Op-Amps and 555 Timer

Multiple Choice Questions

Q.1 In an ideal differential amplifier shown in figure, a large value of R_F

- (a) increases both differential and common mode pairs
- (b) increases the common mode gain only
- (c) decreases the differential mode gain only
- (d) decrease the common mode gain only
- Q.2 A change in the value of emitter resistance R_e in a difference amplifier
 - (a) affects A_d
 - (b) affects A_c
 - (c) affects both A_d and A_c
 - (d) does not affect either A_d or A_c
- Q.3 In a differential amplifier, CMRR can be improved by using an increased
 - (a) emitter resistance
 - (b) collector resistance
 - (c) power supply voltage
 - (d) source resistance

- **Q.4** A differential amplifier has inputs $V_1 = 1050 \,\mu\text{V}$ and $V_2 = 950 \,\mu\text{V}$ with CMRR = 1000, what is the error in differential output?
 - (a) 10%
- (b) 1%
- (c) 0.1%
- (d) 0.01%
- Q.5 The differential gain of op-amp is 4000 and value of CMRR is 150. Its output voltage, when the two input voltages are 200 µV and 160 µV respectively, will be
 - (a) 16 V
- (b) 164.8 mV
- (c) 64 mV
- (d) 76 mV

[ESE-2014]

- Q.6 Consider the following statements:
 - 1. A differential amplifier is used at the input stage of an operational amplifier.
 - 2. Differential amplifiers have very high CMRR. Which of these statements are correct?
 - (a) Both 1 and 2
- (b) Neither 1 nor 2
- (c) 1 only
- (d) 2 only

[ESE-2013]

Q.7 The op-amp in the figure has an input offset voltage of 5 mV and an open loop voltage gain of 10000, then V_a will be

- (a) 0
- (b) 5 mV
- (c) +15 V or -15 V (d) +50 V or -50 V

Q.8 In the circuit of figure, V_0 is

- (a) -1 V
- (b) 2 V
- (c) +1 V
- (d) +15 V

Q.9 Assuming the op-amp to be ideal. The voltage gain of the amplifier shown below is

Q.10 The V_0 of the op-amp circuit shown is

Q.11 Find V_0 for the circuit shown below:

- (c) 10 V
- (d) 18 V

2.12 The output voltage V_0 of the circuit is

- (c) 5 V
- (d) -5.5 V

Q.13 In the circuit shown in the figure the current flowing through resistance of 100 Ω would be

- (a) 8 mA (c) 20 mA
- (b) 10 mA
- (d) 100 mA

Q.14 In the circuit shown below the op-amps are ideal. Then V_{out} in Volts is

Q.15 Given that the op-amps in the figure are ideal, the output voltage V_0 is

- (a) $(V_1 V_2)$
- (b) $2(V_1 V_2)$

(d) $(V_1 + V_2)$

- (c) $\frac{(V_1-V_2)}{2}$

[GATE-2014]

Q.16 Assume the op-amp to be ideal. The current I through 1 k Ω resistor is

- (a) -2 mA
- (b) -4 mA
- (c) -6 mA
- (d) -8 mA
- Q.17 The data sheet of an op-amp gives a mid band voltage gain of 200000 with a cut-off frequency of 10 Hz. What is the voltage gain at 1 MHz?
 - (a) 2
- (b) 3.2
- (c) 1
- (d) 0

Q.18 The bandwidth of an amplifier circuit given below is. It is given that 0 dB product of the op-amp is 1 MHz:

- (a) 10⁵ Hz
- (b) 10⁷ Hz
- (c) 10⁴ Hz
- (d) none

Q.19 An amplifier using an opamp with a slew-rate SR = 1 V/usec has a gain of 40 dB. If this amplifier has to faithfully amplify sinusoidal signals from dc to 20 kHz without introducing any slew-rate induced distortion, then the input signal level must not exceed.

- (a) 795 mV
- (b) 395 mV
- (c) 79.5 mV
- (d) 39.5 mV

[GATE-2002]

Q.20 For the op-amp circuit given below determine the maximum input signal frequency in rad/sec. that can be used to get an distortionless output by taking SR 0.5 V/µsec.

