Chapter

Ionic Equilibrium

Single Correct Option Type Questions

 $H_2CO_3 \leftarrow H_1 + HCO_3$

During the physical and mental stress, the rate of respiration increases, which results in the decrease in concentration of CO₂ in the blood. What will be the effect on pH of human blood during the stress ? (A) Decreases (B) Remains same (C) Increases (D) Cannot be predicted

- Q.2 An aqueous solution of 0.01 M CH₃COOH has van't Hoff factor of 1.01. If pH = log [H⁺], pH of 0.01 M CH₃COOH solution would be -(A) 2 (B) 3 (C) 4 (D) 5
- Q.3 The pK_b value of ammonium hydroxide is 4.75. An aqueous solution of ammonium hydroxide is titrated with HCl. The pH of the solution at the point where half of the ammonium hydroxide has been neutralised will be (A) 9.25 (B) 8.25 (C) 7.50 (D) 4.75
- Q.4 Solubility of calcium phosphate (molecular mass, M) in water is W g per 100 mL at 25°C. Its soubility product at 25°C will be approximately -

(A) $10^9 \left(\frac{W}{M}\right)^5$	(B) $10^7 \left(\frac{W}{M}\right)^5$	(C) $10^5 \left(\frac{W}{M}\right)^5$	(D) $10^3 \left(\frac{W}{M}\right)^5$

- **Q.5** 100 ml 0.1 M H₃PO₄ is tirated with 150 ml 0.1 M NaOH. The pH of final solution is (Given : $K_1 = 10^{-3}$, $K_2 = 10^{-8}$, $K_3 = 10^{-12}$) (A) 3 (B) 8 (C) 12 (D) 10
- Q.6
 What will be the approximate pH ion concentration when a 200 ml 0.02 M CH₃COOH is added with 100 ml 0.01 M HCl and 200 ml of 0.02 M NaOH (K_a CH₃COOH = 2 × 10⁻⁵). (log 3 = 0.477)
 (A) 5
 (B) 6
 (C) 4
 (D) 7
- Q.7 When 0.22 mole of CH₃NH₂ (ionization constant, $K_b = 10^{-6}$) is mixed with 0.02 mole HCl and the volume is made up to 1 litre, find the [H⁺] of resulting solution at 25°C. (A) 10^{-5} M (B) 2×10^{-9} M (C) 2×10^{-5} M (D) 10^{-9} M
- Q.8
 The solubility product of Agl at 25°C is 1.0×10^{-16} mol² L⁻². The solubility of Agl in 10⁻⁴ N solution of K1 at 25°C is approximately (in mol L⁻¹)

