6

Mathematical Induction and Binomial Theorem

QUICK LOOK

Statement and Predicate

- A sentence which is either definitely true or definitely false is called a statement. "Snow is white" is a statement but "Ram is a good boy" is not a statement.
- Some sentences depend on a variable for its truth value (*i.e*, true or false). "1+2+3+...+n=2n-1" is a mathematical sentence which is true for n=1,2 but false for n=3,4 etc. As the sentence is definitely true or definitely false for a particular positive integral value of n, the sentence is a statement and it depends on n ∈ N for truth value. Such statements are called predicates and smybolized as P(n).

Peano's Axiom (Principle of Mathematical Induction)

• A statement P(n) is true for all $n \in N$ if P(1) is true P(m) is true $\Rightarrow P(m+1)$ is true

Verification of Truth of P(n): PMI is a principle which can be used to verify whether a mathematical statement P(n) is true for all $n \in N$ in any branch of mathematics. For this take the following steps:

- Put n = 1 on one side of the statement and then simplify it to take the shape of the other side where n = 1.
- Then assume P(m) to be true. Use the mathematical result obtained by putting n = m in the statement to establish P(m+1) is true.

Use of Substitution in PMI: PMI may be used to prove whether a statement P(n) is true for a particular infinite sequence of value of n.

- If the true of P(n) is to be established for all positive even integral values of n then take φ(n) = P(2n) and use PMI to prove that φ(n) is true for all n ∈ N.
- If the truth of *P*(*n*) is to be established for all positive odd integral values of *n* then take φ(*n*) = *P*(2*n*−1) and use PMI to prove that φ(*n*) is true for all *n* ∈ *N*.
- If the truth of P(n) is to be established for all n > k, n ∈ N, k ∈ N then take φ(n) = P(n+k) and use PMI to prove that φ(n) is true for all n ∈ N.

Similarly use $\phi(n) = P(-n)$ for all negative integral values $\phi(n) = P\left(\frac{1}{n}\right)$ for all fractional values of the form $\frac{1}{r}, r \in N$

 $\phi(n) = P(3m)$ for all positive multiples of 3, etc.

Alternative Forms of PMI

- P(n) is true for all $n \in N$ if P(1) and P(2) are true P(m) and P(m+1) are true
- $\Rightarrow P(m+2)$ is true
- P(n) is true for all $n \in N$ if P(1), P(2), and P(3) are true P(m), P(m+1) and P(m+2) are true
- $\Rightarrow P(m+3)$ is true
- P(n) is true for all n≥k, n ∈ N and k is a fixed positive integer, if P(k) is true

P(m) is true $\Rightarrow P(m+1)$ is true

• P(n) is true for all $n \in N$ if $P(1), P(2), \dots, P(k)$ are true $P(1), P(2), \dots, P(m)$ are true $\Rightarrow P(m+1)$ is true

Use of PMI in Statements P(m, n): Some mathematical statements are predicates of two arguments (*i.e.*, truth value depending on two variables $m \in N, n \in N$). The method of establishing the truth of P(m,n) for all $m \in N, n \in N$ is as follows:

Keep *m* fixed and treat the statement *P*(*m*,*n*) as *φ*(*n*). Establish the truth of *φ*(*n*) for all *n* ∈ *N* by using PMI. Next keep *n* fixed and treat the statement *P*(*m*,*n*) as *ψ*(*m*). Establish the truth of *ψ*(*n*) for all *n* ∈ *N* by using PMI.

Some Formulae Based on Principle of Induction For any natural number *n*

$$\sum n = 1 + 2 + 3 + \dots + n = \frac{n(n+1)}{2}$$
$$\sum n^2 = 1^2 + 2^2 + 3^2 + \dots + n^2 = \frac{n(n+1)(2n+1)}{6}$$
$$\sum n^3 = 1^3 + 2^3 + 3^3 + \dots + n^3 = \frac{n^2(n+1)^2}{4} = \left(\sum n\right)^2$$

Divisibility Problems

To show that an expression is divisible by an integer.

(i) If a, p, n, r are positive integers, then first of all we write $a^{pn+r} = a^{pn} \cdot a^r = (a^p)^n \cdot a^r$.

(ii) If we have to show that the given expression is divisible by *c*.S Then express, $a^p = [1 + (a^p - 1)]$, if some power of $(a^p - 1)$ has *c* as a factor.

 $a^{p} = [2 + (a^{p} - 2)]$, if some power of $(a^{p} - 2)$ has *c* as a factor. $a^{p} = [K + (a^{p} - K)]$, if some power of $(a^{p} - K)$ has *c* as a factor.

Binomial Theorem for Positive Integral Index

- $(a+x)^n = {}^n C_0 a^n + {}^n C_1 a^{n-1} x + {}^n C_2 a^{n-2} x^2 + \dots + {}^n C_n x^n$ where ${}^n C_r = \frac{n!}{r!(n-r)!}$
- $(1+x)^n = {}^n C_0 + {}^n C_1 x + {}^n C_2 x^2 + \dots + {}^n C_n x^n$
- $(1+x)^n = (x+1)^n = {}^n C_0 x^n + {}^n C_1 x^{n-2} + \dots + {}^n C_n$

when expanded in descending powers of x.

• $(a-x)^n = {}^n C_0 a^n - {}^n C_1 a^{n-1} x + {}^n C_2 a^{n-2} x^2 - \dots + (-1)^n \cdot {}^n C_n x^n$

Terms in Expansion: In the expansion of $(a + x)^n$, $n \in N$

- The number of terms = n+1
- (r+1) th term $= t_{r+1} = C_r a^{n-r} \cdot x'$
- kth term from the end $\{(n+1) (k-1)\}$ th term $= t_{(n+1)-(k-1)}$
- middle term $= t_{\frac{(n+1)+1}{2}}, i.e.t_{\frac{n}{2}+1}$ when n is even middle term $= t_{\frac{n}{2}+1}$ when n odd.

$$=t_{\frac{n+1}{2}}, t_{\frac{n+3}{2}}$$
 when n od

Properties of ${}^{n}C_{r}$ for Simplification

- ${}^{n}C_{0} = 1, {}^{n}C_{n} = 1$
- $\bullet \quad ^{n}C_{r} = {}^{n}C_{n-r}$
- ${}^{n}C_{r} + {}^{n}C_{r-1} = {}^{n+1}C_{r}$
- ${}^{n}C_{r} = {}^{n}C_{k} \Longrightarrow r = k \text{ or } r + k = n$
- $r.^{n}C_{r} = n.^{n-1}C_{r-1}$
- $\frac{1}{r+1} \cdot {}^nC_r = \frac{1}{n+1} \cdot {}^{n+1}C_{r+1}$
- The greatest among binomial coefficients ${}^{n}C_{0}, {}^{n}C_{1}, {}^{n}C_{2}, \dots, {}^{n}C_{n} = {}^{n}C_{\frac{n}{2}}$ when n is even

 ${}^{n}C_{\frac{n-1}{2}}$ or ${}^{n}C_{\frac{n+1}{2}}$ when n is odd.

Summation of Series Involving Binomial Coefficients: For $(1+x)^n = {}^n C_0 + {}^n C_1 x + {}^n C_2 x^2 + ... + {}^n C_n x^n$, the binomial coefficients are ${}^n C_0, {}^n C_1, {}^n C_2, ..., {}^n C_n$.

A number of series may be formed with these coefficients figuring in the terms of a series. Standard series of the binomial coefficients are as follows:

- ${}^{n}C_{0} + {}^{n}C_{1} + {}^{n}C_{2} + \dots + {}^{n}C_{n} = 2^{n}$...(*i*) It is obtained by putting x = 1 in the binomial expansion for $(1+x)^{n}$.
- ${}^{n}C_{0} {}^{n}C_{1} + {}^{n}C_{2} \dots + (-1)^{n} \cdot {}^{n}C_{n} = 0$...(*ii*) It is obtained by putting x = -1 in the binomial expansion for $(1 + x)^{n}$.
- ⁿC₀ + ⁿC₂ + ⁿC₄ + = 2ⁿ⁻¹
 It is obtained by adding (i) and (ii).
- ${}^{n}C_{1} + {}^{n}C_{3} + {}^{n}C_{5} + \dots = 2^{n-1}$ It is obtained by subtracting (*ii*) from (*i*).
- ${}^{2n}C_0 + {}^{2n}C_1 + {}^{2n}C_2 + \dots + {}^{2n}C_{n-1} + \frac{1}{2} \cdot {}^{2n}C_n = 2^{2n-1}$ We have ${}^{2n}C_0 + {}^{2n}C_1 + {}^{2n}C_2 + \dots + {}^{2n}C_{2n-1} + {}^{2n}C_{2n} = 2^{2n}$
- :: ${}^{2n}C_0 = {}^{2n}C_{2n}, {}^{2n}C_1 = {}^{2n}C_{2n-1}$, etc. combining the terms equidistant from the beginning and end we get
- $2({}^{2n}C_0 + {}^{2n}C_1 + {}^{2n}C_2 + \dots + {}^{2n}C_{n-1}) + {}^{2n}C_n = 2^{2n}$
- $^{2n+1}C_0 + ^{2n+1}C_1 + ^{2n+1}C_2 + \dots + ^{2n+1}C_n = 2^{2n}$ (as above)
- Sum of the first half of "C₀ +" C₁ +" C₂ + +" C_n
 = sum of the last half of "C₀ +" C₁ +" C₂ + +" C_n = 2ⁿ⁻¹

Bino-geometric series

 ${}^{n}C_{0} + {}^{n}C_{1}x + {}^{n}C_{2}x^{2} + \dots + {}^{n}C_{n}x^{n} = (1+x)^{n}.$

Bino-arithmetic series

 $a^{n}C_{0} + (a+d)^{n}C_{1} + (a+2d)^{n}C_{2} + \dots + (a+nd)^{n}C_{n}$

It is made by the sum of the products of corresponding terms of the sequences

a, a+d, a+2d, ..., a+nd (AP) and ${}^{n}C_{0}, {}^{n}C_{1}, {}^{n}C_{2}, ..., {}^{n}C_{n}$

(sequence of binomial coefficients)

Such series can be added in two ways:

(i) by elimination of r in the multiplier of binomial coefficient from the (r+1)th term of the series (using $r \cdot {}^{n}C_{r} = n {}^{n-1}C_{r-1}$)

(ii) by differentiating the expansion of $x^{a}(1+x^{d})^{n}$

Bino-harmonic series

$$\frac{{}^{n}C_{0}}{a} + \frac{{}^{n}C_{1}}{a+d} + \frac{{}^{n}C_{2}}{a+2d} + \dots + \frac{{}^{n}C_{n}}{a+nd}$$

It is made by the sum of the products of corresponding terms of the sequences

$$\frac{1}{a}, \frac{1}{a+d}, \frac{1}{a+2d}, \dots, \frac{1}{a+nd}$$
(HP)

and ${}^{n}C_{0}, {}^{n}C_{1}, {}^{n}C_{2}, \dots, {}^{n}C_{n}$ (sequence of binomial coefficients). Such series are added in two ways :

(i) by elimination of r in the multiplier of binomial coefficients from the (r+1)th term of the series

$$\left(\text{using}\frac{1}{r+1}{}^{n}C_{r} = \frac{1}{n+1}{}^{n+1}C_{r+1}\right)$$

(ii) by integrating suitable expansion.

Bino-binomial series

$${}^{n}C_{0}.{}^{n}C_{r} + {}^{n}C_{1}.{}^{n}C_{r+1} + {}^{n}C_{2}.{}^{n}C_{r+2} + \dots + {}^{n}C_{n-r}.{}^{n}C_{n}$$

or ${}^{m}C_{0}.{}^{n}C_{r} + {}^{m}C_{1}.{}^{n}C_{r-1} + {}^{m}C_{2}.{}^{n}C_{r-2} + \dots + {}^{m}C_{r}.{}^{n}C_{0}$

Such series are added by multiplying two expansions, one involving the first factors as coefficients and the other involving the second factors as coefficients and finally equating coefficients of a suitable power of x on both sides.

Binomial Theorem for any Index

•
$$(1+x)^n = 1 + nx + \frac{n(n-1)}{2!}x^2 + \frac{n(n-1)(n-2)}{3!}x^3 + \dots$$
 to ∞ , pro-

vided |x| < 1.

General term { (r+1)th term} in the expansion of $(1+x)^n$ is

$$t_{r+1} = \frac{n(n-1)(n-2)\dots(n-r+1)}{r!} x^r$$

Some useful Binomial Expansions for Summation of Series

- $(1-x)^{-n} = 1 + {}^{n}C_{1}x + {}^{n+1}C_{2}x^{2} + {}^{n+2}C_{3}x^{3} + \dots + {}^{n+r-1}C_{r}x^{r} + \dots$ to o ∞ , where *n* is a positive integer. $(1+x)^{-n} = 1 - {}^{n}C_{1}x + {}^{n+1}C_{2}x^{2} - {}^{n+2}C_{3}x^{3} + \dots$ to ∞ where $n \in N$
- $(1-x)^{-1} = 1 + x + x^2 + x^3 + x^4 + \dots$ to ∞ $(1-x)^{-1} = 1 - x + x^2 - x^3 + x^4 - \dots$ to ∞
- $(1-x)^{-2} = 1 + 2x + 3x^2 + 4x^3 + \dots$ to ∞ $(1+x)^{-2} = 1 - 2x + 3x^2 - 4x^3 + \dots$ to ∞
- $(1-x)^{-\frac{p}{q}} = 1 + \frac{p}{1!} \left(\frac{x}{q}\right) + \frac{p(p+q)}{2!} \left(\frac{x}{q}\right)^2 + \frac{p(p+q)(p+2q)}{3!} \left(\frac{x}{q}\right)^3 + \dots \text{ to } \infty$

$$(1+x)^{\frac{p}{q}} = 1 - \frac{p}{1!} \left(\frac{x}{q}\right) + \frac{p(p+q)}{2!} \left(\frac{x}{q}\right)^2 - \frac{p(p+q)(p+2q)}{3!} \left(\frac{x}{q}\right)^3 + \dots \cos \alpha$$
$$(1+x)^{\frac{p}{q}} = 1 + \frac{p}{1!} \left(\frac{x}{q}\right) + \frac{p(p-q)}{2!} \left(\frac{x}{q}\right)^2 + \frac{p(p-q)(p-2q)}{3!} \left(\frac{x}{q}\right)^3 + \dots \cos \alpha$$
$$(1-x)^{\frac{p}{q}} = 1 - \frac{p}{1!} \left(\frac{x}{q}\right) + \frac{p(p-q)}{2!} \left(\frac{x}{q}\right)^2 - \frac{p(p-q)(p-2q)}{3!} \left(\frac{x}{q}\right)^3 + \dots \cos \alpha$$

Number of Terms in the Expansion of $(a + b + c)^n$ and $(a + b + c + d)^n$.

 $(a+b+c)^{n} \text{ can be expanded as: } (a+b+c)^{n} = \{(a+b)+c\}^{n}$ $= (a+b)^{n} + {}^{n}C_{1}(a+b)^{n-1}(c)^{1} + {}^{n}C_{2}(a+b)^{n-2}(c)^{2} + \dots + {}^{n}C_{n}c^{n}$ $= (n+1) \text{ term } + n \text{ term } + (n-1)\text{ term } + \dots + 1\text{ term}$

 \therefore Total number of terms

$$= (n+1) + (n) + (n-1) + \dots + 1$$
$$= \frac{(n+1)(n+2)}{2}.$$

Similarly, Number of terms in the expansion of

$$(a+b+c+d)^n = \frac{(n+1)(n+2)(n+3)}{6}$$

To Determine a Particular Term in the Expansion

In the expansion of $\left(x^{\alpha} \pm \frac{1}{x^{\beta}}\right)^{n}$, if x^{m} occurs in T_{r+1} , then r is given by $n\alpha - r(\alpha + \beta) = m$

$$\Rightarrow r = \frac{n\alpha - m}{\alpha + \beta}$$

Thus in above expansion if constant term which is independent of x, occurs in T_{r+1} then r is determined by

$$n\alpha - r(\alpha + \beta) = 0$$

$$\Rightarrow r = \frac{n\alpha}{\alpha + \beta}$$

Recoginising the type of the Infinite Series

- Each of the binomial, exponential and logarithmic series has infinite terms.
- Series involving n ! s in the decominators of terms are generally binomial or exponential series. But in a binomial series the number of factors in the numerators (other than the power of a fixed number) of terms goes on increasing.
- Logarithmic series do not contain n ! s in the denominators

of terms. The terms contain $\frac{1}{n}s$.