- (a) $1.04 \times 10^6 \text{ rad/sec}$
- (b) 2.04×10^{6} radsec
- (c) 1.32 x 104 rad/sec
- (d) $0.26 \times 10^5 \text{ rad/sec}$
- Q.21 A non-inverting op-amp is shown below (assume ideal op-amp)

The output voltage V_{α} for an input $V_i = [2 + \sin(100t)] V$

- (a) 3/2 sin (100 t)
- (b) $3 \sin(100 t)$
- (c) $2 \sin(100 t)$
- (d) $3 \sin(100 t) + 1/2$

[ESE-2002]

Q.22 In the Op-Amp circuit shown, assume that the diode current follows the equation $I = I_s \exp$ (V/V_T) . For $V_i = 2$ V, $V_o = V_{01}$, and for $V_i = 4$ V, $V_o = V_{02}$. The relationship between V_{01} and V_{02} is

- (a) $V_{02} = \sqrt{2} V_{01}$
- (b) $V_{02} = e^2 V_{01}$
- (c) $V_{02} = V_{01} \ln 2$
- (d) $V_{01} V_{02} = V_T \ln 2$

[GATE-2007]

Q.23 In the inverting op-amp circuit shown below, the resistance R_a is chosen as $R_1 \parallel R_2$ in order to

- (a) increase gain
- (b) reduce offset voltage
- (c) reduce offset current
- (d) increase CMRR

[ESE-2002(EE)]

Q.24 Find V_0 for the circuit shown below:

Q.25 In the circuit shown below what is the output voltage (V_{out}) if a silicon transistor Q and an ideal op-amp are used?

- (a) -15 V
- (b) -0.7 V
- (c) +0.7 V
- (d) +15 V

[GATE-2013]

Q.26 An operational amplifier circuits is shown in the figure.

The output of the circuit for a given input v, is

- (b) $-\left(1 + \frac{R_2}{R_1}\right) v_i$

[GATE-2014]

Q.27 The transfer characteristic for the precision rectifier circuit shown below is (assume ideal OP-AMP and practical diodes)

[GATE-2010]

Q.28 The transfer characteristic of the op-amp circuit shown in figure is

Q.29 In the figure assume the OP-AMPs to be ideal. The output v_0 of the circuit is

- [GATE-2001]
- Q.30 For the circuit shown in the following figure, the capacitor C is initially uncharged. At t = 0, the switch S is closed. The voltage V_C across the capacitor at t = 1 millisecond is (The Op-Amp is supplied with ±15 V.)

- (a) 0 Volt
- (b) 6.3 Volts
- (c) 9.45 Volts
- (d) 10 Volts

[GATE-2006]

[ESE-2001]

Q.31 In the circuit shown in the given figure, V_0 is given by

- (b) $\sin(t + \pi/4)$
- (c) $\sin t$
- (d) $\cos t$

Q.32 The Op-amp circuit shown in the figure is a filter. The type of filter and its cut-off frequency are respectively

- (a) high pass, 1000 rad/sec.
- (b) low pass, 1000 rad/sec.
- (c) high pass, 10000 rad/sec.
- (d) low pass, 10000 rad/sec.

[GATE-2005]

Q.33 For the circuit shown in figure, the type of filter is

- (a) Low pass
- (b) Band pass
- (c) Band reject
- (d) High pass
- Q.34 The input resistance of the circuit shown in the figure, assuming an ideal op-amp is

- (d) $\frac{4R}{3}$
- (c) R

(c) 0 V

[GATE-2009]

[GATE-2011]

Q.35 Assuming base-emitter voltage of 0.7 V and $\beta = 99$ of transistor Q_1 , the output voltage V_0 in the ideal opamp circuit shown below is

(d) 2 V

Q.36 An active filter is shown in the adjoining figure. The dc gain and the 3 dB cut-off frequency of the filter respectively, are nearly

 $R_2 = 159 \text{ k}\Omega$ $R_1 = 15.9 \text{ k}\Omega$ $C_1 = 1.0 \text{ nF}$

- (a) 40 dB, 3.14 kHz (b) 40 dB, 1.00 kHz
- (c) 20 dB, 6.28 kHz (d) 20 dB, 1.00 kHz

[GATE-2010]

Q.37 Given the ideal op-amp shown in figure indicate correct transfer characteristics assuming ideal diode with zero cut-in voltage

Q.38 The saturation voltage of the ideal op-amp shown below is ± 10 V. The output voltage n_0 of the following circuit in the steady-state is

- (a) square wave of period 0.55 ms
- (b) triangular wave of period 0.55 ms
- (c) square wave of period 0.25 ms
- (d) triangular wave of period 0.25 ms

[GATE-2015]

Q.39 An astable multi-vibrator circuit using IC 555 timer is shown below. Assume that the circuit is oscillating steadily.