 (A) 1.0×10^{-12} (B) 1.0×10^{-10} (C) 1.0×10^{-8} (D) 1.0×10^{-16}
- 150 ml of 0.1 M NaOH solution is mixed with 100 ml of 0.1 M H2CO3 solution. If K., and K., of H2CO3 are 0.9 10⁻⁷ and 10⁻¹³ respectively, then pOH of the resulting solution will be (C) 1 (D) 2 (A) 13 (B) 7 Q.10 10 ml of 0.2 M acid is added to 250 ml of a buffer solution with pH = 6.34 and the pH of the solution becomes 6.32. The buffer capacity of the solution is : (B) 0.2 (C) 0.3 (D) 0.4 (A) 0.1 0.11 Which of the following is the correct nature of a solution obtained by mixing 100 ml of 0.10 M HA and 100 ml of 0.1 M NaOH ? (I) Neutral, if HA is a strong acid (II) Basic if HA is a weak acid (III) Neutral if HA is a weak acid (A) I only (B) I and II only (C) I and III only (D) II and III only 0.12 When solid AgNO3 is slowly added to a solution that has 0.0001 M each in NaCl, NaBr and NaI? The Kan of $AgCl = 1.7 \times 10^{-10}$, K_{en} of AgBr = 3.3×10^{-13} and K_{en} of AgI = 1.5×10^{-16} . The concentration of Ag⁺ required to initiate the precipitation of AgCl is : (C) 1.7×10^{-8} M (D) 1.7×10^{-9} M (A) 1.7×10^{-6} M (B) 1.7×10^{-4} M 0.13 AgNO₃(s) is slowly added to a solution which 0.1 M in Cl⁻ and 0.1 M in Br⁻. The % of Br⁻¹ ions precipitated when AgCl ion starts precipitating is ? $K_{sp}(AgCl) = 1 \times 10^{-10}$ and $K_{sp}(AgBr) = 1 \times 10^{-13}$. (A) 0.1 (B) 0.01 (C) 99.9 (D) 99.99 Q.14 The pH of a solution obtained by mixing 2 ml of H_2SO_4 of pH= 2 and 3 ml of KOH of pH = 12 is ? (log 2 = 0.3) (A) 10.30 (B) 3.70 (C) 11.30 (D) 12.70 Q.15 10 ml of $\frac{M}{10}$ H₂SO₄ is added to 40 ml of $\frac{M}{10}$ NH₄OH solution. The pH of the resulting solution is ? $(pK_b NH_4 OH = 4.76)$ (D) 4.76 (A) 4.46 (B) 9.54 (C) 9.24 0.16 The equilibrium constant K_n for the reaction: $H_2(g) + CO_2(g) \Longrightarrow H_2O(g) + CO(g)$ is 16. Initially 0.4 mole of H₂ and 0.4 mole of CO₂ are present in a 5 L flask. The equilibrium concentration of CO₂(g) is: (C) 0.32 M (D) 0.064 M (A) 0.08 M (B) 0.016 M Statement Based Ouestions 0.17 Statement-1: pH of a neutral solution is always equal to $pK_w/2$ at any temperature. Statement-2: A neutral solution at any temperature will have same concentration of [H⁺] and [OH] ion in the expression for K....
 - (A) Statement-1 is True, Statement-2 is True; Statement-2 is a correct explanation for Statement-1.
 - (B) Statement-1 is True, Statement-2 is True; Statement-2 is NOT a correct explanation for Statement-1.
 - (C) Statement-1 is True, Statement-2 is False.
 - (D) Statement-1 is False, Statement-2 is True.

- Q.18 Statement-1: The pH of pure water is less than 7 at 60° C
 Statement-2: As the temperature increases, pure water becomes slightly acidic
 (A) Statement-1 is True, Statement-2 is True; Statement-2 is NOT a correct explanation for Statement-1.
 (B) Statement-1 is True, Statement-2 is False.
 (C) Statement-1 is True, Statement-2 is False.
 - (D) Statement-1 is False, Statement-2 is True.

Multiple Correct Option Type Questions

- Q.19 Let us consider the ionization of HCl in the aqueous solution of CH₃COOH. CH₃COOH + HCl ⇒ CH₃COOH₂⁺ + CI Select the correct statement(s) among the following -(A) Cl⁻ is the conjugate base of HCl
 (B) CH₃COOH is the conjugate base of CH₃COOH₂⁺
 (C) CH₃COOH₂⁻ is the conjugate base of CH₃COOH
 (D) None of these
- Q.20 Which among the following represent the conjugate acid/base pairs ? (A) H₃O⁺/H₂O (B) H₂SO₄/SO₄²⁻ (C) HCO₅^{-/}CO₃²⁻ (D) All are conjugate acid/base pairs
- $\begin{array}{ccc} \textbf{Q.21} & \text{Which among the following species act both as an acid as well as a base ?} \\ & (A) \; \text{SO}_4^{2-} & (B) \; \text{HSO}_4^{-} & (C) \; \text{PO}_4^{3-} & (D) \; \text{NH}_3 \end{array}$
- Q.23 A solution contains 0.01 M conc. each of Zn⁺², Mg⁺² and M_n⁺² ions. They are to be precipitated as their sulphide by passing H₂S gas into the solution and the solution is saturated with 0.1M H₂S (Given : K_{sp}(ZnS) = 10⁻¹⁸, K_{sp}(MnS) = 10⁻²², K_{sp}(MgS) = 10⁻¹², K_a(H₂S) = 10⁻²¹). Identify which is/are correct statement
 (A) Only MnS is precipitated in pH range of 1 to 3. (B) ZnS is precipitated when the pH > 3. (C) MgS gets precipitated when pH > 6. (D) MgS get precipitated when pH < 3.