MULTIPLE CHOICE QUESTIONS

Second Principle of Mathematical Induction

- The smallest positive integer *n*, for which $n! < \left(\frac{n+1}{2}\right)^n$ 1. hold is: **b.** 2 **c.** 3 **a.** 1 **d.** 4
- Let $S(k) = 1 + 3 + 5 + ... + (2k 1) = 3 + k^2$. Then which of 2. the following is true:

a. Principle of mathematical induction can be used to prove the formula

b. $S(k) \Rightarrow S(k+1)$

- c. $S(k) \Rightarrow S(k+1)$
- **d.** S(1) is correct
- $(1+x)^n nx 1$ is divisible by: (where $n \in N$) 3.

a.
$$2x$$
b. x^2
c. $2x^3$
d. All of these

- 4. Sum of odd terms is A and sum of even terms is B in the expansion of $(x+a)^n$, then:
 - **a.** $AB = \frac{1}{4}(x-a)^{2n} (x+a)^{2n}$ **b.** $2AB = (x+a)^{2n} - (x-a)^{2n}$ **c.** $4AB = (x+a)^{2n} - (x-a)^{2n}$ **d.** None of these
- If the 4th term in the expansion of $(px + x^{-1})^m$ is 2.5 for all 5. $x \in R$ then:
 - **b.** $p = \frac{1}{2}, m = 6$ **a.** p = 5/2, m = 3**c.** $p = -\frac{1}{2}, m = 6$ d. None of these
- 6. If $\frac{T_2}{T_1}$ in the expansion of $(a+b)^n$ and $\frac{T_3}{T_1}$ in the expansion of $(a+b)^{n+3}$ are equal, then n=?**a.** 3 **b.** 4 **c.** 5 **d.** 6

Independent Term and Middle Term

The term independent of x in the expansion of 7. $\left(\sqrt{\frac{x}{3}} + \frac{3}{2x^2}\right)^{10}$ will be : **a.** $\frac{3}{2}$ **b.** $\frac{5}{4}$ **c.** $\frac{5}{2}$ **d.** $\frac{2}{2}$

The term independent of x in the expansion of 8. $(1+x)^n \left(1+\frac{1}{x}\right)^n$ is: **a.** $C_0^2 + 2C_1^2 + \dots + (n+1)C_n^2$ **b.** $(C_0 + C_1 + \dots + C_n)^2$ **c.** $C_0^2 + C_1^2 + \dots + C_n^2$ d. None of these

The coefficient of x^n in the expansion of $(1 + x) (1 - x)^n$ is: 9. **a.** $(-1)^{n-1}n$ **b.** $(-1)^n (1-n)$ **c.** $(-1)^{n-1}(n-1)^2$ **d.** (n-1)

10.
$$6^{th}$$
 term in expansion of $\left(2x^2 - \frac{1}{3x^2}\right)^{10}$ is:
a. $\frac{4580}{17}$
b. $-\frac{896}{27}$
c. $\frac{5580}{17}$
d. None of the

11. If the coefficients of r^{th} term and $(r+4)^{th}$ term are equal in the expansion of $(1+x)^{20}$, then the value of r will be: **a.** 7 **b.** 8 **c.** 9 **d.** 10

d. None of these

- 12. If coefficient of $(2r+3)^{th}$ and $(r-1)^{th}$ terms in the expansion of $(1+x)^{15}$ are equal, then value of r is: **a.** 5 **b.** 6 **c.** 4 **d.** 3
- 13. If the $(r+1)^{th}$ term in the expansion of $\left(\sqrt[3]{\frac{a}{\sqrt{b}}} + \sqrt{\frac{b}{\sqrt[3]{a}}}\right)$ has the same power of a and b, then the value of r is: **a.** 9 **b.** 10 **c.** 8 **d.** 6
- 14. The first 3 terms in the expansion of $(1 + ax)^n$ $(n \neq 0)$ are 1, 6x and 16x². Then the value of a and n are respectively: **a.** 2 and 9 **b.** 3 and 2 c. 2/3 and 9 **d.** 3/2 and 6
- 15. Coefficient of x in the expansion of $\left(x^2 + \frac{a}{x}\right)^2$ is: **a.** $9a^{2}$ **b.** $10a^{3}$ **c.** $10a^2$ **d.**10*a* 16. If the expansion of $\left(y^2 + \frac{c}{y}\right)^2$, the coefficient of y will be: a. 20c **b.**10*c*
 - **c.** $10c^{3}$ **d.** $20c^2$

17. In the expansion of $\left(\frac{x}{2} - \frac{3}{x^2}\right)^{10}$, the coefficient of x^4 is:

- **a.** $\frac{405}{256}$ **b.** $\frac{504}{259}$
- c. $\frac{450}{263}$ d. None of these
- **18.** The coefficient of x^7 in the expansion of $\left(\frac{x^2}{2} \frac{2}{x}\right)^\circ$ is: **a.** – 56 **b.**56 **c.** – 14 **d.**14
- 19. The coefficient of x^{32} in the expansion of $\left(x^4 \frac{1}{x^3}\right)^{15}$ is
 - **a.** ${}^{15}C_5$ **b.** ${}^{15}C_6$ c. ${}^{15}C_4$ **d.** ${}^{15}C_7$
- **20.** If in the expansion of $(1 + x)^m (1 x)^n$, the coefficient of x and x^2 are 3 and -6 respectively, then *m* is: **a.** 6 **b.** 9 **d.** 24 **c.** 12
- **21.** If coefficients of 2^{nd} , 3^{rd} and 4^{th} terms in the binomial expansion of $(1 + x)^n$ are in A.P., then $n^2 - 9n$ is equal to: **a.** – 7 **b.** 7 **c.** 14 **d.** – 14
- 22. The coefficient of x^{39} in the expansion of $\left(x^4 \frac{1}{x^3}\right)^{15}$ is: **a.** – 455 **b.** - 105 **c.** 105 **d.** 455
- 23. If the coefficients of second, third and fourth term in the expansion of $(1 + x)^{2n}$ are in A.P., then $2n^2 - 9n + 7$ is equal to: **a.** – 1 **b.** 0
 - **d.** 3/2 **c.** 1
- 24. If the coefficients of x^2 and x^3 in the expansion of $(3+ax)^9$ are the same, then the value of a is:

a.
$$-\frac{7}{9}$$
 b. $-\frac{9}{7}$ **c.** $\frac{7}{9}$ **d.** $\frac{9}{7}$

Number of Terms in the Expansion of $(a + b + c)^n$ and $(a+b+c+d)^n$

25. If the number of terms in the expansion of $(x-2y+3z)^n$ is 45, then n = ?**a.** 7 **b.** 8 **c.** 9 **d.** 5

26. The middle term in the expansion of $(1 + x)^{2n}$ is:

a.
$$\frac{1.3.5....(2n-1)}{n!}x^{2n+1}$$
 b. $\frac{2.4.6....2n}{n!}x^{2n+1}$
c. $\frac{1.3.5....(2n-1)}{n!}x^n$ **d.** $\frac{1.3.5....(2n-1)}{n!}x^n.2^n$

27. The term independent of x in the expansion of $\left(\frac{3x^2}{2} - \frac{1}{3x}\right)^9$ is:

Greatest Term and Greatest Coefficient

a.

28. The largest term in the expansion of $(3+2x)^{50}$, where

$$x = \frac{1}{5}$$
 is:
a. 5th **b.** 8th **c.** 7th **d.** 6th

Properties of Binomial Coefficients

29. If
$$S_n = \sum_{r=0}^n \frac{1}{{}^nC_r}$$
 and $t_n = \sum_{r=0}^n \frac{r}{{}^nC_r}$. Then $\frac{t_n}{S_n}$ is equal to:
a. $\frac{2n-1}{2}$
b. $\frac{1}{2}n-1$
c. $n-1$
d. $\frac{n}{2}$

- **30.** In the expansion of $(1+x)^5$, the sum of the coefficient of the terms is:
 - **a.** 80 **b.** 16 **c.** 32 **d.** 64
- 31. If the sum of coefficient in the expansion of $(\alpha^2 x^2 - 2\alpha x + 1)^{51}$ vanishes, then the value of α is:

32.
$${}^{10}C_1 + {}^{10}C_3 + {}^{10}C_5 + {}^{10}C_7 + {}^{10}C_9 = ?$$

a. 2^9
b. 2^{10}
c. $2^{10} - 1$
d. None

$$-1$$
 d. None of these

33. If
$$(1+x)^n = C_0 + C_1 x + C_2 x^2 + \dots + C_n x^2$$
, then
 $C_0^2 + C_1^2 + C_2^2 + C_3^2 + \dots + C_n^2 = ?$

a.
$$\frac{n!}{n!n!}$$
 b. $\frac{(2n)!}{n!n!}$

c. <u>(2*n*)!</u> d. None of these

34. If
$$(1+x)^n = C_0 + C_1 x + C_2 x^2 + \dots + C_n x^n$$
, then

$$\frac{C_1}{C_0} + \frac{2C_2}{C_1} + \frac{3C_3}{C_2} + \dots + \frac{nC_n}{C_{n-1}} = ?$$
a. $\frac{n(n-1)}{2}$
b. $\frac{n(n+2)}{2}$
c. $\frac{n(n+1)}{2}$
d. $\frac{(n-1)(n-2)}{2}$
35. $2C_0 + \frac{2^2}{2}C_1 + \frac{2^3}{3}C_2 + \dots + \frac{2^{11}}{11}C_{10}$
a. $\frac{3^{11}-1}{11}$
b. $\frac{2^{11}-1}{11}$
c. $\frac{11^3-1}{11}$
d. $\frac{11^2-1}{11}$

36. The sum to (n+1) terms of the following series

$$\frac{C_0}{2} - \frac{C_1}{3} + \frac{C_2}{4} - \frac{C_3}{5} + \dots$$
 is:
a. $\frac{1}{n+1}$ **b.** $\frac{1}{n+2}$
c. $\frac{1}{n(n+1)}$ **d.** None of these

37. The value of $\frac{C_1}{2} + \frac{C_3}{4} + \frac{C_5}{6} + \dots$ is equal to:

a.
$$\frac{2^n - 1}{n+1}$$

b. $n \cdot 2^n$
c. $\frac{2^n}{n}$
d. $\frac{2^n + 1}{n+1}$

- **38.** The sum of all the coefficients in the binomial expansion of $(x^2 + x - 3)^{319}$ is: **a.** 1 **b.** 2 **c.** -1 **d.** 0
- **39.** If *n* is an integer greater than 1, then $a^{-n} C_1(a-1) + C_2(a-2) + \dots + (-1)^n (a-n) = ?$ **a.** a **b.** 0 **c.** a^2 **d.** 2^n
- **40.** If the sum of the coefficients in the expansion of $(\alpha^2 x^2 2\alpha x + 1)^{51}$ vanishes, then the value of α is: **a.** 2 **b.** -1 **c.** 1 **d.** -2

Use of Differentiation and Integration

41. $C_1 + 2C_2 + 3C_3 + \dots^n C_n = ?$ **a.** 2^n **b.** $n. 2^n$ **c.** $n. 2^{n-1}$ **d.** $n. 2^{n+1}$

42.
$$\frac{C_0}{1} + \frac{C_1}{2} + \frac{C_2}{3} + \dots + \frac{C_n}{n+1} = ?$$

a. $\frac{2^n}{n+1}$ b. $\frac{2^n - 1}{n+1}$
c. $\frac{2^{n+1} - 1}{n+1}$ d. None of these

Binomial theorem for any index

- **43.** Let $R = (5\sqrt{5} + 11)^{2n+1}$ and f = R [R] where [.] denotes the greatest integer function. The value of R.f is: **a.** 4^{2n+1} **b.** 4^{2n} **c.** 4^{2n-1} **d.** 4^{-2n}
- **44.** The coefficient of x^5 in the expansion of $(x^2 x 2)^5$ is: **a.** -83 **b.** -82 **c.** -81 **d.** 0
- **45.** Find the coefficient of $a^3b^4c^5$ in the expansion of $(bc+ca+ab)^6$?

- **46.** If $(1+ax)^n = 1+8x+24x^2 + ...$ then the value of *a* and *n* is: **a.** 2,4 **b.** 2,3 **c.** 1,2 **d.** 1,2
- **47.** Coefficient of x^r in the expansion of $(1-2x)^{-1/2}$?

a.
$$\frac{(2r)!}{(r!)^2}$$

b. $\frac{(2r)!}{2^r.(r!)^2}$
c. $\frac{(2r)!}{(r!)^2.2^{2r}}$
d. $\frac{(2r)!}{2^r.(r+1)!(r-1)!}$

48. If x is so small that its two and higher power can be neglected and $(1-2x)^{-1/2}(1-4x)^{-5/2} = 1+kx$ then k = ? **a.** 1 **b.** -2 **c.** 10 **d.** 11

49. If a_1, a_2, a_3, a_4 are the coefficients of any four consecutive

terms in the expansion of
$$(1+x)^n$$
, then $\frac{a_1}{a_1+a_2} + \frac{a_3}{a_3+a_4} = 2$

a.
$$\frac{a_2}{a_2 + a_3}$$

b. $\frac{1}{2} \frac{a_2}{a_2 + a_3}$
c. $\frac{2a_2}{a_2 + a_3}$
d. $\frac{2a_3}{a_2 + a_3}$

- 50. The number of integral terms in the expansion of $(\sqrt{3} + \sqrt[8]{5})^{256}$ is:
 - **a.** 32 **b.** 33
 - **c.** 34 **d.** 35

51. The fourth term in the expansion of $(1-2x)^{3/2}$ will be:

a.
$$-\frac{3}{4}x^4$$

b. $\frac{x^3}{2}$
c. $-\frac{x^3}{2}$
d. $\frac{3}{4}x^4$

52. The expansion of $\frac{1}{(4-3x)^{1/2}}$ binomial theorem will be valid if

a.
$$x < 1$$

b. $|x| < 1$
c. $-\frac{2}{\sqrt{3}} < x < \frac{2}{\sqrt{3}}$
d. None of these

53.
$$\frac{1}{\sqrt[3]{6-3x}} = ?$$

a. $6^{1/3} \left[1 + \frac{x}{6} + \frac{2x^2}{6^2} + ... \right]$
b. $6^{-1/3} \left[1 + \frac{x}{6} + \frac{2x^2}{6^2} + ... \right]$
c. $6^{1/3} \left[1 - \frac{x}{6} + \frac{2x^2}{6^2} - ... \right]$
d. $6^{-1/3} \left[1 - \frac{x}{6} + \frac{2x^2}{6^2} - ... \right]$
54. $\left(\frac{a}{a+x} \right)^{\frac{1}{2}} + \left(\frac{a}{a-x} \right)^{\frac{1}{2}} = ?$
a. $2 + \frac{3x^2}{4a^2} + ...$
b. $1 + \frac{3x^2}{8a^2} + ...$
c. $2 + \frac{x}{a} + \frac{3x^2}{4a^2} + ...$
d. $2 - \frac{x}{a} + \frac{3x^2}{4a^2} +$

55. $(r+1)^{\text{th}}$ term in the expansion of $(1-x)^{-4}$ will be:

a.
$$\frac{x^r}{r!}$$

b. $\frac{(r+1)(r+2)(r+3)}{6}x^r$
c. $\frac{(r+2)(r+3)}{2}x^r$
d. None of these

56.
$$\frac{1}{(2+x)^4} = ?$$

a. $\frac{1}{2} \left(1 - 2x + \frac{5}{2}x^2 - \dots \right)$
b. $\frac{1}{16} \left(1 - 2x + \frac{5}{2}x^2 + \frac{5}{2}x^2 + \dots \right)$
c. $\frac{1}{16} \left(1 + 2x + \frac{5}{2}x^2 + \dots \right)$
d. $\frac{1}{2} \left(1 + 2x + \frac{5}{2}x^2 + \dots \right)$
57. If $|x| > 1$, then $(1 + x)^{-2} = ?$

If |x| > 1, then (1 + x)

c.1.9990

a.
$$1 - 2x + 3x^2 - \dots$$

b. $1 + 2x + 3x^2 + \dots$
c. $1 - \frac{2}{x} + \frac{3}{x^2} - \dots$
d. $\frac{1}{x^2} - \frac{2}{x^3} + \frac{3}{x^4} - \dots$

