SYLLABUS: COMPLEX NUMBER

1. Number of complex numbers z such that |z| = 1 and $|z/\overline{z} + \overline{z}/z| = 1$ is $(arg(z) \in [0, 2\pi])$

2. The number of solutions of the system of equations Re $(z^2) = 0$, |z| = 2 is

3. If k > 0, |z| = |w| = k and $\alpha = \frac{z - \overline{w}}{k^2 + z\overline{w}}$, then find $Re(\alpha)$.

4. If z_1 and z_2 are two non-zero complex numbers such that $|z_1 + z_2| = |z_1| + |z_2|$, then arg z_1 – arg z_2 is equal to:

 $(A)-\frac{\pi}{2}$

(B) 0

 $(C) - \pi$

(D) $\frac{\pi}{2}$.

5. Let $A = \{z \in C: 1 \le |z - (1 + i)| \le 2\}$ and $B = \{z \in A: |z - (1 - i)| = 1\}$. Then, B:

(1) is an empty set

(2) contains exactly two elements

(3) contains exactly three elements

(4) is an infinite set

6. Let $S = \{z \in \mathbb{C}: |z-3| \le \text{and} z(4+3i) + \overline{z}(4-3i) \le 24\}$. If $\alpha + i\beta$ is the point in S which is closest to 4i, then $25(\alpha + \beta)$ is equal to ____.

(A) 20

(B) 40

(C) 60

(D) 80

7. If $w = \frac{z}{z - \frac{1}{3}i}$ and |w| = 1, then z lies on :

(A) a parabola

(B) a straight line

(C) a circle

(D) an ellipse.

8. The points representing complex number z for which |z-3| = |z-5| lie on the locus given by

(A) circle

(B) ellipse

(C) straight line

(D) none of these

9. The complex number z = x + iy which satisfy the equation $\left| \frac{z - 5i}{z + 5i} \right| = 1$ lie on :

(A) the x-axis

(B) the straight line y = 5

(C) a circle passing through the origin

(D) the y-axis

10. The inequality |z-4| < |z-2| represents:

(A) Re(z) > 0

(B) Re(z) < 0

(C) Re (z) > 2

(D) Re(z) > 3

11.	Let a circle C in complex plane pass although the points $z_1 = 3 + 4i$, $z_2 = 4 + 3i$ and $z_3 = 5i$. If $z \neq 2$			
	z_1) is a point on C such that the line through z and z_1 is perpendicular to the line through z_2 and			
	z ₃ , then arg(z) is equal to :			
	(2)	(24)	(3)	

(A)
$$\tan^{-1} \left(\frac{2}{\sqrt{5}} \right) - \pi$$
 (B) $\tan^{-1} \left(\frac{24}{7} \right) - \pi$ (C) $\tan^{-1} (3) - \pi$ (D) $\tan^{-1} \left(\frac{3}{4} \right) - \pi$

12. If z_1 , z_2 , z_3 are vertices of an equilateral triangle inscribed in the circle |z| = 2 and if $z_1 = 1 + i\sqrt{3}$, then

(A)
$$z_2 = -2$$
, $z_3 = 1 + i\sqrt{3}$ (B) $z_2 = 2$, $z_3 = 1 - i\sqrt{3}$

(C)
$$z_2 = -2$$
, $z_3 = 1 - i\sqrt{3}$ (D) $z_2 = 1 - i\sqrt{3}$, $z_3 = -1 - i\sqrt{3}$

13. Let z_1 and z_2 be two complex numbers such that $\overline{z}_1 = i\overline{z}_2$ and $arg\left(\frac{z_1}{\overline{z}_2}\right) = \pi$. Then

(A) arg
$$z_2 = \frac{\pi}{4}$$
 (B) arg $z_2 = -\frac{3\pi}{4}$ (C) arg $z_1 = \frac{\pi}{4}$ (D) arg $z_1 = -\frac{3\pi}{4}$

14. If x = a + b + c, $y = a\alpha + b\beta + c$ and $z = a\beta + b\alpha + c$, where α and β are imaginary cube roots of unity, then $xyz = a\alpha + b\beta + c$ and $z = a\beta + b\alpha + c$, where α and β are imaginary cube roots

