

CARBOHYDRATES

- Carbodydrates are defined as optically active polyhydroxy aldehydes or ketones or the compound which produce such units on hydrolysis.
- **Monosaccharide** $(C_n H_{2n} O_n)$: single unit, can't be hydrolysed: Glucose and fructose.
- Oligosaccharides gives two to ten monosaccharides on hydrolysis.
- **Disaccharides** (by glycosydic linkage)

Sucrose $\xrightarrow{\text{H}_3\text{O}^+}$ α –D. Glucose + β –D. Fructose;

Maltose $\xrightarrow{H_3O^+}$ 2 α –D. Glucose unit

Lactose $\xrightarrow{H_3O^+}$ β –D. Glucose + β –D. Galactose

• **Polysaccharide**: Contain more than ten monosaccharide units

 $(C_6H_{10}O_5)_n$: Starch & cellulose.

TYPE OF SUGAR		
Give Test	Reducing	Non Reducing
Tollen's Reagent	+ve test	–ve test
Fehling Reagent	+ve test	–ve test
Benedict Test	+ve test	–ve test
Mutarotation	Yes	No
Functional Unit	-α-C-C-C-C-C-C-C-C-C-C-C-C-C-C-C-C-C-C-	
	OH OH Hemiacetal	O H OR Acetal
	O R OH Hemiketal	OR OR Ketal
Example	All monosaccharides Glucose Fructose Mannose Galactose Disaccharide Maltose lactose	Disaccharide Sucrose Polysaccharide Starch cellulose

• **Mutarotation:** When either form of D-glucose is placed in aq. solution it slowly form the other via open chain aldehyde and gradual change in specific rotation until specific rotation (± 52.5°) is reached.

- Anomer's: Differ in configuration at 1st carbon due to hemi (acetal or ketal) ring formation. The newasymmetric carbon is referred to as Anomeric carbon.
- **Epimer's**: Diastereomer's which differ in conformation at any one chiral carbon

eg. D-Glucose & D-mannose D-Glucose & D-Galactose

• Sucrose:

(1,2 Glycosidic linkage)

Maltose

Two $\alpha\text{-}D\text{-}Glucose$ unit

Lactose :

(1,4 Glycosidic linkage)

- **Starch**: (Amylose & Amylopectin)
- Amylose : (Straight Chain) :

 $(\alpha-1,4)$ Glycosidic linkage)

- (i) Soluble in H₂O & gives blue colour with I₂
- Amylopectin (Branch chain) : $(C_6H_{12}O_5)_n$

REACTION OF GLUCOSE (OPEN CHAIN STRUCTURE)