58. The approximate value of $(7.995)^{1/3}$ correct to four decimal places is: a.1.9995 **b.**1.9996

d.1.9991

59. $1 + \frac{1}{3}x + \frac{1.4}{3.6}x^2 + \frac{1.4.7}{3.6.9}x^3 + \dots$ is equal to: **b.** $(1+x)^{1/3}$ **a.** x**c.** $(1-x)^{1/3}$ **d.** $(1-x)^{-1/3}$

60.	If $(r+1)^{th}$ term is the fi	rst negative term in the expansion		
	of $(1+x)^{7/2}$, then the value of <i>r</i> is:			
	a. 5	b. 6		
	c. 4	d. 7		
61.	The coefficient of x^n in the expansion of $(1 + x + x^2 +)^{-n}$			

1S:	
a. 1	b. $(-1)^n$
c. <i>n</i>	d. <i>n</i> +1

NCERT EXEMPLAR PROBLEMS

More than One Answer

62. The value of $C_0^2 + 3C_1^2 + 5C_2^2 + ...$ to (n+1) terms, (given that $C_r \equiv {}^nC_r$) is: 2n-1**b** $(2n \pm 1)^{2n-1}C$

a. $2^{n-1}C_{n-1}$	b. $(2n+1)$. ²ⁿ C_n
c. $2(n+1)$. ²ⁿ⁻¹ C_n	d. $^{2n-1}C_n + (2n+1).^{2n-1}C_{n-1}$

63. The number of distinct terms in the expansion of $(x+2y-3z+5w-7u)^{n}$ is: **a.** *n*+1 **b.** $^{n+4}C_4$ n+4

c.
$$C_n$$

d. $\frac{(n+1)(n+2)(n+3)(n+4)}{24}$

- 64. In the expansion of $\left(\sqrt[3]{4} + \frac{1}{\sqrt[4]{6}}\right)^{20}$? **a.** the number of rational terms = 4**b.** the number of irrational terms =19**c.** the middle term is irrational
 - **d.** the number of irrational terms = 17
- **65.** Let $a_n = \frac{(1000)^n}{n!}$ for $n \in N$. Then a_n is greatest, when: **a.** *n* = 998 **b.** *n* = 999 **c.** *n* = 1000 **d.** n = 1001
- 66. The expression $\{x + \sqrt{(x^3 1)}\}^5 + \{x \sqrt{(x^3 1)}\}^5$ is a polynomial of degree: **a.** ${}^{9}C_{2}$ **b.** $^{7}C_{6}$ **d.** ${}^{8}C_{1}$
 - **c.** 7

- 67. In the expansion of (x + y + z)²⁵?
 a. every term is of form²⁵C_r.^rC_k.x^{25-r}.y^{r-k}.z^k
 b. the coefficient of x⁸y⁹z⁹ is 0
 c. the number of terms is 351
 - **d.** none of the above
- 68. The coefficient of the middle term in the expansion of $(1+x)^{2n}$ is:

a.
$${}^{2n}C_n$$

b. $\frac{1 \cdot 3 \cdot 5 \dots (2n-1)}{n!} 2^n$
c. $2 \cdot 6 \dots (4n-2)$
d. none of the above

- **69.** The last digit of $3^{3^{4n}} + 1, n \in N$, is: **a.** ${}^{4}C_{3}$ **b.** ${}^{8}C_{7}$ **c.** 8 **d.** 4
- 70. In the expansion of (2 2x + x²)⁹?
 a. number of distinct terms is 10
 b. coefficient of x⁴ is 97
 c. sum of coefficient is 1
 d. number of distinct terms is 55
- 71. If the term independent of x in the expansion of $(\sqrt{x} \lambda/\lambda^2)^{10}$ is 405, then value of λ is: **a.** -3 **b.** 9 **c.** -9**d.** 3

Assertion and Reason

Note: Read the Assertion (A) and Reason (R) carefully to mark the correct option out of the options given below:

- **a.** If both assertion and reason are true and the reason is the correct explanation of the assertion.
- **b.** If both assertion and reason are true but reason is not the correct explanation of the assertion.
- **c.** If assertion is true but reason is false.
- d. If the assertion and reason both are false.
- e. If assertion is false but reason is true.

72. Let
$$S_1 = \sum_{j=1}^{10} j(j-1)({}^{10}C_j), S_2 = \sum_{j=1}^{10} j({}^{10}C_j)$$
 and
 $S_3 = \sum_{j=1}^{10} (j^2)({}^{10}C_j)$
Assertion: $S_3 = 55 \times 2^9$
Reason: $S_1 = 90 \times 2^8$ and $S_2 = 10 \times 2^8$

73. Let
$$(1 + x)^n = C_0 + C_1 x + C_2 x^2 + ... + C_n x^n$$
.
Assertion: $5C_0^2 + 7C_1^2 + 9C_2^2 + ... + (5 + 2n)C_n^2 = (5 + n)\frac{(2n)!}{n!n!}$
Reason: $C_0^2 + C_1^2 + ... + C_n^2 = {}^{2n}C_n$

74. Let
$$(1+t)^n = C_0 + C_1 t + C_2 t^2 + ... + C_n t^n$$

Assertion: $\frac{C_0}{1.2} + \frac{C_1}{2.3} + \frac{C_2}{3.4} + ... + \frac{C_n}{(n+1)(n+2)} = \frac{1}{n+1} \left[\frac{2^{n+2}}{n+2} - 1 \right]$
Reason: $\frac{C_0}{2} - \frac{C_1}{3} + \frac{C_2}{4} - ... + (-1)^n \frac{C_n}{n+2} = 0$
75. Let $(1+x)^n = C_0 + C_1 x + C_2 x^2 + ... + C_n x^n$.
Assertion: $S = C_0 + (C_0 + C_1) + (C_0 + C_1 + C_2) + ...$
 $+ (C_0 + C_1 + ... + C_{n-1}) = n(2^{n-1})$

Reason:
$$\sum_{j=1}^{n} \sum_{i < j} (C_i + C_j) = (n+1)2^n$$

- 76. Let $(1+x)^{3n} = C_0 + C_1 x + C_2 x^2 + ... + C_{3n} x^{3n}$, and $\omega \neq 1$ be a cube root of unity Assertion: $C_0 + C_1 \omega + C_2 \omega^2 + C_3 + C_4 \omega + C_5 \omega^2 + ... = (-1)^n$ Reason: Cube roots unity form a triangle of area $\sqrt{3}$ square units.
- 77. Let $(1+x)^n = C_0 + C_1 x + C_2 x^2 + ... + C_n x^n$ Assertion: $\sum_{r=0}^n C_r \sin(rx) \cos(n-r) x = 2^n \sin(nx)$ Reason: $\sum_{r=0}^n C_r = 2^n$
- 78. Assertion: The coefficient of the term of independent of x in the expansion of $\left(x + \frac{9}{x} + 6\right)^n$ is $\frac{3^n(2n)!}{n!n!}$. Reason: The coefficient of x^r in the expansion of $(1 + x)^n$ is $\binom{n}{r}$.
- **79.** Assertion: For any positive integers m, n (with $n \ge m$),

$$\binom{n}{m} + \binom{n-1}{m} + \binom{n-2}{m} + \dots + \binom{m}{n} = \binom{n+1}{m}$$

Reason: Coefficient of x^r in the expansion of $(1+x)^n$ is

$$\binom{n}{r}$$
.

80. Assertion: If *n* is an odd prime, then greatest integer contained in $(2+\sqrt{5})^n - 2^{n+1}$ is divisible by 20 *n*.

Reason: If *p* is a prime and $1 \le r \le p-1$, then $\binom{p}{r}$ is divisible by *p*.

81. Assertion: Greatest term in the expansion of $(\sqrt{3} + \sqrt{2})^{50}$

is
$$\binom{50}{22} 3^{14} 2^{11}$$

Reason: Greatest term in the expansion $(1 + x)^n$, x > 0 of is

the
$$r^{\text{th}}$$
 term if $\frac{(n+1)x}{x+1}$ is not an integer and $r = \left[\frac{(n+1)x}{x+1}\right]$,

where [y] denotes the greatest integer $\leq y$.

Comprehension Based

Paragraph -I

Consider $(1 + x + x^2)^{2n} = \sum_{r=0}^{4n} a_r x^r$, where $a_0, a_1, a_2, ..., a_{4n}$ are real

number and n is a positive integer.

n-1

82. The value of
$$\sum_{r=0}^{n} a_{2r}$$
 is:
a. $\frac{9^n - 2a_{2n} - 1}{4}$
b. $\frac{9^n + 2a_{2n} + 1}{4}$
c. $\frac{9^n - 2a_{2n} + 1}{4}$
d. $\frac{9^n + 2a_{2n} - 1}{4}$

83. The value of
$$\sum_{r=1}^{n} a_{2r-1}$$
 is:

a.
$$\left(\frac{9^n - 1}{2}\right)$$

b. $\left(\frac{3^{2n} - 1}{4}\right)$
c. $\left(\frac{3^{2n} + 1}{4}\right)$
d. $\left(\frac{9^n + 1}{2}\right)$

84. The value of a_2 is:

a.
$$C_2$$

b. $^{3n+1}C_2$

c.
$${}^{2n+1}C_2$$

d.
$$^{n+1}C_2$$

85. The value of a_{4n-1} is: **a.** 2n

b.
$$2n^2 + 4n$$

d.
$$2n^2 + 3n$$

86. The correct statement is:

a.
$$a_r = a_{n-r}, 0 \le r \le n$$

b. $a_r = a_n = 0 \le r \le n$

c.
$$a_r = a_{2n}, 0 \le r \le 2n$$

d. $a_r = a_{4n-r}, 0 \le r \le 4n$

Paragraph –II

If *m*, *n*, *r* are positive integers and if r < m, r < n then ${}^{m}C_{r} + {}^{m}C_{r-1} \cdot {}^{m}C_{r-2} \cdot {}^{n}C_{2} + ... + {}^{n}C_{r} = \text{Coefficient of } x^{r} \text{ in}$ $(1+x)^{m}(1+x)^{n} = \text{Coefficient of } x^{r} \text{ in } (1+x)^{m+n} = {}^{m+n}C_{r}$

- **87.** The value of ${}^{n}C_{0} \cdot {}^{n}C_{n} + {}^{n}C_{1} \cdot {}^{n}C_{n-1} + ... + {}^{n}C_{n} \cdot {}^{n}C_{0}$ is: **a.** ${}^{2n}C_{n-1}$ **b.** ${}^{2n}C_{n}$ **c.** ${}^{2n}C_{n+1}$ **d.** ${}^{2n}C_{2}$
- **88.** The value of *r* for which ${}^{30}C_r \cdot {}^{20}C_0 + {}^{30}C_{r-1} \cdot {}^{20}C_1 + ... + {}^{30}C_0 \cdot {}^{20}C_r$ is maximum, is: **a.** 10 **b.** 15
 - **c.** 20 **d.** 25

89. The value of $r(0 \le r \le 30)$ for which ${}^{20}C_r \cdot {}^{10}C_0 + {}^{20}C_{r-1} \cdot {}^{10}C_1 + {}^{20}C_1 + {}^{20}C_1 - {}^{20}C_1 + {}^{20}C_1 - {}^{20}C_1 + {}^{20}C_1 +$

$$\dots + {}^{20}C_0 \cdot {}^{10}C_r$$
 is minimum, is:
a. 0 **b.** 1
c. 5 **d.** 15

90. If $S_n = {}^nC_0 \cdot {}^nC_1 + {}^nC_1 \cdot {}^nC_2 + \dots + {}^nC_{n-1} \cdot {}^nC_n$ and if $\frac{S_{n+1}}{S_n} = \frac{15}{4}$, then *n* equals:

a. 2, 4	b. 4, 6
c. 6, 8	d. 8, 10

91. If $(1+x)^n = C_0 + C_1 x + C_2 x^2 + ... + C_n x^n$ and *n* is odd, then the value of $C_0^2 - C_1^2 = C_2^2 - C_3^2 + ... + (-1)^n C_n^2$ is: **a.** 0 **b.** ${}^{2n}C_n$ **c.** $(-1)^{n 2n}C_{n-1}$ **d.** $3^{2n}C_{n-2}$

Match the Column

92. Observe the following columns:

Col	umn I	Column II
(A)	If λ be the number of terms in the expansion of $(1+5x+10x^2+10x^3+$ $5x^4+x^5)^{20}$ and if unit's place and ten's place digits in 3^{λ} are <i>O</i> and <i>T</i> ,	1. <i>O</i> + <i>T</i> = 3
	then	
(B)	If λ be the number of terms in the expansion of $\left(x^2+1+\frac{1}{x^2}\right)$ and if unit's place and ten's place digits in 7^{λ} are <i>O</i> and <i>T</i> , then	2. <i>O</i> + <i>T</i> = 7

- (C) If λ be then number of terms in the expansion of $(1+x)^{101}$ $(1+x^2-x)^{100}$ and if unit's place and ten's place digits in 9^{λ} are *O* and *T*, then **4.** T - O = 7**5.** O - T = 7**a.** $A \rightarrow 1, B \rightarrow 2 \rightarrow 5, C \rightarrow 3 - 4$ **b.** $A \rightarrow 1, B \rightarrow 3 - 5, C \rightarrow 2 - 4$
- **c.** $A \rightarrow 2$, $B \rightarrow 4$ -5, $C \rightarrow 3$ -1 **d.** $A \rightarrow 2$, $B \rightarrow 1$ -4, $C \rightarrow 3$ -5
- **93.** Observe the following columns:
 - Column IColumn II(A) If last digit of the
number 9^{9^9} is λ and
last digit of $2^{\lambda^{100}}$ is μ
then1. $\lambda + \mu = 9$ (B) If last digit of $2^{\lambda^{100}}$ is μ
last digit of the
number 2^{9999} is λ and
last digit of $3^{\lambda\lambda\lambda}$ is μ
then2. $\lambda + \mu = 11$
 - (C) Let $a = \frac{72!}{(36!)^2} 1$ is divisible by $10\lambda + \mu$ then

4. $\lambda - \mu = 4$ **5.** $\lambda^{\mu} + \mu^{\lambda} = 9$

- **a.** $A \rightarrow 2-3$, $B \rightarrow 1-3-5$, $C \rightarrow 4$ **b.** $A \rightarrow 1-3$, $B \rightarrow 2-3-4$, $C \rightarrow 5$ **c.** $A \rightarrow 1-3$, $B \rightarrow 2-3-4$, $C \rightarrow 5$ **d.** $A \rightarrow 4-3$, $B \rightarrow 1-3-5$, $C \rightarrow 2$
- **94.** Observe the following columns:
 - Column IColumn II(A) If n be the degree of the
polynomial
 $\sqrt{(3x^2+1)}\{(x+\sqrt{3x^2+1}))^7$
 $-(x-\sqrt{(3x^2+1)}\},$
then n divisible by1.2(B) In the expansion of $(x + a)^n$ there
is only one middle term for x
= 3, a = 2 and seventh term is2.4
 - a = 2 and seventh term is numerically greatest term, then *n* divisible by

- (C) The sum of the binomial coefficients in the expansion of $(x^{-3/4} + nx^{5/4})^m$, where *m* is positive integer lies between 200 and 400 and the term independent of *x* equals 448. Then n^5 divisible by. 4. 16 5. 32
- **a.** $A \rightarrow 1,2,3$; $B \rightarrow 1,2,3,4$; $C \rightarrow 1,2,3,4,5$ **b.** $A \rightarrow 3,2,1$; $B \rightarrow 4,2,3,1$; $C \rightarrow 1,2,3,4,5$ **c.** $A \rightarrow 1,2,3$; $B \rightarrow 3,2,1,4$; $C \rightarrow 5,2,3,4,1$ **d.** $A \rightarrow 1,2,3$; $B \rightarrow 1,2,3,4$; $C \rightarrow 1,3,2,5,4$

Integer

95. The coefficient of x^{50} in the polynomials after parenthesis have been removed and like terms have been collected in the expansion

$$(1+x)^{1000} + x(1+x)^{999} + x^2(1+x)^{998} + \dots + x^{1000}$$
 is $\frac{\lambda!}{\mu!\nu!}$, then
the value of $\lambda + 2\mu + 3\nu$ must be $(\nu > \mu)$?