(A)
$$2(a^3 + b^3 + c^3)$$
 (B) $2(a^3 - b^3 - c^3)$ (C) $a^3 + b^3 + c^3 - 3abc$ (D) $a^3 - b^3 - c^3$

15. If $x^2 + x + 1 = 0$, then the numerical value of

$$\left(x + \frac{1}{x}\right)^2 + \left(x^2 + \frac{1}{x^2}\right)^2 + \left(x^3 + \frac{1}{x^3}\right)^2 + \left(x^4 + \frac{1}{x^4}\right)^2 + \dots + \left(x^{27} + \frac{1}{x^{27}}\right)^2 \text{ is equal to}$$

(A) 54 (B) 36 (C) 27 (D) 18

16. Let z_1 and z_2 be two non real complex cube roots of unity and $|z - z_1|^2 + |z - z_2|^2 = \lambda$ be the equation of a circle with z_1 , z_2 as ends of a diameter then the value of λ is

17. If 1, ω , ω^2 are the cube roots of unity, then $\Delta = \begin{bmatrix} 1 & \omega^n & \omega^{2n} \\ \omega^n & \omega^{2n} & 1 \\ \omega^{2n} & 1 & \omega^n \end{bmatrix}$ is equal to-

18. If ω (\neq 1) be a cube root of unity and $(1 + \omega^4)^n = (1 + \omega^2)^n$ then find the least positive integral value of n

19. If α and β are the roots of the equation $x^2 - x + 1 = 0$, then $\alpha^{2009} + \beta^{2009} =$

$$(A) - 1$$
 $(B) 1$ $(C) 2$ $(D) -2$

20. The number of complex numbers z such that |z-1| = |z+1| = |z-i| equals

21. If $\omega(\neq 1)$ is a cube root of unity, and $(1 + \omega)^7 = A + B\omega$. Then (A, B) equals

- **22.** Let α , β be real and z be a complex number. If $z^2 + \alpha z + \beta = 0$ has two distinct roots on the line Re z = 1, then it is necessary that :
 - (A) $\beta \in (0, 1)$
- (B) $\beta \in (-1, 0)$
- (C) $|\beta| = 1$
- (D) $\beta \in (1, \infty)$
- 23. If z is a complex number of unit modulus and argument θ , then arg $\left(\frac{1+z}{1+\overline{z}}\right)$ equals :
 - (A) –θ
- (B) $\frac{\pi}{2} \theta$
- (C) θ
- (D) $\pi \theta$
- **24.** Let: $A = \left\{ z \in C : \left| \frac{z+1}{z-1} \right| < 1 \right\}$ and $B = \left\{ z \in C : arg\left(\frac{z-1}{z+1} \right) = \frac{2\pi}{3} \right\}$ Then $A \cap B$ is :
 - (A) a portion of a circle centred at $\left(0,-\frac{1}{\sqrt{3}}\right)$ that lies in the second and third quadrants only
 - (B) a portion of a circle centred at $\left(0, -\frac{1}{\sqrt{3}}\right)$ that lies in the second quadrant only
 - (C) an empty set
 - (D) a portion of a circle of radius $\frac{2}{\sqrt{3}}$ that lies in the third quadrant only
- 25. A complex number z is said to be unimodular if |z| = 1. Suppose z_1 and z_2 are complex numbers such that $\frac{z_1 2z_2}{2 z_1\overline{z}_2}$ is unimodular and z_2 is not unimodular. Then the point z_1 lies on a :
 - (A) straight line parallel to x-axis
- (B) straight line parallel to y-axis

(C) circle of radius 2

(D) circle of radius $\sqrt{2}$

ANSWER KEY OF DPP NO.: 41

- 1. (8) 2. (4) 3. (0) 4. (B) 5. (D) 6. (D) 7. (B)
- 8. (C) 9. (A) 10. (D) 11. (B) 12. (C) 13. (C) 14. (C)
- 15. (A) 16. (3) 17. (0) 18. (3) 19. (B) 20. (A)
- 21. (B) 22. (D) 23. (C) 24. (B) 25. (C)