DPP - 01

CLASS - 12th

TOPIC - POTENTIAL ENERGY POTENTIAL

- **Q.1** If 100 joule of work must be done to move electric charge equal to 4 C from a place, where potential is –10 volt to another place, where potential is V volt, find the value of V.
- **Q.2** (a) Calculate the potential at a point P due to a charge of 4×10^{-7} C located 9 cm away as shown in Fig. 4.17.

$$q = 4 \times 10^{-7} \text{C}$$
O
$$r = 9 \text{ cm} \longrightarrow \text{Fig. 4.17}$$

- (b) Hence, obtain the work done in bringing a from charge of 2×10^{-9} C from infinity to the point P. Does the answer depend on the path along which the charge is brought?
- Q.3 A charge of 20 μ C produces an electric field. Two points are 10 cm and 5 cm from this charge. Find the values of potentials at these points and also find the amount of work done to take an electron from one point to the other.
- Q.4 At a point due to a point charge, the values of electric field intensity and potential are 32 N C⁻¹ and 16J C⁻¹ respectively. Calculate magnitude of charge and distance of the charge from the point of observation.
- Q.5 Calculate the potential at the centre of a square ABCD of each side $\sqrt{2}$ m due to charges 2, -2, -3 and 6 μ C at four corners of it.
- **Q.6** Two charges 3×10^{-8} C and -2×10^{-8} C are located 15 cm apart. At what point on the line joining the two charges is the electrical potential zero? Take the potential at infinity to be zero.
- **Q.7** Two point charges + $10 \mu C$ and $-10\mu C$ are separated by a distance of $40 \mu C$ cm in air.
 - (a) Calculate the electrostatic potential energy of the system, assuming the zero of the potential energy to be at infinity.
 - (b) Draw an equipotential surface of the system.
 - (c) How much work is required to separate the two charges infinitely away from each other?
- **Q.8** What is the work done in moving a 2 μ C point charge from corner A to corner B of a square ABCDas shown in Fig. 4.34, when a 10 μ C charge exists at the centre of the square?

Q.9 A point charge Q is placed at point O as shown in Fig. 4.36.

- **Q.10** Name the physical quantity, whose SI unit is J C⁻¹. Is it scalar or vector?
- **Q.11** Define electric potential difference between two points. Is it scalar or vector?

ELECTRIC POTENTIAL & CAPACITANCE

DPP - 01 CLASS - 12th

TOPIC - POTENTIAL ENERGY POTENTIAL

Sol.1 Here, $q_0 = 4$ C; $V_A = -10$ volt; $V_B = V = \text{volt}$;

$$W_{AB} = 100$$
 joule

Now,
$$V_B - V_A = \frac{W_{AB}}{q_0}$$

Or V - (-10) =
$$\frac{100}{4}$$
 = 25

Or
$$V = 15$$
 volt

Sol.2 Here,
$$q = 4 \times 10^{-7} \text{ C}$$
; $r = 9 \text{ cm} = 0.09 \text{ m}$

(a) Potential at point P due to charge q

$$V_P = \frac{1}{4\pi \epsilon_0} \cdot \frac{q}{r}$$

$$9 \times 10^9 \times \frac{4 \times 10^{-7}}{0.09}$$

$$=4 \times 10^4 \text{V}$$

(b) From the definition, the potential at point P equals the work done in bringing a unit positive charge from infinity to point P. Therefore, the work done in bringing a charge of 2×10^{-9} C from infinity to point P,

$$W = 2 \times 10^{-9} \times potential at point P$$

$$= 2 \times 10^{-9} \times 4 \times 10^{4}$$

$$= 8 \times 10^{-5} \,\mathrm{J}$$

The work done in bringing the charge from infinity to point P does not depend on the path along which the charge is brought.

Sol.3 Here,
$$q = 20 \mu C = 20 \times 10^{-6} C$$

Let A and B be two points at distances 10 cm and 5 cm from the charge. Thus,

$$r_1 = 10 \text{ cm} = 0.1 \text{ m}$$
; $r_2 = 5 \text{ cm} = 0.05 \text{ m}$

Now, VA =
$$\frac{1}{4\pi \ \epsilon_0} \cdot \frac{q}{r_1} = 9 \times 10^9 \times \frac{20 \times 10^{-6}}{0.1}$$

$$= 1.8 \times 10^6 \text{ V}$$

$$\therefore V_B - V_A = 3.6 \times 10^6 - 1.8 \times 106 = 1.8 \times 10^6 V$$

Work done to take an electron from A to B,

 W_{AB} (V_B-V_A) × charge on electron

$$= 1.8 \times 10^6 \times 1.6 \times 10^{-19}$$

$$= 2.88 \times 10^{-13} \text{ J}$$

Sol.4 Let the observation point be at a distance r from the given point charge q. Since at the observation point, the electric field is 32 N C^{-1} ,