96. If
$$(1+x)^n = C_0 + C_1 x + C_2 x^2 + ... + C_n x^n$$
 and $\sum_{r=0}^{51} \frac{C_r^2}{(r+1)}$
= $\frac{\lambda!}{\left\{\left(\frac{\lambda+1}{2}\right)!\right\}^2}$ then the number of zeros in λ ! must be:

- **97.** If $(1+x)^n = C_0 + C_1 x + C_2 x^2 + ... + C_n x^n$ and $\sum_{r=0}^n (r+1)^2 C_r$ = $2^{n-2} f(n)$, if roots of the equation f(x) = 0 are α and β , then $\alpha^4 + \beta^4$ must be:
- **98.** If $\sum_{r=0}^{n} {}^{n}C_{r} \sin(rx) \cos \{(n-r)x\} = f(n)\sin(nx)$, then the value of f(13) must be:
- **99.** Let $a_r = r^2 \cdot \frac{100}{100} \frac{C_r}{C_{r-1}}$ and λ be the coefficient of x^{99} in $\prod_{i=1}^{100} (x-a_i)$, then the value of $-\frac{\lambda}{50}$ must be:
- **100.** The coefficients of three consecutive terms of $(1+x)^{n+5}$ are in the ratio 5 : 10 : 14. Then, *n* is equal to:

ANSWER

1	2	2	4	-	(7	0	•	10
1.	2.	3.	4.	5.	6.	7.	8.	9.	10.
b	с	b	с	b	с	b	с	b	b
11.	12.	13.	14.	15.	16.	17.	18.	19.	20.
c	а	а	с	b	с	а	c	с	с
21.	22.	23.	24.	25.	26.	27.	28.	29.	30.
d	а	b	d	b	d	b	c,d	d	с
31.	32.	33.	34.	35.	36.	37.	38.	39.	40.
c	а	b	c	а	d	а	с	b	с
41.	42.	43.	44.	45.	46.	47.	48.	49.	50.
с	с	а	с	b	а	b	d	с	b
51.	52.	53.	54.	55.	56.	57.	58.	59.	60.
b	d	b	а	b	b	d	а	d	а
61.	62.	63.	64.	65.	66.	67.	68.	69.	70.
b	c	d	c	с	b	d	а	d	b
71.	72.	73.	74.	75.	76.	77.	78.	79.	80.
b	с	а	b	с	с	d	а	d	а
81.	82.	83.	84.	85.	86.	87.	88.	89.	90.
d	с	b	с	а	d	b	d	а	а
91.	92.	93.	94.	95.	96.	97.	98.	99.	100.
а	а	а	а	3954	0024	257	4096	3333	6

SOLUTION

Multiple Choice Questions

1. **(b)** Let
$$P(n) : n! < \left(\frac{n+1}{2}\right)^n$$

Step (i): For $n = 2$
 $\Rightarrow 2! < \left(\frac{2+1}{2}\right)^2$
 $\Rightarrow 2 < \frac{9}{4}$
 $\Rightarrow 2 < 2.25$
which is true. Therefore, $P(2)$ is true

Step (ii): Assume that
$$P(k)$$
 is true, then $p(k)$

$$k! < \left(\frac{k+1}{2}\right)$$

Step (iii): For n = k + 1,

$$P(k+1): (k+1)! < \left(\frac{k+2}{2}\right)^{k+1}$$

 2^k

$$\Rightarrow \quad k! < \left(\frac{k+1}{2}\right)$$

$$\Rightarrow \quad (k+1)k! < \frac{(k+1)^{k+1}}{2^k}$$

$$\Rightarrow \quad (k+1)! < \frac{(k+1)^{k+1}}{2^k} \qquad \dots (i)$$

and
$$\frac{(k+1)^{k+1}}{2^{k}} < \left(\frac{k+2}{2}\right)^{k+1} \qquad \dots (ii)$$

$$\Rightarrow \qquad \left(\frac{k+2}{k+1}\right)^{k+1} > 2 \Rightarrow \left[1 + \frac{1}{k+1}\right]^{k+1} > 2$$

$$\Rightarrow \qquad 1 + (k+1)\frac{1}{k+1} + {}^{k+1}C_{2}\left(\frac{1}{k+1}\right)^{2} + \dots > 2$$

$$\Rightarrow \qquad 1 + 1 + {}^{k+1}C_{2}\left(\frac{1}{k+1}\right)^{2} + \dots > 2$$
Which is true, hence (*ii*) is true.

From (i) and (ii),
$$(k+1)! < \frac{(k+1)^{k+1}}{2^k} < \left(\frac{k+2}{2}\right)^{k+1}$$

$$\Rightarrow (k+1)! < \left(\frac{k+2}{2}\right)^{k}$$

Hence P(k+1) is true. Hence by the principle of mathematical induction P(n) is true for all $n \in N$ By check option

(a) For
$$n = 1$$
, $1! < \left(\frac{1+1}{2}\right)^1 \Rightarrow 1 < 1$ which is wrong
(b) For $n = 2$, $2! < \left(\frac{3}{2}\right)^2 \Rightarrow 2 < \frac{9}{4}$ which is correct
(c) For $n = 3$, $3! < \left(\frac{3+1}{2}\right)^3 \Rightarrow 6 < 8$ which is correct
(d) For $n = 4$, $4! < \left(\frac{4+1}{2}\right)^4 \Rightarrow 24 < \left(\frac{5}{2}\right)^4$

- \Rightarrow 24 < 39.0625 which is correct. But smallest positive integer *n* is 2.
- 2. (c) We have $S(k) = 1 + 3 + 5 + \dots + (2k 1) = 3 + k^2$ $S(1) \Longrightarrow 1 = 4$, Which is not true and $S(2) \Longrightarrow 3 = 7$. Which is not true? Hence induction cannot be applied and $S(k) \Rightarrow S(k+1)$

3. **(b)**
$$(1+x)^n = 1 + nx + \frac{n(n-1)}{2!}x^2 + \frac{n(n-1)(n-2)}{3!}x^3 + ...$$

$$\Rightarrow (1+x)^n - nx - 1 = x^2 \left[\frac{n(n-1)}{2!} + \frac{n(n-1)(n-3)}{3!}x + \right]$$

From above it is clear that $(1 + x)^n - nx - 1$ is divisible by x^2 . Short Trick: $(1+x)^n - nx - 1$.

Put
$$n = 2$$
 and $x = 3$

Then $4^2 - 2.3 - 1 = 9$

Is not divisible by 6, 54 but divisible by 9.

Which is given by option (c) = $x^2 = 9$.

4. (c)
$$(x+a)^{n} = {}^{n}C_{0}x^{n} + {}^{n}C_{1}x^{n-1}a^{1} + {}^{n}C_{2}x^{n-2}a^{2} + ... + {}^{n}C_{n}x^{n-n}.a^{n} = (x^{n} + {}^{n}C_{2}x^{n-2}a^{2} + ...) + ({}^{n}C_{1}x^{n-1}a^{1} + {}^{n}C_{3}x^{n-3}a^{3} + ...)$$

 $= A + B$ (*i*)
Similarly, $(x-a)^{n} = A - B$ (*ii*)
From (*i*) and (*ii*), we get $4AB = (x+a)^{2n} - (x-a)^{2n}$
Short Trick: Put $n = 1$ in $(x+a)^{n}$.
Then, $x + a = A + B$. Comparing both sides $A = x, B = a$.
Option (c) L.H.S. $4AB = 4xa$, R.H.S.
 $(x+a)^{2} - (x-a)^{2} = 4ax$. *i.e.*, L.H.S. = R.H.S

5. (**b**)We have
$$T_4 = \frac{5}{2}$$

$$\Rightarrow T_{3+1} = \frac{5}{2}$$

$$\Rightarrow {}^{m}C_{3} (px)^{m-3} \left(\frac{1}{x}\right)^{3} = \frac{5}{2}$$

$$\Rightarrow {}^{m}C_{3} p^{m-3} x^{m-6} = \frac{5}{2} \qquad \dots (i)$$

Clearly, R.H.S. of the above equality is independent of x $\therefore m-6=0, m=6$

Putting
$$m = 6$$
 in (i)
We get ${}^{6}C_{3}p^{3} = \frac{5}{2} \implies p = \frac{1}{2}$.
Hence $p = 1/2, m = 6$.

6. (c)
$$\frac{T_2}{T_3} = \frac{2}{n-2+1} \cdot \frac{b}{a} = \frac{2}{n-1} \left(\frac{b}{a}\right)$$

and $\frac{T_3}{T_4} = \frac{3}{n+3-3+1} \cdot \left(\frac{b}{a}\right) = \frac{3}{n+1} \left(\frac{b}{a}\right)$
 $\therefore \quad \frac{T_2}{T_3} = \frac{T_3}{T_4} \quad \text{(given)}$
 $\therefore \quad \frac{2}{n-1} \left(\frac{b}{a}\right) = \frac{3}{n+1} \left(\frac{b}{a}\right)$
 $\Rightarrow \quad 2n+2 = 3n-3 \Rightarrow n = 5$
7. (b) $(10-r) \left(\frac{1}{2}\right) + r(-2) = 0 \Rightarrow r = 2$

7. **(b)**
$$(10-r)\left(\frac{1}{2}\right) + r(-2) = 0 \implies r =$$

 $\therefore \quad T_3 = {}^{10}C_2\left(\frac{1}{3}\right)^{8/2}\left(\frac{3}{2}\right)^2 = \frac{5}{4}$

8. (c) We know that,
$$(1+x)^n = {}^nC_0 + {}^nC_1x^1 + {}^nC_2x^2 + \dots + {}^nC_nx^n$$

$$\left(1+\frac{1}{x}\right)^n = {^nC_0} + {^nC_1}\frac{1}{x^1} + {^nC_2}\frac{1}{x^2} + \dots + {^nC_n}\frac{1}{x^n}$$

Obviously, the term independent of x will be

 ${}^{n}C_{0} \cdot {}^{n}C_{0} + {}^{n}C_{1} \cdot {}^{n}C_{1} + \dots + {}^{n}C_{n} \cdot {}^{n}C_{n} = C_{0}^{2} + C_{1}^{2} + \dots + C_{n}^{2}$ Put n = 1 in the expansion of $(1 + x)^{1} \left(1 + \frac{1}{x}\right)^{1}$

$$= 1 + x + \frac{1}{x} + 1 = 2 + x + \frac{1}{x} \qquad \dots (i)$$

We want coefficient of x^0 . Comparing to equation (*i*). Then, we get 2 *i.e.*, independent of *x*. Option (c): $C_0^2 + C_1^2 + \dots + C_n^2$; Put n = 1; Then ${}^1C_0^2 + {}^1C_1^2 = 1 + 1 = 2$.

9. (b) Coefficient of x^n in $(1 + x)(1 - x)^n$ = Coefficient of x^n in $(1 - x)^n$ + coefficient of x^{n-1} in $(1 - x)^n$ = Coefficient of x^n in $[{}^nC_n(-x)^n + x.{}^nC_{n-1}(-x)^{n-1}] = (-1)^n {}^nC_n + (-1)^{n-1}.{}^nC_1 = (-1)^n + (-1)^n.(-n) = (-1)^n[1 - n].$

10. (b) Applying
$$T_{r+1} = {}^{n}C_{r}x^{n-r}a^{r}$$
 for $(x+a)^{n}$
Hence $T_{6} = {}^{10}C_{5}(2x^{2})^{5}\left(-\frac{1}{3x^{2}}\right)^{5}$
 $= -\frac{10!}{5!5!}32 \times \frac{1}{243} = -\frac{896}{27}$

11. (c)
$${}^{20}C_{r-1} = {}^{20}C_{r+3}$$

 $\Rightarrow 20 - r + 1 = r + 3 \Rightarrow r = 9$.
12. (a) ${}^{15}C_{2r+2} = {}^{15}C_{r-2}$
But ${}^{15}C_{2r+2} = {}^{15}C_{15-(2r+2)} = {}^{15}C_{13-2r}$
 $\Rightarrow {}^{15}C_{13-2r} = {}^{15}C_{r-2}$

$$\Rightarrow r = 5$$

13. (a) We have
$$T_{r+1} = {}^{21}C_r \left(\sqrt[3]{\frac{a}{\sqrt{b}}}\right)^{21-r} \left(\sqrt{\frac{b}{\sqrt[3]{a}}}\right)^r$$
$$= {}^{21}C_r a^{7-(r/2)} b^{(2/3)r-(7/2)}$$

Since the powers of *a* and *b* are the same, therefore $r = \frac{r}{2} = \frac{2}{7}$

$$7 - \frac{r}{2} = \frac{2}{3}r - \frac{r}{2} \Longrightarrow r = 9$$

14. (c) $T_1 = {}^n C_0 = 1$... (i)

$$T_2 = {}^nC_1 a x = 6x \qquad \qquad \dots$$
(ii)

$$T_3 = {}^n C_2(ax)^2 = 16x^2$$
 ... (iii)

From (ii),
$$\frac{n!}{(n-1)!}a = 6 \implies na = 6$$
 ... (iv)

From (iii),
$$\frac{n(n-1)}{2}a^2 = 16$$
 ... (v)

Only (c) is satisfying equation (iv) and (v).

15. (b) In the expansion of $\left(x^2 + \frac{a}{x}\right)^5$ the general term is Hence $\frac{n^2 - n}{2} - mn + \frac{m^2 - m}{2} = -6$

$$T_{r+1} = {}^{5}C_{r}(x^{2})^{5-r} \left(\frac{a}{x}\right)^{r} = {}^{5}C_{r}a^{r}x^{10-3r}$$

Here, exponent of x is $10 - 3r = 1 \Rightarrow r = 3$

- $T_{2+1} = {}^{5}C_{3}a^{3}x = 10a^{3}.x$ Hence coefficient of x is $10a^{3}$.
- **16.** (c) 2(5-r) + (-1)r = 1
- $\Rightarrow \quad 10 2r r = 1 \Rightarrow r = 3$

Thus coefficient of y is ${}^{5}C_{3}c^{3} = \frac{5 \times 4}{2 \times 1}c^{3} = 10c^{3}$.

17. (a) In the expansion of $\left(\frac{x}{2} - \frac{3}{x^2}\right)^{10}$, the general term is $T_{r+1} = {}^{10}C_r \left(\frac{x}{2}\right)^{10-r} \cdot \left(-\frac{3}{x^2}\right)^r$

$$={}^{10} C_r (-1)^r \cdot \frac{3^r}{2^{10-r}} x^{10-r-2}$$

Here, the exponent of x is $10 - 3r = 4 \implies r = 2$

$$T_{2+1} = {}^{10} C_2 \left(\frac{x}{2}\right)^8 \left(-\frac{3}{x^2}\right)^2$$
$$= \frac{10.9}{1.2} \cdot \frac{1}{2^8} \cdot 3^2 \cdot x^4 = \frac{405}{256} x^4$$

- \therefore The required coefficient = $\frac{405}{256}$.
- **18.** (c) $(8-r)(2) + r(-1) = 7 \implies 16 2r r = 7$

 $\Rightarrow r = 3$

• •

Thus coefficient of x^7 is

$$= {}^{8}C_{3}\left(\frac{1}{2}\right)^{5}(-2)^{3} = -\frac{8 \times 7 \times 6}{3 \times 2 \times 1} \times \frac{1}{4} = -14$$

19. (c) Let T_{r+1} term containing x^{32} .

Therefore
$${}^{15}C_r x {}^{4r} \left(\frac{-1}{x^3}\right)^{15}$$

 $\Rightarrow \quad x^{4r}x^{-45+3r} = x^{32} \Rightarrow 7r = 77 \Rightarrow r = 11 .$ Hence coefficient of x^{32} is ${}^{15}C_{11}$ or ${}^{15}C_4$

20. (c)
$$(1+x)^m (1-x)^n$$

= $\left(1+mx+\frac{m(m-1)x^2}{2!}+...\right)\left(1-nx+\frac{n(n-1)}{2!}x^2-...\right)$
= $1+(m-n)x+\left[\frac{n^2-n}{2}-mn+\frac{(m^2-m)}{2}\right]x^2+...$

Given, m - n = 3 or n = m - 3

- Hence $\frac{n^2 n}{2} mn + \frac{m^2 m}{2} = -6$ $\Rightarrow \frac{(m - 3)(m - 4)}{2} - m(m - 3) + \frac{m^2 - m}{2} = -6$ $\Rightarrow m^2 - 7m + 12 - 2m^2 + 6m + m^2 - m + 12 = 0$ $\Rightarrow -2m + 24 = 0 \Rightarrow m = 12$
- **21.** (d) Coefficients of 2^{nd} , 3^{rd} and 4^{th} terms are respectively ${}^{n}C_{1}$, ${}^{n}C_{2}$ and ${}^{n}C_{3}$ are in A.P.

$$\Rightarrow 2.^{n}C_{2} = {}^{n}C_{1} + {}^{n}C_{3}$$

$$\Rightarrow \frac{2n!}{2!(n-2)!} = \frac{n!}{(n-1)!} + \frac{n!}{3!(n-3)!}$$

On solving, $n^{2} - 9n + 14 = 0$
$$\Rightarrow n^{2} - 9n = -14.$$

22. (a) $T_{r+1} = {}^{15}C_r(x^4){}^{15-r}(-1/x^3)^r = (-1)^r {}^{15}C_r(x){}^{60-7r}$ For coefficient of x^{39} , $60 - 7r = 39 \Rightarrow r = 3$

$$\therefore \quad T_4 = {}^{15}C_3 (x^4)^{12} (-1/x^3)^3$$
$$= -455 x^{39}$$

Hence the required coefficient is -455.

