|\vec{J}| = 0.8 \text{ N-s}$$

**36.(d)**  $mg \sin \theta = ma$ 

$$\therefore a = g \sin \theta$$

where a is along the inclined plane.

- :. Vertical component of acceleration is  $g \sin^2 \theta$ .
- :. Relative vertical acceleration of A with respect

to *B* is 
$$p(\sin^2 60 - \sin^2 30) = \frac{g}{2} = 4.9 \text{ m/s}^2$$
 in

vertical direction.