Also, as the electric potential at the observation point is 16 J C⁻¹,

$$\frac{1}{4\pi} \cdot \frac{q}{\epsilon_0} = 16 \dots (ii)$$

Dividing the equation (ii) by (i), we have

$$q = \frac{16 \times 0.5}{9 \times 10^9} = 8.89 \times 10^{-10} \, \text{C}$$

In the equation (ii), substituting for r, we have

$$\frac{1}{4\pi} \cdot \frac{q}{\epsilon_0} = 16$$

Or
$$9 \times 10^9 \times \frac{q}{0.5} = 16$$

Or
$$q = \frac{16 \times 0.5}{9 \times 10^9} = 8.89 \times 10^{-10} C$$

Sol.5 Four charges q1, q2, q3 and q4 are placed at the four corners of the square ABCD as shown in Fig. 4.18.

Here, $q_1 = 2\mu C = 2 \times 10^{-6} C$;

$$q_2 = -2\mu C = -2 \times 10^{-6} C;$$

$$q_3 = -3\mu C = -3 \times 10^{-6}C$$
;

$$q_4 = 6\mu C = 6 \times 10^{-6}C$$
;

and AB = BC = CD = AD =
$$\sqrt{2}$$
 m

Let r be the distance of each charge from the centre 0 of the square.

Then,
$$\sqrt{r^2 + r^2} = \sqrt{2}$$

Or
$$= 1 \text{ m}$$

Potential at point O due to charges at the four corners,

$$V = \frac{1}{4\pi \ \epsilon_0} \left(\frac{q_1}{r} + \frac{q_2}{r} + \frac{q_3}{r} + \frac{q_4}{r} \right)$$

$$= \frac{1}{4\pi \epsilon_0} \cdot \frac{1}{r} q_1 + q_2 + q_3 + q_4$$

$$= \frac{9 \times 10^9}{1} \ 2 \times 10^{-6} + \ -2 \times 10^{-6} \ + \ -3 \times 10^{-6} \ + 6 \times 10^{-6}$$

$$= 2.7 \times 10^4 \text{ V}$$

Sol.6 Here, $q_A = 3 \times 10^{-8} \text{ C}$; $q_B = -2 \times 10^{-8} \text{ C}$;

$$r = 15 \text{ cm} = 0.15 \text{ m}$$

Let O be the point, where the electric potential is zero due to the two charges as shown in Fig.

4.19.

Suppose that the distance AO = x. Then,

$$BO = r - x = 0.15 - x$$

Electric potential at point O due to qA

$$V_A = \frac{1}{4\pi \epsilon_0} \frac{q_A}{AO}$$

$$=9\times10^{9}\times\frac{3\times10^{-8}}{0.15x}=\frac{270}{x}$$

Electric potential at point O due to qB

$$V_{B} = \frac{1}{4\pi \epsilon_{0}} \frac{q_{B}}{BO}$$

$$=9\times10^{9}\times\frac{-2\times10^{-8}}{0.15x}=\frac{180}{0.15-x}$$

Since the electric potential at point 0 is zero, we have

or
$$\frac{270}{x} + \left(-\frac{180}{0.15 - x}\right) = 0$$

or
$$\frac{270}{x} = \frac{180}{0.15 - x}$$

or
$$x = 0.09 \text{ m} = 9 \text{ cm}$$
 (from charge of $3 \times 10^{-8} \text{ C}$)

Sol.7 Here,
$$q_1 = 10 \mu C = 10 \times 10^{-6} C$$
;

$$q_2 = -10 \mu C = -10 \times 10^{-6} C$$
; $r_{12} = 40 \text{ cm} = 0.4 \text{m}$

(a) Electrostatic potential energy of the system of two charges,

$$U = \frac{1}{4\pi \epsilon_0} \cdot \frac{q_1 q_2}{r_{12}}$$

$$= 9 \times 10^{9} \times \frac{10 \times 10^{-6} \times -10 \times 10^{-6}}{0.4}$$

$$= -2.25 J$$

- (b) For equipotential surface, refer to Fig. 4.13.
- (c) When the two charges are separated infinitely away ($r_{12} = \infty$) from each other, the electrostatic potential energy of the system becomes zero. Therefore, work required to separate the two charges infinitely away from each other,

W = final P.E. - initial P.E.

$$=0-(-2\cdot25)=2.25$$
 J

ELECTRIC POTENTIAL & CAPACITANCE

- **Sol.8** The points A and B are at the same distance from 10 μ C charge. Since $V_A = V_B$, no work will be done in moving a 2 μ C charge from point A to B.
- Sol.9 (i) Positive (ii) Negative
- Sol.10 Electric potential difference. It is a scalar quantity.
- **Sol.11** Refer to section 4.03.