- 23. (b) $T_2 = {}^{2n}C_1 x$, $T_3 = {}^{2n}C_2 x^2$ $T_4 = {}^{2n}C_3 x^3$ Coefficient of T_2 , T_3 , T_4 are in A.P. $\Rightarrow 2 . {}^{2n}C_2 = {}^{2n}C_1 + {}^{2n}C_3$ $\Rightarrow 2 \frac{2n!}{2!(2n-2)!} = \frac{2n!}{(2n-1)!} + \frac{2n!}{3!(2n-3)!}$ $\Rightarrow \frac{2 . 2n(2n-1)}{2} = 2n + \frac{2n(2n-1)(2n-2)}{6}$ $\Rightarrow n(2n-1) = n + \frac{(n)(2n-1)(2n-2)}{6}$ $\Rightarrow 6(2n^2 - n) = 6n + 4n^3 - 6n^2 + 2n$ $\Rightarrow 6n(2n-1) = 2n(2n^2 - 3n + 4)$
- $\Rightarrow 6n-3 = 2n^2 3n + 4$ $\Rightarrow 0 = 2n^2 9n + 7$
- $\Rightarrow \quad 0 = 2n \quad 9n + 7 = 0.$
- **24.** (d) $T_{r+1} = {}^{9}C_{r}(3)^{9-r}(ax)^{r} = {}^{9}C_{r}(3)^{9-r}a^{r}x^{r}$
- $\therefore \quad \text{Coefficient of } x^r = {}^9C_r 3^{9-r} a^r$ Hence, coefficient of $x^2 = {}^9C_2 3^{9-2} a^2$ and coefficient of $x^3 = {}^9C_3 3^{9-3} a^3$ So, we must have ${}^9C_2 3^7 a^2 = {}^9C_3 3^6 a^3$ $\Rightarrow \quad \frac{9.8}{1.2} .3 = \frac{9.8.7}{1.2.3} .a \Rightarrow a = \frac{9}{7}.$

25. (b) Given, total number of terms

$$= \frac{(n+1)(n+2)}{2} = 45$$
$$\Rightarrow (n+1)(n+2) = 90 \Rightarrow n = 8$$

26. (d) Since 2n is even, so middle term $T_{\frac{2n}{2}+1} = T_{n+1}$

$$\Rightarrow T_{n+1} = {}^{2n}C_n x^n = \frac{(2n)!}{n! \cdot n!} x^n$$
$$= \frac{1 \cdot 3 \cdot 5 \dots (2n-1)}{n!} \cdot 2^n x^n \cdot 3$$

27. (b) n = 9, $\alpha = 2$, $\beta = 1$.

Then
$$r = \frac{9(2)}{1+2} = 6$$
.
Hence, $T_7 = {}^9C_6 \left(\frac{3}{2}\right)^3 \left(-\frac{1}{3}\right)^6$
 $= \frac{9 \times 8 \times 7}{3 \times 2 \times 1} \cdot \frac{1}{2^3 \cdot 3^3} = \frac{7}{18}$

28. (c,d) $(3+2x)^{50} = 3^{50} \left[1 + \frac{2x}{3} \right]^{50}$, Now greatest term in $\left(1 + \frac{2x}{3} \right)^{50}$

$$r = \left| \frac{x(n+1)}{1+x} \right| = \left| \frac{\frac{2x}{3}(50+1)}{\frac{2x}{3}+1} \right| = \frac{\frac{2.5}{5}(51)}{\frac{2}{15}+1} = 6 \text{ (an integer)}$$

 \therefore T_r and $T_{[r]+1} = T_6$ and $T_{[6]+1} = T_6$ and T_7 are numerically greatest terms

29. (d) Take
$$n = 2m$$
,

Then,
$$S_n = \frac{1}{\frac{2m}{C_0}} + \frac{1}{\frac{2m}{C_1}} + \dots + \frac{1}{\frac{2m}{C_{2m}}}$$

$$= 2 \left[\frac{1}{\frac{2m}{C_0}} + \frac{1}{\frac{2m}{C_1}} + \dots + \frac{1}{\frac{2m}{C_{m-1}}} \right] + \frac{1}{\frac{2m}{C_m}}$$

$$t_n = \sum_{r=0}^n \frac{r}{^n C_r} = \sum_{r=0}^{2m} \frac{r}{^{2m}C_r} = \frac{1}{\frac{2m}{C_1}} + \frac{2}{\frac{2m}{C_2}} + \dots + \frac{2m}{\frac{2m}{C_{2m}}}$$

$$t_n = \left(\frac{1}{\frac{2m}{C_1}} + \frac{2m-1}{\frac{2m}{C_{2m-1}}} \right) + \left(\frac{2}{\frac{2m}{C_2}} + \frac{2m-2}{\frac{2m}{C_{2m-2}}} \right) + \dots \left(\frac{m-1}{\frac{2m}{C_{m-1}}} + \frac{m+1}{\frac{2m}{C_{m+1}}} \right) + \frac{m}{\frac{2m}{C_m}} + \frac{2m}{\frac{2m}{C_{2m}}}$$

$$= 2m \left[\frac{1}{\frac{2m}{C_1}} + \frac{1}{\frac{2m}{C_2}} + \dots \right] + \frac{m}{\frac{2m}{C_m}} + 2m$$

$$= 2m \left[\frac{1}{2m} \frac{1}{C_0} + \frac{1}{2m} \frac{1}{C_1} + \dots + \frac{1}{2m} \frac{1}{C_{m-1}} \right] + \frac{m}{2m} \frac{1}{C_m}$$
$$= m \left[S_n - \frac{1}{2m} \frac{1}{C_m} \right] + \frac{m}{2m} \frac{1}{C_m} = mSn$$
$$t_n = mS_n \Longrightarrow \frac{t_n}{S_n} = m = \frac{n}{2}$$

- 30. (c) Putting x = 1 in $(1 + x)^5$, the required sum of coefficient = $(1+1)^5 = 2^5 = 32$
- **31.** (c) The sum of coefficient of polynomial $(\alpha^2 x^2 2\alpha x + 1)^{51}$ is obtained by putting x = 1 in $(\alpha^2 x^2 - 2\alpha x + 1)^{51}$. Therefore by hypothesis $(\alpha^2 - 2\alpha + 1)^{51} = 0$

$$\Rightarrow \alpha = 1$$

32. (a) We know that $2^{n-1} = {}^{n}C_{0} + {}^{n}C_{2} + {}^{n}C_{4} + \dots = {}^{n}C_{1} + {}^{n}C_{3} + {}^{n}C_{5} + \dots$ So, ${}^{10}C_{1} + {}^{10}C_{3} + {}^{10}C_{5} + \dots + {}^{10}C_{9} = 2^{10-1} = 2^{9}$

33. (b)
$$(1+x)^n = C_0 + C_1 x + C_2 x^2 + \dots + C_n x^n$$
 ... (i)

and
$$\left(1+\frac{1}{x}\right)^n = C_0 + C_1 \frac{1}{x} + C_2 \left(\frac{1}{x}\right)^2 + \dots + C_n \left(\frac{1}{x}\right)^n \dots (ii)$$

If we multiply (i) and (ii), we get $C_0^2 + C_1^2 + C_2^2 + \dots + C_n^2$ is the term independent of x and hence it is equal to the term independent of x in the product $(1+x)^n \left(1+\frac{1}{x}\right)^n$ or in

 $\frac{1}{x^n}(1+x)^{2n}$ or term containing x^n in $(1+x)^{2n}$. Clearly the coefficient of x^n in $(1+x)^{2n}$ is T_{n+1} and equal to

$$^{2n}C_n = \frac{(2n)!}{n!\,n!}$$

Solving conversely.

Put
$$n = 1, n = 2,...$$
 then we get $S_1 = {}^1C_0^2 + {}^1C_1^2 = 2$,

$$S_2 = {}^{2}C_0^2 + {}^{2}C_1^2 + {}^{2}C_2^2 = 1^2 + 2^2 + 1^2 = 6$$

Now check the options

(a) Does not hold given condition,

(b) (i) Put
$$n = 1$$
, then $\frac{2!}{1!1!} = 2$
(ii) Put $n = 2$, then $\frac{4!}{2!2!} = \frac{4 \times 3 \times 2 \times 1}{2 \times 1 \times 2 \times 1} = 6$

Students should remember this question as an identity.

34. (c)
$$\frac{C_1}{C_0} + 2 \cdot \frac{C_2}{C_1} + 3 \cdot \frac{C_3}{C_2} + \dots + n \cdot \frac{C_n}{C_{n-1}}$$

$$= \frac{n}{1} + 2 \frac{n(n-1)/1.2}{n} + 3 \frac{n(n-1)(n-2)/3.2.1}{n(n-1)/1.2} + \dots + n \cdot \frac{1}{n}$$

$$= n + (n-1) + (n-2) \dots + 1 = \sum n = \frac{n(n+1)}{2}$$
Put $n = 1, 2, 3 \dots$, then $S_1 = \frac{1}{C_1} = 1$,
 $S_2 = \frac{2}{C_0} + 2 \frac{2}{C_2} = \frac{2}{1} + 2 \cdot \frac{1}{2} = 2 + 1 = 3$
By option, (put $n = 1, 2, \dots$) (a) and (b) does not
hold condition, but (c) $\frac{n(n+1)}{2}$, put $n = 1, 2, \dots$.
 $S_1 = 1, S_2 = 3$ which is correct.

35. (a) We have $(1+x)^{10} = C_0 + C_1 x + C_2 x^2 + ... + C_{10} x^{10}$ Integrating both sides from 0 to 2, we get $\frac{3^{11}-1}{11} = 2C_0 + \frac{2^2}{2}C_1 + \frac{2^3}{2}C_2 + ... + \frac{2^{11}}{11}C_{10}$.

36. (d)
$$(1-x)^n = C_0 - C_1 x + C_2 x^2 - C_3 x^3 + \dots$$

$$\Rightarrow x (1-x)^n = C_0 x - C_1 x^2 + C_2 x^3 - C_3 x^4 + \dots$$

$$\Rightarrow \int_0^1 x (1-x)^n dx = \int_0^1 (C_0 x - C_1 x^2 + C_2 x^3 \dots) dx \qquad \dots (i)$$
The integral on the LHS

t

$$= \int_{1}^{1} (1-t)t^{n}(-dt), \text{ by putting } 1-x =$$
$$= \int_{0}^{1} (t^{n}-t^{n+1}) dt = \frac{1}{n+1} - \frac{1}{n+2}$$

Whereas the integral on the RHS of (i)

$$= \left[\frac{C_0 x^2}{2} - \frac{C_1 x^3}{3} + \frac{C_2 x^4}{4} - \dots \right] = \frac{C_0}{2} - \frac{C_1}{3} + \frac{C_2}{4} - \dots$$

$$\therefore \quad \frac{C_0}{2} - \frac{C_1}{3} + \frac{C_2}{4} - \dots \text{ to } (n+1) \text{ terms}$$
$$= \frac{1}{n+1} - \frac{1}{n+2} = \frac{1}{(n+1)(n+2)}.$$

37. (a) We know that $\frac{(1+x)^n - (1-x)^n}{2} = C_1 x + C_3 x^3 + C_5 x^5 + \dots$

Integrating from x = 0 to x = 1, we get

$$\frac{1}{2} \int_{0}^{1} \{(1+x)^{n} - (1-x)^{n}\} dx$$
$$= \int_{0}^{1} (C_{1}x + C_{3}x^{3} + C_{5}x^{5} + \dots) dx$$

$$\Rightarrow \frac{1}{2} \left\{ \frac{(1+x)^{n+1}}{n+1} + \frac{(1-x)^{n+1}}{n+1} \right\}_{0}^{1} = \frac{C_{1}}{2} + \frac{C_{3}}{4} + \frac{C_{5}}{6} + \dots$$

or $\frac{C_{1}}{2} + \frac{C_{3}}{4} + \frac{C_{5}}{6} + \dots = \frac{1}{2} \left\{ \frac{2^{n+1}-1}{n+1} + \frac{0-1}{n+1} \right\}$
$$= \frac{1}{2} \left(\frac{2^{n+1}-2}{n+1} \right) = \frac{2^{n}-1}{n+1}$$

38. (c) Putting
$$x = 1$$
 in $(x^2 + x - 3)^{319}$
We get the sum of coefficient = $(1 + 1 - 3)^{319} = -1$

39. (b) L.H.S. =
$$a[C_0 - C_1 + C_2 - C_3 + ...(-1)^n . C_n]$$

+ $[C_1 - 2C_2 + 3C_3 - + (-1)^{n-1}n.C_n]$
= $a.0 + 0 = 0$

40. (c) The sum of the coefficients of the polynomial $(\alpha^2 x^2 - 2\alpha x + 1)^{51}$ is obtained by putting x = 1 in $(\alpha^2 x^2 - 2\alpha x + 1)^{51}$.

Therefore by hypothesis $(\alpha^2 - 2\alpha + 1)^{51} = 0 \Rightarrow \alpha = 1$

41. (c) We know that, $(1+x)^n = C_0 + C_1 x + C_2 x^2 + \dots + C_n x^n \qquad \dots (i)$ Differentiating both sides w.r.t. x, We get $n(1+x)^{n-1} = 0 + C_1 + 2 \cdot C_2 x + 3C_3 x^2 + \dots + nC_n x^{n-1}$

Putting x = 1,

We get, $n \cdot 2^{n-1} = C_1 + 2C_2 + 3C_3 + \dots + nC_n$.

42. (c) Consider the expansion $(1+x)^{n} = C_{0} + C_{1}x + C_{2}x^{2} + \dots + C_{n}x^{n} \qquad \dots (i)$ Integrating both sides of (i) within limits 0 to 1. We get $\int_{0}^{1} (1+x)^{n} dx = \int_{0}^{1} C_{0} + \int_{0}^{1} C_{1}x + \int_{0}^{1} C_{2}x^{2} + \dots + \int_{0}^{1} C_{n}x^{n} dx$ $\left[\frac{(1+x)^{n+1}}{n+1}\right]_{0}^{1} = C_{0}[x]_{0}^{1} + C_{1}\left[\frac{x^{2}}{2}\right]_{0}^{1} + \dots C_{n}\left[\frac{x^{n+1}}{n+1}\right]_{0}^{1}$ $\frac{2^{n+1}}{n+1} - \frac{1}{n+1} = C_{0}[1] + C_{1}\frac{1}{2} + C_{2}\frac{1}{3} + \dots C_{n} \cdot \frac{1}{n+1}$ $C_{0} + \frac{C_{1}}{2} + \frac{C_{2}}{3} + \dots \frac{C_{n}}{n+1} = \frac{2^{n+1}-1}{n+1}.$

43. (a) Since
$$f = R - [R]$$
, $R = f + [R]$
 $[5\sqrt{5} + 11]^{2n+1} = f + [R]$, where [R] is integer
Now let $f' = [5\sqrt{5} - 11]^{2n+1}$, $0 < f' < 1$
 $f + [R] - f' = [5\sqrt{5} + 11]^{2n+1} - [5\sqrt{5} - 11]^{2n+1}$
 $= 2[^{2n+1}C_1(5\sqrt{5})^{2n}(11)^1 + ^{2n+1}C_3(5\sqrt{5})^{2n-2}(11)^3 + ...]$
 $= 2.(Integer) = 2K (K \in N) = Even integer$

Hence f - f' = even integer - [R], but -1 < f - f' < 1. Therefore, f - f' = 0

 $\therefore f = f'$

Hence R.f = $R.f^{1} = (5\sqrt{5}+1)^{2n+1}(5\sqrt{5}-11)^{2n+1} = 4^{2n+1}$.