The voltage V_C across the capacitor varies between

- (a) 3 V to 5 V
- (b) 3 V to 6 V
- (c) 3.6 V to 6 V
- (d) 3.6 V to 5 V

[GATE-2008]

Q.40 Circuit shown in the figure represents

- (a) astable multivibrator
- (b) a mono stable multi vibrator
- (c) voltage controlled oscillator
- (d) ramp generator

Numerical Data Type Questions

- Q.41 Consider an inverting amplifier circuit having gain of -100 is designed using an op-amp and two resistors $R_1 = 10 \text{ k}\Omega$ and $R_2 = 1 \text{ M}\Omega$. If the op-amp is specified to have input bias current of 100 nA and input offset current of 10 nA then the output dc offset voltage will be = _____V. Assume bias current at inverting terminal is greater than bias current at non-inverting terminal.
- **Q.42** The following circuit has $R = 10 \text{ k}\Omega$, $C = 10 \mu\text{F}$. The input voltage is sinusoidal having frequency of 50 Hz and rms value of 10 V. Under ideal condition the phase of i_s with respect to V_s

Q.43 Consider the ideal op-amp circuit shown below.

If it is given that

$$\frac{R_2}{R_1} = 10, \frac{R_4}{R_3} = 11$$

then the common mode rejection ratio (CMRR) is _____ dB.

Q.44 For the circuit shown below the input resistance is $\underline{\hspace{1cm}}$ k Ω .

- Q.45 An op-amp has an open-loop gain of 10⁵ and an open-loop upper cut-off frequency of 10 Hz. If this op-amp is connected as an amplifier with a closed-loop gain of 100, then the new upper cut-off frequency is _____ kHz.
- Q.46 An oscillator circuit using ideal op-amp and diodes is shown in the figure.

The time duration for +ve part of the cycle is Δt_1

and for -ve part is Δt_2 . The value of $e^{\frac{\Delta t_1 - \Delta t}{RC}}$ will be _____ .

[GATE-2014]

Try Yourself

T1. For the circuit shown below

the transfer characteristic can be represented as

T2. Consider an op-amp circuit shown in figure, with an open loop gain of $A_{ol} = 10^5$ and open loop input impedance $R_{oi} = 10 \text{ k}\Omega$. If the output resistance of op-amp is zero, than closed loop input impedance (R_{it}) at the inverting terminal of op-amp is

- (a) $R_{if} = 10 \text{ k}\Omega$
- (b) $R_{if} = 1 \text{ k}\Omega$
- (c) $R_{if} = 40 \text{ k}\Omega$
- (d) $R_{if} = 0.1 \Omega$
- T3. Consider the amplifier circuit shown below, where $A_{\rm v}$ is the voltage gain of amplifier.

What is the value of input resistance, $R_{in} = \frac{V_{in}}{i_{in}}$?

- (a) $\frac{A_{v} R_{f}}{1 A_{v}}$
- (b) $(1 A_v) F$
- (c) $\frac{R_f}{1-A_v}$
- (d) $\frac{(1-A_v)}{A_v} R_f$
- T4. Consider the circuit shown in figure below. Assume op-amp is ideal.

What is the value of current i_o ?

- (a) $-\frac{v_{in}}{10 \text{ k}\Omega}$
- (b) $-\frac{V_{\text{in}}}{R_f}$
- (c) $-\frac{v_{in}}{R_L}$
- (d) None of the above
- **T5.** In the figure shown below.

If $R_{\Delta} = R_{R}$ then

- (a) Duty cycle of the output wave is greater than 50%.
- (b) Duty cycle of the output wave is 50%.
- (c) R_A and R_B do not influence the duty cycle of the output.
- (d) Duty cycle is 50% irrespective of $R_{\rm A}$ and $R_{\rm B}$ values.

