CARBOHYDRATES - Carbodydrates are defined as optically active polyhydroxy aldehydes or ketones or the compound which produce such units on hydrolysis. - **Monosaccharide** $(C_n H_{2n} O_n)$: single unit, can't be hydrolysed: Glucose and fructose. - Oligosaccharides gives two to ten monosaccharides on hydrolysis. - **Disaccharides** (by glycosydic linkage) Sucrose $\xrightarrow{\text{H}_3\text{O}^+}$ α –D. Glucose + β –D. Fructose; Maltose $\xrightarrow{H_3O^+}$ 2 α –D. Glucose unit Lactose $\xrightarrow{H_3O^+}$ β –D. Glucose + β –D. Galactose • **Polysaccharide**: Contain more than ten monosaccharide units $(C_6H_{10}O_5)_n$: Starch & cellulose. | TYPE OF SUGAR | | | |------------------|---|--| | Give Test | Reducing | Non
Reducing | | Tollen's Reagent | +ve test | –ve test | | Fehling Reagent | +ve test | –ve test | | Benedict Test | +ve test | –ve test | | Mutarotation | Yes | No | | Functional Unit | -α-C-C-C-C-C-C-C-C-C-C-C-C-C-C-C-C-C-C- | | | | OH
OH
Hemiacetal | O H
OR
Acetal | | | O R
OH
Hemiketal | OR
OR
Ketal | | Example | All monosaccharides Glucose Fructose Mannose Galactose Disaccharide Maltose lactose | Disaccharide
Sucrose
Polysaccharide
Starch
cellulose | • **Mutarotation:** When either form of D-glucose is placed in aq. solution it slowly form the other via open chain aldehyde and gradual change in specific rotation until specific rotation (± 52.5°) is reached. - Anomer's: Differ in configuration at 1st carbon due to hemi (acetal or ketal) ring formation. The newasymmetric carbon is referred to as Anomeric carbon. - **Epimer's**: Diastereomer's which differ in conformation at any one chiral carbon eg. D-Glucose & D-mannose D-Glucose & D-Galactose • Sucrose: (1,2 Glycosidic linkage) Maltose Two $\alpha\text{-}D\text{-}Glucose$ unit Lactose : (1,4 Glycosidic linkage) - **Starch**: (Amylose & Amylopectin) - Amylose : (Straight Chain) : $(\alpha-1,4)$ Glycosidic linkage) - (i) Soluble in H₂O & gives blue colour with I₂ - Amylopectin (Branch chain) : $(C_6H_{12}O_5)_n$ ## REACTION OF GLUCOSE (OPEN CHAIN STRUCTURE)