44. (c) Coefficient of x^5 in the expansion of $(x^2 - x - 2)^5$ is

$$\sum \frac{5!}{n_1! \cdot n_2! \cdot n_3!} (1)^{n_1} (-1)^{n_2} (-2)^{n_3} \cdot .$$

Where $n_1 + n_2 + n_3 = 5$ and $n_2 + 2n_3 = 5$. The possible value of n_1, n_2 and n_3 are shown in margin

$$\begin{array}{ccccc} n_1 & n_2 & n_3 \\ 1 & 3 & 1 \\ 2 & 1 & 2 \\ 0 & 5 & 0 \end{array}$$

 \therefore The coefficient of x^5

$$= \frac{5!}{1!3!1!} (1)^{1} (-1)^{3} (-2)^{1} + \frac{5!}{2!1!2!} (1)^{2} (-1)^{1} (-2)^{2}$$
$$+ \frac{5!}{0!5!0!} (1)^{0} (-1)^{5} (-2)^{0}$$
$$= 40 - 120 - 1 = -81$$

45. (b) In this case, $a^{3}b^{4}c^{5} = (ab)^{x}(bc)^{y}(ca)^{z} = a^{x+z}.b^{x+y}.c^{y+z}$ z + x = 3, x + y = 4, y + z = 5; 2(x + y + z) = 12;x + y + z = 6.Then x = 1, y = 3, z = 2

Therefore the coefficient of $a^3b^4c^5$ in the expansion of

$$(bc+ca+ab)^6 = \frac{6!}{1!3!2!} = 60.$$

46. (a) We know that $(1+x)^n = 1 + \frac{nx}{1!} + \frac{n(n-1)x^2}{2!} + \dots$

$$(1+ax)^{n} = 1 + \frac{n(ax)}{1!} + \frac{n(n-1)(ax)^{2}}{2!} + \dots$$

$$\Rightarrow \quad 1+8x+24x^{2} + \dots = 1 + \frac{n(ax)}{1!} + \frac{n(n-1)(ax)^{2}}{2!} + \dots$$

Comparing coefficients of both sides we get, na = 8,

and
$$\frac{n(n-1)a^2}{2!} = 24$$
 on solving, $a = 2$, $b = 4$

47. (b) Coefficient of

$$x^{r} = \frac{\left(-\frac{1}{2}\right)\left(-\frac{1}{2}-1\right)\left(-\frac{1}{2}-2\right)...\left(-\frac{1}{2}-r+1\right)}{r!}(-2)^{r}$$
$$= \frac{1.3.5...(2r-1).(-1)^{r}.(-1)^{r}.2^{r}}{2^{r}r!}$$
$$= \frac{1.3.5...(2r-1)}{r!} = \frac{(2r)!}{r!r!2^{r}}$$

48. (d)
$$(1-2x)^{-1/2}(1-4x)^{-5/2} = 1+kx$$

$$\begin{bmatrix} 1+\frac{(-1/2)(-2x)}{1!}+\frac{(-1/2)(-3/2)(-2x)^2}{2!}+\dots \end{bmatrix}$$

$$\begin{bmatrix} 1+\frac{(-5/2)(-4x)}{1!}+\frac{(-5/2)(-7/2)(-4x)^2}{2!}+\dots \end{bmatrix} = 1+kx$$
Higher power can be neglected

Then $\left[1 + \frac{x}{1!}\right] \left[1 + \frac{10x}{1!}\right] = 1 + kx$; 1 + 10x + x = 1 + kxk = 11

49. (c) Let a_1, a_2, a_3, a_4 be respectively the coefficients of $(r+1)^{th}, (r+2)^{th}, (r+3)^{th}, (r+4)^{th}$ terms in the expansion of $(1+x)^n$.

Then
$$a_1 = {}^nC_r, a_2 = {}^nC_{r+1}, a_3 = {}^nC_{r+2}, a_4 = {}^nC_{r+3}.$$

Now, $\frac{a_1}{a_1 + a_2} + \frac{a_3}{a_3 + a_4} = \frac{{}^nC_r}{{}^nC_r + {}^nC_{r+1}} + \frac{{}^nC_{r+2}}{{}^nC_{r+2} + {}^nC_{r+3}}$
 $= \frac{{}^nC_r}{{}^{n+1}C_{r+1}} + \frac{{}^nC_{r+2}}{{}^{n+1}C_{r+3}} = \frac{{}^nC_r}{\frac{n+1}{r+1}} + \frac{{}^nC_{r+2}}{r+1} + \frac{{}^nC_{r+2}}{r+1}$
 $= \frac{r+1}{n+1} + \frac{r+3}{n+1} = \frac{2(r+2)}{n+1}$
 $= 2.\frac{{}^nC_{r+1}}{{}^{n+1}C_{r+2}} = 2.\frac{{}^nC_{r+1}}{{}^nC_{r+1} + {}^nC_{r+2}} = \frac{2a_2}{a_2 + a_3}$

50. (b) $T_{r+1} = {}^{256}C_r \cdot 3^{\frac{256-r}{2}} \cdot 5^{\frac{r}{8}}$ First term = ${}^{256}C_0 \cdot 3^{128}5^0$ = integer and after eight terms, *i.e.*, 9th term = ${}^{256}C_8 \cdot 3^{124} \cdot 5^1$ = integer Continuing like this, we get an A.P., 1st, 9th.......257th; $T_n = a + (n-1)d$

$$\Rightarrow 257 = 1 + (n-1)8$$

- \Rightarrow n = 33
- **51.** (b) Expansion of $(1-2x)^{3/2}$

$$=1+\frac{3}{2}(-2x)+\frac{3}{2}\cdot\frac{1}{2}\cdot\frac{1}{2}(-2x)^{2}+\frac{3}{2}\cdot\frac{1}{2}\left(-\frac{1}{2}\right)\frac{1}{6}(-2x)^{3}+\dots$$

Hence 4th term is $\frac{x^{3}}{2}$

52. (d) The given expression can be written as

$$4^{-1/2} \left(1 - \frac{3}{4} x \right)^{-1/2} \text{ and it is valid only when}$$
$$\left| \frac{3}{4} x \right| < 1 \Longrightarrow -\frac{4}{3} < x < \frac{4}{3}.$$

53. (b)
$$\frac{1}{(6-3x)^{1/3}} = (6-3x)^{-1/3}$$

 $= 6^{-1/3} \left[1 - \frac{x}{2} \right]^{-1/3}$
 $= 6^{-1/3} \left[1 + \left(-\frac{1}{3} \right) \left(-\frac{x}{2} \right) x + \frac{\left(-\frac{1}{3} \right) \left(-\frac{4}{3} \right)}{2.1} \left(-\frac{x}{2} \right)^2 + \dots \right]$
 $= 6^{-1/3} \left[1 + \frac{x}{6} + \frac{2x^2}{6^2} + \dots \right]$
54. (a) $\left(\frac{a+x}{a} \right)^{-1/2} + \left(\frac{a-x}{a} \right)^{-1/2}$
 $= \left(1 + \frac{x}{a} \right)^{-1/2} + \left(1 - \frac{x}{a} \right)^{-1/2}$
 $= \left[1 + \left(-\frac{1}{2} \right) \left(\frac{x}{a} \right) + \frac{\left(-\frac{1}{2} \right) \left(-\frac{3}{2} \right)}{2.1} \left(\frac{x}{a} \right)^2 + \dots \right]$
 $+ \left[1 + \left(-\frac{1}{2} \right) \left(-\frac{x}{a} \right) + \frac{\left(-\frac{1}{2} \right) \left(-\frac{3}{2} \right)}{2.1} \left(-\frac{x}{a} \right)^2 + \dots \right]$
 $= 2 + \frac{3x^2}{4a^2} + \dots$

Here odd terms cancel each other.

55. (b) $(1-x)^{-4} = \left[\frac{1\cdot2\cdot3}{6}x^0 + \frac{2\cdot3\cdot4}{6}x + \frac{3\cdot4\cdot5}{6}x^2 + \frac{4\cdot5\cdot6}{6}x^3 + \dots + \frac{(r+1)(r+2)(r+3)}{6}x^r + \dots\right]$ Therefore $T_{r+1} = \frac{(r+1)(r+2)(r+3)}{6}x^r$. 56. (b) $(x+2)^{-4} = 2^{-4}\left[1+\frac{x}{2}\right]^{-4}$ $= \frac{1}{16}\left[1-2x+\frac{5}{2}x^2-\dots\right]$ 57. (d) Given that |x|>1.

So given expression can be written as

$$x^{-2} \left(1 + \frac{1}{x} \right)^{-2}$$

= $x^{-2} \left[1 - \frac{2}{x} + \frac{3}{x^2} - \frac{4}{x^3} + \dots \right]$
= $\left[\frac{1}{x^2} - \frac{2}{x^3} + \frac{3}{x^4} - \frac{4}{x^5} + \dots \right]$

58. (a)
$$(7.995)^{1/3} = (8 - 0.005)^{1/3} = (8)^{1/3} \left[1 - \frac{0.005}{8} \right]^{1/3}$$

$$= 2 \left[1 - \frac{1}{3} \times \frac{0.005}{8} + \frac{\frac{1}{3} \left(\frac{1}{3} - 1 \right)}{2 + 1} \left(\frac{0.005}{8} \right)^2 + \dots \right]$$

$$= 2 \left[1 - \frac{0.005}{24} - \frac{\frac{1}{3} \times \frac{1}{3}}{1} \times \frac{(0.005)^2}{8} + \dots \right]$$

$$= 2(1 - 0.000208) = 2 \times 0.999792 = 1.9995$$
59. (d) Let $(1 + y)^n = 1 + \frac{1}{3}x + \frac{1.4}{3.6}x^2 + \frac{1.4.7}{3.6.9}x^3 + \dots$

$$= 1 + ny + \frac{n(n-1)}{2!}y^2 + \dots$$
Comparing the terms, we get
$$ny = \frac{1}{2}x, \frac{n(n-1)}{2!}y^2 = \frac{1.4}{2}x^2$$

Solving,
$$n = -\frac{1}{3}, y = -x$$
.

Hence given series $=(1-x)^{-1/3}$

60. (a) We have, $T_{r+1} = \frac{\frac{7}{2}\left(\frac{7}{2}-1\right)\left(\frac{7}{2}-2\right)...\left(\frac{7}{2}-r+1\right)x^r}{r!}$

This will be the first negative term when $\frac{7}{2} - r + 1 < 0$ *i.e.* $r > \frac{9}{2}$ Hence r = 5.

61. (b) We have, $(1 + x + x^2 + ...)^{-n} = [(1 - x)^{-1}]^{-n} = (1 - x)^n$ = ${}^nC_0 - {}^nC_1x + {}^nC_2x^2 + ... + (-1)^n {}^nC_n.x^n$ Coefficient of x^n is $(-1)^n {}^nC_n = (-1)^n$.

NCERT Exemplar Problems

More than One Answer

62. (c) $C_0^2 + 3C_1^2 + 5C_2^2 + ... + (2n+1)C_n^2$

$$\Rightarrow \quad (C_0^2 + C_1^2 + C_2^2 + \dots + C_n^2) + 2(C_1^2 + 2C_2^2 + \dots + nC_n^2)$$
$$=^{2n} C_n + 2(C_1^2 + 2C_2^2 + \dots + nC_n^2) \qquad \dots (i)$$

$$\therefore \quad (1+x)^n = C_0 + C_1 x + C_2 x^2 + C_3 x^3 + \dots + C_n x^n$$

Differentiating both sides w.r.t x,
We get $n(1+x)^{n-1} = C_1 + 2C_2 x + 3C_3 x^2 + \dots + nC_n x^{n-1} \dots (ii)$
and $(x+1)^n = C_0 x^n + C_1 x^{n-1} + C_2 x^{n-2} + \dots + C_n \dots (iii)$

Multiplying Equation (*ii*) and (*iii*), we get

$$n(1+x)^{2n-1} = (C_1 + 2C_2x + 3C_3x^2 + ... + nC_nx^{n-1})$$

$$\times (C_0x^n + C_1x^{n-1} + C_2x^{n-2} + ... + C_n)$$
Comparing the coefficients of x^{n-1} in both sides, then
$$C_1^2 + 2C_2^2 + 3C_3^2 + ... + nC_n^2 = n^{2n-1}C_{n-1} \qquad \dots (iv)$$
From Equation (i) and (iv),
We get $C_0^2 + 3C_1^2 = 5C_2^2 + ... + (2n+1)C_n^2$

$$= ^{2n}C_n = 2n.^{2n-1}C_{n-1}$$

$$= \frac{2n}{n}.^{2n-1}C_{n-1} + 2n.^{2n-1}C_{n-1}$$

$$= 2(n+1).^{2n-1}C_{n-1} = 2(n+1)^{2n-1}C_n$$

$$= ^{2n-1}C_{n-1} + (2n+1)^{2n-1}C_{n-1}$$

63. (d) Number of distinct terms

$$=^{n+4} C_4 = \frac{(n+4)(n+3)(n+2)(n+1)}{1 \cdot 2 \cdot 3 \cdot 4}$$
$$= \frac{(n+1)(n+2)(n+3)(n+4)}{24}$$
$$\therefore \quad ^{n+4}C_4 = ^{n+4} C_{n+4-4} = ^{n+4} C_n$$
$$64. \quad (c) \left(\sqrt[3]{4} + \frac{1}{\sqrt[4]{6}}\right)^{20} = \left(4^{1/3} + 6^{-1/4}\right)^{20}$$
$$= \left(2^{2/3} + 6^{-1/4}\right)^{20}$$
$$T_{r+1} = ^{20} C_r (2^{2/3})^{20-r} (6^{-1/4})^r$$
$$= ^{20} C_r 2^{(160-11r)/12} \cdot 3^{-r/4}$$

- \therefore For $r = 8, 20; T_{r+1}$ is rational.
- \therefore Only two terms are rational.
- So, 21-2=19 terms are irrational.

65 (c)
$$\frac{a_{n+1}}{a_n} + \frac{(1000)^{n+1}}{(n+1)!} \cdot \frac{n!}{(1000)^n} = \frac{1000}{(n+1)} \ge 1$$

For $n = 1, 2, 3, ..., 999$
 $\Rightarrow a_{n+1} \ge a_{n+1} = \frac{(1000)^{1000}}{(n+1)} = \frac{(1000)^{999}}{(n+1)} = a_{n+1}$

$$u_{n+1} = u_n u_{1000}$$
 1000! 999! u_{999}

Hence, a_{999} and a_{1000} are equal and are the greatest.

66 (b) Let
$$P = \{x + \sqrt{(x^3 - 1)}\}^5 + \{x - \sqrt{(x^3 - 1)}\}^5$$
(*i*)
Let $\sqrt{(x^3 - 1)} = \lambda$
 $\therefore \quad \lambda^2 = x^3 - 1$ (*ii*)
From Eq. (*i*) $P = (x + \lambda)^5 + (x - \lambda)^5$
 $= 2\{x^5 + 5C_2x^3\lambda^2 + 5C_4x\lambda^4\}$
 $= 2(x^5 + 10x^3(x^3 - 1) + 5x(x^3 - 1)^2\}$
 $= 2\{5x^7 + 10x^6 + x^5 - 10x^4 - 10x^3 + 5x\}$
Hence, *P* is a polynomial of degree 7.

67. (d) $(x + y + z)^{25} = [x + y + z]^{25}$ =²⁵ $C_0 x^{25} + {}^{25} C_1 x^{24} (y + z)^1 + ... + {}^{25} C_r x^{25-r} (y + z)^r + ...$ = ... +²⁵ $C_r x^{25-r} (... + {}^r C_k y^{r-k} z^k + ...) + ...$

Hence, every term is of the form ${}^{25}C_r x^{25-r} {}^{r}C_k y^{r-k} z^k$

 $\therefore \quad 25 - r + r - k + k = 25 \neq 8 + 9 + 9$ Hence, coefficient of $x^8 y^9 z^9$ is 0 and number of terms $=^{25+r} C_2 = \frac{27 \times 26}{2} = 27 \times 13 = 351$

68. (a) Total term =
$$(2n + 1)$$

Middle term = $\frac{(2n + 1) + 1}{2} = (n + 1)^{th} T_{n+1} = {}^{2n}C_n x^n$
Coefficient of $x^n = {}^{2n}C_n = \frac{2n!}{n!n!}$
= $\frac{2^n n! \{1 \cdot 3 \cdot 5 \cdot ... \cdot (2n - 1)\}}{n!n!}$
= $\left\{\frac{1 \cdot 3 \cdot 5 \cdot ... \cdot (2n - 1)}{n!}\right\} 2^n$

- 69 (d) $3^{4n} = 81^n = (1+80)^n = 1+80\lambda, \lambda \in N$ ∴ $3^{3^{4n}} = 3^{1+80\lambda} = 3 \cdot 3^{80\lambda} = 3 \cdot (9)^{40\lambda} = 3(10-1)^{40\lambda}$ $= 3(1+10\mu) = 3+30\mu$ ∴ Last digit of $3^{34n} + 1$ is 4.
- 70. (b) Number of distinct terms $=^{9+3-1} C_{3-1} =^{11} C_2 = 55$ Sum of coefficients $= (2 - 2 + 1)^9 = 1^9 = 1$

and
$$(2-2x+x^2)^9 = \sum \frac{9!}{\alpha!\beta!\gamma!} (2)^{\alpha} (-2x)^{\beta} (x^2)^{\gamma}$$

Here, $\beta + 2\gamma = 4$, $\alpha + \beta + \gamma = 9$
 $\alpha \beta \gamma$
 $5 4 0$
 $\therefore 6 2 1$
 $7 0 2$
 \therefore Coefficient of x^4 is
 $= \frac{9!}{5!4!0!} \cdot 2^5 \cdot (-2)^4 + \frac{9!}{6!2!1!} (2)^6 (-2)^2 + \frac{9!}{7!0!2!} (2)^7 (-2)^0$
 $\Rightarrow 2^9 (126+126+9) = 133632$
71. (b) $T_{r+1} = {}^{10} C_r (\sqrt{x})^{10-r} \cdot \left(-\frac{\lambda}{x^2}\right)^r = {}^{10} C_r \cdot x^{5-\frac{r}{2}-2r} \cdot (-\lambda)^r$
 \therefore Put $5 - \frac{r}{2} - 2r = 0$
 $\Rightarrow r = 2$
Then, $T_{2+1} = {}^{10} C_2 \cdot (-\lambda)^2 = 45\lambda^2 = 405$ (given)

$$\therefore \qquad \lambda^2 = 9 \Longrightarrow \lambda = \pm 3$$

Assertion and Reason

72. (c) We have
$$(1+x)^{10} = \sum_{j=0}^{10} ({}^{10}C_j)x^j$$

Differentiating both are sides with respect to x, we get

$$10(1+x)^9 = \sum_{j=1}^{10} j({}^{10}C_j)x^{j-1} \qquad \dots (i)$$

Again differentiating both the sides with respect to x,

We get
$$(10)(9)(1+x)^8 = \sum_{j=1}^{10} j(j-1)({}^{10}C_j)x^{j-2}$$

Putting x = 1 in (*i*) and (*ii*),

We get
$$S_2 = \sum_{j=1}^{10} j({}^{10}C_j) = 10(2^9)$$

and
$$S_1 = \sum_{j=1}^{\infty} j(j-1)({}^{10}C_j) = (10)(9)(2^8) = (90)(2^8)$$

Adding the above two equation, we get

$$S_3 = \sum_{j=1}^{10} [j+j(j-1)]({}^{10}C_j) = (10)(2^8)(2+9)$$

 $\Rightarrow S_3 = (55) (2^9)$ Thus, Assertion is true but Reason is false.

73. (a) $C_0^2 + C_1^2 + ... + C_n^2 = C_0 C_n + C_1 C_{n-1} + C_n C_0$ = number of ways of choosing *n* persons out of *m* men

and
$$n \text{ women} = {}^{2n}C_n$$

÷

Reason is true
Let
$$S = 5C_0^2 + 7C_1^2 + 9C_2^2 + ... + (5+2n)C_n^2$$
 ...(*i*)
Using $C_1 = C_2$ we can rewrite (*i*) as

$$S = (5+2n)C_0^2 + (3+2n)C_1^2 + \dots + 5C_n^2 \qquad \dots (ii)$$

Adding (i) and (ii),

We get
$$2S = (10+2n)(C_0^2 + C_1^2 + ... + C_n^2)$$

 $\Rightarrow S = (5+n)(^{2n}C_n) = (5+n)\frac{(2n)!}{n!n!}$

74. **(b)** From
$$(1+t)^n = C_0 + C_1 t + C_2 t^2 + \dots + C_n t^n$$
 ...(*i*)
$$\int_0^x (1+t)^n = \int_0^x [C_0 + C_1 t + C_2 t^2 + \dots + C_n t^n] dt$$

$$\Rightarrow \frac{1}{n+1}[(1+x)^{n+1}-1] = \frac{C_0}{1}x + \frac{C_2}{2}x^2 + \dots + \frac{C_n}{n+1}x^{n+1}\dots(ii)$$

Multiplying (i) by t and integrating, we get
$$\int_0^x t(1+t)^n dt = \int_0^x [C_0t + C_1t_2 + \dots + C_nt^{n+1}]dt$$
$$x(1+x)^{n+1} = (1+x)^{n+2}$$

$$\Rightarrow \frac{x(1+x)}{n+1} - \frac{(1+x)}{(n+1)(n+2)} = \frac{C_0}{2}x^2 + \frac{C_1}{3}x^3 + \frac{C_2}{4}x^4 + \dots + \frac{C_n}{n+2}x^{n+2}\dots(iii)$$

Putting x = -1 in (*iii*), we obtain that the Reason is true. Putting x = 1 in (*ii*) and (*iii*) and subtracting, we obtain that Assertion is also true.

75. (c) We can write

$$S = nC_0 + (n-1)C_1 + (n-2)C_2 + ... + 1C_{n-1} + 0C_n \dots (i)$$

Using $C_r = C_{n-r}$, we can rewrite (i) as
 $S = 0C_0 + {}^{1}C_1 + 2C_2 + ... + (n-1)C_{n-1} + nC_n \dots (ii)$
Adding (i) and (ii)
We obtain $2S = n[C_0 + C_1 + C_2 + ... + C_n] = n(2^n)$

$$\Rightarrow S = n(2^{n-1}) \text{ In the expression } \sum_{j=1}^{n} \sum_{i < j} (C_i + C_j)$$

Each $C_i (0 \le i \le n)$ occurs exactly *n* times.

Thus
$$\sum_{j=1}^{n} \sum_{i < j} (C_i + C_j) = n \sum_{k=0}^{n} C_k = n(2^n)$$

76. (c)
$$C_0 + C_1 \omega + C_2 \omega^2 + C_3 + C_4 \omega + C_5 \omega^2 + ...$$

$$= \sum_{k=0}^{3n} C_k \omega^k = (1+\omega)^{3n} = (-\omega^2)^{3n} = (-1)^{3n} \omega^{6n}$$

$$= (-1)^n (1) = (-1)^n.$$

Reason is false as area of triangle formed by cube roots of unity is $\sqrt{3}/4$ square units.

77. (d) Let
$$S = \sum_{r=0}^{n} C_r \sin(rx) \cos(n-r)x$$
](i)
Using $C_r = C_{n-r}$, we can write
 $S = \sum_{r=0}^{n} C_{n-r} \sin(rx) \cos[(n-r)x]$
 $\sum_{r=0}^{n} C_r \sin[(n-r)x] \cos(rx)$ (ii)
Adding (i) and (ii), We get $2S = \sum_{r=0}^{n} C_r$ {sin(rx) cos

Adding (1) and (1), we get $2S = \sum_{r=0}^{n} C_r$ {sin(rx)ed $[(n-r)x] + \sin[(n-r)]x\cos(rx)$ } $= \sum_{r=0}^{n} C_r \sin(nx) = \sin(nx) \sum_{r=0}^{n} C_r = 2^n \sin(nx)$ $S = 2^{n-1} \sin(nx)$

 \Rightarrow

78. (a)
$$\left(x + \frac{9}{x} + 6\right)^n = \left(\frac{x^2 + 6x + 9}{x}\right)^n = \frac{(3+x)^{2n}}{x^n} = \frac{3^{2n}}{x^n} \left(1 + \frac{x}{3}\right)^{2n}$$

 \therefore Coefficient of the term independent of $x \left(x + \frac{9}{x} + 6\right)^n$ in
 $= 3^{2n} \left[$ Coefficient of x^n in the expansion of $\left(1 + \frac{x}{3}\right)^{2n} \right]$
 $= 3^{2n} \left(\frac{2n}{n}\right) \left(\frac{1}{3}\right)^n = \frac{3^n (2n)!}{n! n!}$ [using Reason]

79. (d) LHS of
$$\binom{n}{m} + \binom{n-1}{m} + \binom{n-2}{m} + \dots + \binom{m}{n} = \binom{n+1}{m} \dots (i)$$

= coefficient of x^m in $\{(1+x)^m + (1+x)^{m+1} + \dots + (1+x)^n\}$
[using Reason]

$$= \text{coefficient of } x^{m} \text{ in } (1+x) \frac{\{(1+x)^{m+n}-1\}}{1+x-1}$$
$$= \text{coefficient of } x^{m+1} \text{ in } \left[(1+x)^{n+1} - (1+x)^{m} \right] = \binom{n+1}{m+1}$$

80. (a) We have
$$\binom{p}{r} = \frac{p!}{r!(p-r)!}$$

 $\Rightarrow r!(p-r)! \binom{p}{r} = p!$
As $p \mid p!$, we get $p \mid p!(p-r) \binom{p}{r}$

But for $1 \le r \le p - 1$, neither r! nor (p - r)! is divisible by p.

$$\therefore p \begin{pmatrix} p \\ r \end{pmatrix}$$

We have $\sqrt{5} - 2 = \frac{1}{\sqrt{5} + 2}$

$$\Rightarrow 0 < \sqrt{5} - 2 < 1$$

$$\Rightarrow \quad 0 < f = (\sqrt{5} - 2) < 1.$$

Let $(2 + \sqrt{5})^n = N + F$ Where 0 < F < 1.

Now,
$$N + F - f - 2^{n+1} = (\sqrt{5} + 2)^n - (\sqrt{5} - 2)^n$$

= $2\left[\binom{n}{1}5^{(n-1)}(2) + \binom{n}{3}5^{(n-3)/2}(2^3) + \dots + \binom{n}{n-2}(5)2^{n-1}\right]$.

[∵ n is odd]

Since n is an odd prime, each of $\binom{n}{1}, \binom{n}{3}, \dots, \binom{n}{n-2}$ is

divisible by *n*.

Thus RHS of (i) is divisible by 20 n

Also, F-f is an integer. Since 0 < F < 1and 0 < f < 1,

W get
$$-1 < F - f < 1$$
.

As F - f is an integer,

We get F - f = 0 or F = f.

:. integral part of $(2+\sqrt{5})^n - 2^{n+1}$ is $N-2^{n+1}$ which is divisible by 20 *n*.

81. (d) That Reason is false can be seen from theory.

We can write
$$(\sqrt{3} + \sqrt{2})^{50} = 2^{25} \left(1 + \sqrt{\frac{3}{2}} \right)^{50}$$
.
Let $l = \frac{(50+1)\sqrt{3/2}}{1+\sqrt{3}/2} = \frac{51\sqrt{3}(\sqrt{3} - \sqrt{2})}{(\sqrt{3} + \sqrt{2})(\sqrt{3} - \sqrt{2})} = 51(3 - \sqrt{6})$
 $= 51(0.5505) \approx 28.07 \implies [k] = 28.$

Thus, the greatest term in the expansion of $\left(\sqrt{3} + \sqrt{2}\right)^{50}$ is

the 29th term and it equals $2^{25} \binom{50}{28} \left(\sqrt{\frac{3}{2}}\right)^{28} = \binom{50}{22} 3^{14} 2^{11}$

Comprehension Based

For 82 to 86

Comprehension Based Multiple Choice Questions

:
$$(1+x+x^2)^{2n} = \sum_{r=0}^{4n} a_r x^r$$
 ...(*i*)

Replacing x by $\frac{1}{x}$ in Eq. (*i*),

Then
$$\left(1 + \frac{1}{x} + \frac{1}{x^2}\right)^{2n} = \sum_{r=0}^{4n} a_r \left(\frac{1}{x}\right)^r$$

or $(1 + x + x^2)^{2n} = \sum_{r=0}^{4n} a_r x^{4n-r}$...(*ii*)

From Equation (*i*) and (*ii*), We get $\sum_{r=0}^{4n} a_r x^r = \sum_{r=0}^{4n} a_r x^{4r-r}$ Comparing coefficient of on both sides, then We get $a = a_r$.

82. (c) Put
$$x=1$$

...(*i*) and
$$x = -1$$
 in Eq. (*i*), then
 $9^n = a_0 + a_1 + a_2 + a_3 + a_4 + \dots + a_{2n} + \dots + a_{4n}$ and
 $1 = a_0 - a_1 + a_2 - a_3 + a_4 - \dots + a_{2n} + \dots + a_{4n}$
Adding and subtracting, then

We get
$$\frac{9^n + 1}{2} = a_0 + a_2 + a_4 + \dots + a_{2n} + \dots + a_{4n-2} + a_{4n} \dots ...(iv)$$

and $\frac{9^n - 1}{2} = a_1 + a_3 + a_s + \dots + a_{2n-1} + \dots + a_{4n-1} \dots ...(v)$
Now, $a_r = a_{4n-r}$
Put $r = 0, 2, 4, 6, \dots, a_{2n-2}, a_{2n}$

$$\therefore \quad a_0 = a_{4n}$$
$$a_2 = a_{4n-2}$$
$$a_4 = a_{4n-4}$$

$$a_{2n-2} = a_{2n+2}$$

$$\therefore \quad a_0 + a_2 + a_4 + \dots + a_{2n-2}$$

$$= a_{2n+2} + \dots + a_{4n-4} + a_{4n-2} + a_{4n}$$

Now, from equation. (*iv*)
We get $\frac{9^n + 1}{2} = 2(a_0 + a_2 + a_4 + \dots + a_{2n-2}) + a_{2n}$

$$\Rightarrow \quad \frac{9^n + 1 - 2a_{2n}}{4} = a_0 + a_2 + a_4 + \dots + a_{2n-2}$$

$$\therefore \quad \sum_{r=0}^{n-1} a_{2r} = \left(\frac{9^n + 1 - 2a_{2n}}{4}\right)$$

83. (b) $a_r = a_{4n-r}$ Put $r = 1, 3, 5, 7, \dots, 2n - 3, 2n - 1$

- $a_{1} = a_{4n-1}$ $a_{3} = a_{4n-3}$ $a_{5} = a_{4n-5}$ $a_{2n-3} = a_{2n+3}$ $a_{2n-1} = a_{2n+1}$
- $\therefore \quad a_1 + a_3 + a_5 + \dots + a_{2n-1} = a_{2n+1} + a_{2n+3} + \dots + a_{4n-3} + a_{4n-1}$ Now, from equation (v)

We get
$$\frac{9^n + 1}{2} = 2(a_1 + a_3 + a_5 + \dots + a_{2n-1})$$

 $\sum_{r=1}^n a_{2r-1} = \left(\frac{9^n - 1}{4}\right)$

- 84. (c) a_2 = coefficient of x^2 in $(1 + x + x^2)^{2n}$ = coefficient of x^2 in $\{1 + {}^{2n}C_1(x + x^2) + {}^{2n}C_2(x + x^2)^2 + ...\}$ $= {}^{2n}C_1 + {}^{2n}C_2 = {}^{2n+1}C_2$
- 85. (a) $a_{4n-1} = a_1(\because a_r = a_{4n-r})$ =coefficient of x in $(1 + x + x^2)^{2n}$ =coefficient of x in $= {}^{2n}C_1 = 2n$
- **86.** (d) From Eq. (*iii*), $a_r = a_{4n-r}, 0 \le r \le 4n$
- 87. (b) Required sum = coefficient of x^n in $(1+x)^n (1+x)^n$ = coefficient of x^n in $(1+x)^{2n} = {}^{2n}C_n$

88. (d)
$${}^{30}C_r \cdot {}^{20}C_0 + {}^{30}C_{r-1} \cdot {}^{20}C_1 \cdot + ... + {}^{30}C_0 \cdot {}^{20}C_r$$

= coefficient of x^r in $(1+x)^{30}(1+x)^{20}$
= coefficient of x^r in $(1+x)^{50} = {}^{50}C_r$

 \therefore ⁵⁰ C_r is maximum

$$\therefore \quad r = \frac{50}{2} = 25$$

...

89. (a) ${}^{20}C_r \cdot {}^{10}C_0 + {}^{20}C_{r-1} \cdot {}^{10}C_1 + \dots + {}^{20}C_0 \cdot {}^{10}C_r$ = coefficient of x^{r} in $(1+x)^{20}(1+x)^{10}$ = coefficient of x^r in $(1+x)^{30} = {}^{30}C_r$ \therefore ³⁰C, is maximum $\therefore r = 0$ **90.** (a) $S_n = {}^nC_0 \cdot {}^nC_1 + {}^nC_1 \cdot {}^nC_2 + \ldots + {}^nC_{n-1} \cdot {}^nC_n$ $= {}^{n}C_{0} \cdot {}^{n}C_{n-1} + {}^{n}C_{1} \cdot {}^{n}C_{n-2} + \dots + {}^{n}C_{n-1} \cdot {}^{n}C_{0} (:: {}^{n}C_{r} = {}^{n}C_{n-r})$ = coefficient of x^{n-1} in $(1+x)^n(1+x)^n$ = coefficient of x^{n-1} in $(1+x)^{2n} = {}^{2n}C_{n-1}$ $\therefore \quad \frac{S_{n+1}}{S_n} = \frac{15}{4}$ $\Rightarrow \quad \frac{{}^{2n+2}C_n}{{}^{2n}C_n} = \frac{15}{4}$ $\Rightarrow \quad \left(\frac{2n+2}{n}\right) \cdot \frac{2^{n+1}C_{n-1}}{2^nC_{n-1}} = \frac{15}{4}$ $\Rightarrow \left(\frac{2n+2}{n}\right) \cdot \frac{\frac{(2n+1)!}{(n-1)!(n+2)!}}{\frac{2n!}{(n-1)!(n+1)!}} = \frac{15}{4}$ $\Rightarrow \left(\frac{2n+2}{n}\right) \cdot \frac{(2n+1)}{(n+2)} = \frac{15}{4}$ $\Rightarrow 4(4n^2+6n+2)=15n^2+30n$ $\Rightarrow n^2 - 6n + 8 = 0$ $\Rightarrow (n-2)(n-4) = 0$ $\therefore n = 2, 4$ **91.** (a) $C_0^2 - C_1^2 + C_2^2 + C_3^2 + \dots + (-1)^n C_n^2$ $= C_0 C_0 - C_1 C_1 + C_2 C_2 - C_3 C_3 + \dots + (-1)^n C_n C_n$ $= C_0 C_n - C_1 C_{n-1} + C_2 C_{n-2} - C_3 C_{n-3} + \dots + (-1)^n C_n C_0$ $(:: C_n = C_{n-n})$ = coefficient of x^n in $(1+x)^n(1-x)^n$ = coefficient of x^n in $(1-x^2)^n = (-1)^{n/2} \cdot {}^nC_{n/2} = 0$ (:: n is odd)

Match the Column

- 92. (a) (A) $(1+5x+10x^2+10x^3+5x^4+x^5)^{20} = \{(1+x)^5\}^{20}$ = $(1+x)^{100}$
- $\therefore \quad \lambda = 100 + 1 = 101$ Then $3^{\lambda} = 3^{101} = 3 \cdot 3^{100} = 3(9)^{50} = 3(10 - 1)^{50}$ $= 3\{(10)^{50} - {}^{50}C_1(10)^{49} + - {}^{50}C_2(10)^{48} - \dots - {}^{50}C_{49}(10) + 1\}$

$$= 3\{100\mu + 1\} = 300\mu + 3(\mu is + ve integer)$$
∴ Last two digits 03
∴ $O = 3, T = 0 \Rightarrow O + T = 3(P)$
(B) $\left(x^{2} + 1 + \frac{1}{x^{2}}\right)^{100}$
∴ $\lambda = 2 \times 100 + 1 = 201$
Then $7^{\lambda} = 7^{201} = 7 \cdot 7^{200} = 7 \cdot (7^{2})^{100} = 7 \cdot (49)^{100}$
 $= 7(50 - 1)^{100}$
 $= 7\{(50)^{100} - ^{100}C_{1}(50)^{90} + ^{100}C_{2}(50)^{98} - ... - ^{100}C_{99}(50) + 1\}$
 $= 7\{100\mu + 1\} = 700\mu + 7(\because \mu is + ve integer)$
∴ Last two digits 07
∴ $O = 7, T = 0$
 $\Rightarrow O + T = 7$
and $O - T = 7(Q, T)$
(C) $(1 + x)^{101}(1 + x^{2} - x)^{100}$
 $= (1 + x)\{(1 + x)(1 + x^{2} - x)\}^{100}$
 $= (1 + x)\{1 + ^{100}C_{1}x^{3} + ^{100}C_{2}x^{6} + ^{100}C_{3}x^{9} + ... + ^{100}C_{100}x^{303}$
 $= 1 + ^{100}C_{1}x^{3} + ^{100}C_{2}x^{6} + ^{100}C_{3}x^{9} + ... + ^{100}C_{100}x^{304}$
 $\therefore \lambda = 1 + 100 + 101 = 202$
 $\Rightarrow 9^{\lambda} = 9^{202} = (10 - 1)^{202}$
 $= (10)^{202} - ^{202}C_{1}(10)^{201} + ^{202}C_{2}(10)^{200} - ... - ^{202}C_{201}(10) + ^{202}C_{202}$
 $= 100\mu - 2020 + 1(\mu is + ve integer)$
 $= 100(\mu - 21) + 81$
 $= 100v + 81 `(v is + ve integer)$

- ∴ Last tow digit 81
- $\therefore O = 1 \text{ and } T = 8$
- $\Rightarrow O+T=9 \text{ and } T-O=7(R,S)$
- 93. (a) (A) Every even power of 9 can be represented in the form $9^{2r} = 81^r = \underbrace{81 \cdot 81 \cdot 81 \cdot \ldots \cdot 81}_{r \text{ times}}$

It's last digit is 1, every odd power of 9 can be written as $9^{2r+1} = 9 \cdot 81^r$, therefore its last digit is 9. In particular $9^{(9^9)}$ is an odd power of 9 and consequently the last digit of 9^{9^9} is 9

 $\therefore \lambda = 9$

Now, $2^{2^{100}} = 2^{9^{100}}$ the $\therefore 9^{100} = (2 \cdot 4 + 1)^{100} = 4n + 1$ (say)

 $2^{9^{100}} = 2^{4n+1} = 2 \cdot (2^4)^n = 2 \cdot (16)^n$ ÷. The digit at units place in $(16)^n = 6$ The digit at units place in $(16)^n \cdot 2 = 2$ *.*.. $\therefore \mu = 2$ $\Rightarrow \lambda + \mu = 11, \lambda - \mu = 7(O, R)$ **(B)** $2^1 = 2, 2^2 = 4, 2^3 = 8, 2^4 = 16$ We say that units digit in $2^{1}2^{2}$, 2^{3} , 2^{4} , 2^{5} , 2^{6} , 2^{7} , 2^{8} ,... are <u>249</u> 4)999(<u>996</u> 3 Last digit of the number 2999 is 8 ÷. $\lambda = 8$ ÷. Also, $3^{\lambda\lambda\lambda} = 3^{888} = (3^2)^{444} = (10-1)^{444} = 10n+1$ • $\mu = 1$ $\lambda + \mu = 9, \lambda - \mu = 7, \lambda^{\mu} + \mu^{\lambda} = 8^{1} + 1^{8} = 9 (P, R, T)$ \Rightarrow (C) $a = \frac{72!}{(36!)^2} - 1$ $=\frac{(72\cdot71\cdot70\cdot...\cdot37)36!}{(36!)^2}-1$ $=\frac{72\cdot71\cdot70\cdot\ldots\cdot37}{36!}-1$ $=\frac{(1-73)(2-73)(3-73)\dots(36-73)}{36!}-1$ $=\frac{(1\cdot 2\cdot 3\cdot ...\cdot 36) - 73(m)}{36!} - 1 (m \text{ is an integer})$ $=1 - \frac{73m}{36!} - 1 = -\frac{73m}{36!}$ Which is divisible by 73 = 70 + 3 $\lambda = 7, \mu = 3 \begin{pmatrix} \because a = \frac{72!}{(36!)^2} - 1 \\ = {}^{72}C_{36} - 1 \\ = \text{even} - 1 \\ = \text{odd} \end{pmatrix}$ ÷.

Then $\lambda - \mu = 4(S) \ 00$

94. (a) (A) Given expression =
$$\sqrt{(3x^2 + 1) \cdot 2\{{}^7C_1x^6(\sqrt{3x^2 + 1}) + {}^7C_3x^4(\sqrt{3x^2 + 1})^3 + {}^7C_5x^2(\sqrt{3x^2 + 1}))^5 + {}^7C_7(\sqrt{(3x^2 + 1)})^7\}$$

= $(3x^2 + 1) \cdot 2\{7x^6 + 35x^4(3x^2 + 1) + 21x^2(3x^2 + 1)^2 + (3x^2 + 1)^3\}$

$$\therefore n = 8($$

(B)
$$\frac{T_7}{T_6} \ge 1 \Rightarrow \frac{{}^nC_6x^{n-6}a^6}{{}^nC_5x^{n-5}a^5} \ge 1$$

 $\Rightarrow \left(\frac{n-6+1}{6}\right) \cdot \left(\frac{2}{3}\right) \ge 1$
 $\Rightarrow 2n-10 \ge 18$
 $\Rightarrow n \ge 14$
Similarly, $\frac{T_7}{T_8} \ge 1$

$$\Rightarrow \quad n \ge \frac{33}{2} \Rightarrow n = 16$$

 \therefore There is only one middle term, *n* must be even. n = 16 gives the greatest term.

(C)
$$200 < 2^m < 400$$

 $\Rightarrow m = 8(m \in I)$
 $\therefore T_{r+1} = {}^8C_r (x^{-3/4})^{8-r} \cdot (nx^{5/4})^r = 448x^0$
 $\therefore x^{-6+\frac{3r}{4}+\frac{5r}{4}} = x^0$
 $\Rightarrow -6+2r = 0$

$$\Rightarrow$$
 r=3

$$\Rightarrow {}^{8}C_{3} \cdot n^{3} = 448$$

$$\Rightarrow n^3 = 8 \Rightarrow n = 2$$

$$\therefore n^5 = 32$$

Integer

95. (**3954**) Using the formula for the sum of a geometric progression, we find

$$(1+x)^{1000} + x(1+x)^{999} + x^{2}(1+x)^{998} + \dots + x^{1000}$$
$$= \frac{(1+x)^{1000} \left[1 - \left(\frac{x}{1+x}\right)^{1001}\right]}{\left[1 - \left(\frac{x}{1+x}\right)\right]}$$
$$= \frac{(1+x)^{1000} - \frac{x^{1001}}{(1+x)}}{\frac{x+1-x}{(1+x)}}$$
$$= (1+x)^{1001} - x^{1001}$$

Hence, the coefficient of

$$x^{50} = {}^{1001}C_{50} = \frac{1001!}{50!951!}$$

$$\therefore \quad \lambda = 1001, \ \mu = 50$$

and $v = 951$

$$\therefore \quad \lambda + 2\mu + 3v = 1001 + 100 + 2853 = 3954$$

96. (0024)
$$(1+x)^{51} = C_0 + C_1 x + C_2 x^2 + ... + C_{51} x^{51}$$

 $= \sum_{r=0}^{51} C_r x^r$
Then, $\int_0^x (1+x)^{51} dx = \sum_{r=0}^{51} \int_0^x C_r x^r dx$
 $\Rightarrow \frac{(1+x)^{52} - 1}{52} = \sum_{r=0}^{51} \left(\frac{C_r x^{r+1}}{r+1} \right)$...(i)

and
$$(x+1)^{51} = \sum_{r=0}^{51} C_r x^{51+r}$$
 ...(*ii*)

Multiply equation (i) and equation (ii), then

$$\frac{(1+x)^{103} - (1+x)^{51}}{52} = \left(\sum_{r=0}^{51} \frac{C_r x^{r+1}}{r+1}\right) \left(\sum_{r=0}^{51} C_r x^{51-r}\right)$$

Now, comparing the coefficient of x^{52} , then

We get
$$\frac{1}{52} {\binom{103}{52}} C_{52} - 0 = \sum_{r=0}^{51} \frac{C_r^2}{(r+1)}$$

 $\Rightarrow \frac{103!}{52 \cdot 51!52!} \text{ or } \frac{103!}{(52!)^2}$

97. (257)
$$(1+x)^n = \sum_{r=0}^n C_r x^r$$

 $\therefore \quad x(1+x)^n = \sum_{r=0}^n C_r x^{r+1}$

Differentiating both sides w.r.t.

Then
$$(1+x)^{n-1}(1+x+nx) = \sum_{r=0}^{n} (r+1)C_r x^r$$

Again, multiplying both sides by x ,
Then $(1+x)^{n-1}(x+x^2+nx^2) = \sum_{r=0}^{n} (r+1) \cdot C_r \cdot x^{r+1}$
Again, differentiating both sides $w.r.t x$,
Then $(1+x)^{n-2} \{(1+x)(1+2x+2nx) + (n-1)(x+x^2+nx^2)\}$
 $= \sum_{r=0}^{n} (r+1)^2 C_r x^r$

Putting x = 1 on both sides, then

We get
$$= \sum_{r=0}^{n} (r+1)^2 C_r = 2^{n-2} (n^2 + 5n + 4)$$

 $\therefore \quad f(n) = n^2 + 5n + 4$
Then, $f(x) = x^2 + 5x + 4 = (x+1)(x+4)$
 $\therefore \quad \alpha = -1 \ \beta = -4$
Then, $\alpha^4 + \beta^4 = (-1)^4 + (-4)^2 = 1 + 256 = 257$

98. (4096)
$$P = \sum_{r=0}^{n} C_r \sin(rx) \cos\{(n-r)x\}$$
 ...(*i*)

Replacing r by n-r,

Then
$$P = \sum_{r=0}^{n} {}^{n}C_{n-r} \sin\{(n-r)x\} \cos[\{n-(n-r)\}x]$$

= $\sum_{r=0}^{n} {}^{n}C_{r} \sin\{(n-r)x\} \cos rx$...(*ii*)

Adding equation (i) and (ii),

Then
$$2P = \sum_{r=0}^{n} {}^{n}C_{r} \sin(nx) = \sin(nx) \cdot 2^{n}$$
 or $P = 2^{n-1} \cdot \sin(nx)$

$$\therefore \quad f(n) = 2^{n-1}$$

Then, $f(13) = 2^{12} = 4096$

99. (3333)
$$a_r = r^2 \cdot \frac{(100 - r + 1)}{r} = r \cdot (101 - r)$$

 $\therefore \prod_{i=1}^{100} (x - a_i) = (x - a_1)(x - a_2)(x - a_3)...(x - a_{100}) = x^{100}$
 $-(a_1 + a_2 + a_3 + ... + a_{100})x^{99} + ...$
 $\lambda = -(a_1 + a_2 + a_3 + ... + a_{100}) = -\sum_{r=1}^{100} a_r = -\sum_{r=1}^{100} r \cdot (100 - r)$

$$= -100\sum_{r=1}^{100} r + \sum_{r=1}^{100} r^2 = -505000 + 338350$$
$$= -166650 - \frac{\lambda}{50} = \frac{166650}{50} = 3333$$

100. (6) Let the three consecutive terms in $(1+x)^{n+5}$ be t_r, t_{r+1}, t_{r+2} . Having coefficients ${}^{n+5}C_{r-1}, {}^{n+5}C_r, {}^{n+5}C_{r+1}$ Given, ${}^{n+5}C_{r-1} : {}^{n+5}C_r : {}^{n+5}C_{r+1} = 5 : 10 : 14$ $\therefore \quad \frac{n+5-C_r}{n+5} = \frac{10}{5}$ and $\frac{n+5}{n+5}C_r = \frac{14}{10}$ $\Rightarrow \quad \frac{n+5-(r-1)}{r} = 2$ and $\frac{n-r+5}{r+1} = \frac{7}{5}$ $\Rightarrow \quad n-r+6 = 2r$ and 5n-5r+25 = 7r+7 $\Rightarrow \quad n+6 = 3r$ and 5n+18 = 12r $\therefore \quad \frac{n+6}{3} = \frac{5n+18}{12}$

$$\Rightarrow$$
 4n+24 = 5n+18 \Rightarrow n = 6

* * *