0.24 $H_3PO_4(aq) \rightleftharpoons H^+(aq) + H_2PO_4^-(aq), K_a$

 $H_2PO_4^-(aq) \rightleftharpoons H^+(aq) + HPO_4^{2-}(aq), K$

 $HPO_4^{2-}(aq) \rightleftharpoons H^+(aq) + PO_4^{3-}(aq), K_a$

Which is/are incorrect statement(s) ?

(A)
$$K_{a_1} > K_{a_2} > K_{a_3}$$

(B)
$$pH(H_2PO_4^-) \approx \frac{pK_{a_1} + K_{a_2}}{2}$$

(C) Both $H_2PO_4^-$ and HPO_4^{2-} are more acidic than H_3PO_4

(D) Only HPO_4^{2-} is amphiprotic anion in the solution

- Q.25 Which of the following statement(s) is/are CORRECT ?

 (A) pH of 10⁻⁸ MHCl(aq) solution is 8 at 25°C
 (B) Autoprotolysis constant of water increases with temperature
 (C) 100 ml of solution of 0.05 M Ca(OH)₂ will have pH = 13 at 25°C
 (D) pH of 0.1 M solutions in correct order HCl < NH₂Cl < NaCl < NaCN
- Q.26
 Which of the following statement(s) is/are INCORRECT for 0.1 M NaA (aq) solution at 25°C?

 (Given : $K_a(HA) = 10^{-5}$)
 (A) Degree of hydrolysis of A⁻(aq) is 10⁻⁴

 (B) pOH of solution is 5
 (B) pH of solution = $\frac{1}{2}$ [pKw pKa log C]
- Q.27 The solubility of a sparingly soluble salt $A_x B_y$ in water at $25^{\circ}C = 1.4 \times 10^{-4}$ M. The solubility product is 1.1×10^{-11} . The possibilities are (A) x = 1, y = 2 (B) x = 2, y = 1 (C) x = 1, y = 3 (D) x = 3, y = 1
- Q.28 The variation of pH during the titration of 0.5 N Na₂CO₃ with 0.5 N HCl is shown in the given graph. The following table indicates the colour and pH ranges of different indicators

Indicator	Range of colour change	Colour in acid	Colour in base	
Thymol blue	1.2 to 2.8	Red	Yellow	
Bromocresol red	4.2 to 6.3	Red	Yellow	
Bromothymol blue	6.0 to 7.6	Yellow	Blue	
Cresolphethalein	8.2 to 9.8	Colourless	Red	

Based on the graph and the table, which of the following statements are true ?

- (A) The first equivalence point can be detected by cresolphthalein
- (B) The complete neutralisation can be detected by bromothymol
- (C) The seconds equivalence point can be detected by bromocresol red
- (D) The volume of HCl required for the first equivalence point is half the volume of HCl required for the second equivalence point
- Q.29 Which of the following mixtures can be regarded as buffer ?
 (A) 500 mL 0.2 (M) CH₃COOH + 1000 mL 0.2 (M) NaOH
 (B) 500 mL 0.2 (M) CH₃COOH + 300 mL 0.2 (M) NaOH
 - (B) $500 \text{ mL } 0.2 \text{ (M) CH}_3 \text{COOH} + 500 \text{ mL } 0.2 \text{ (M) NaOH}$
 - (C) 500 mL 0.2 (M) CH₃COOH + 500 mL 0.2 (M) NaOH (D) 500 mL 0.2 (M) CH₃COOH + 500 mL 0.2 (M) NH₄OH
 - (D) 500 mL 0.2 (M) CH₃COOH + 500 mL 0.2 (M) NH₄OF

- Q.30 Which of the following mixture is/are buffers ?
 (A) 100 ml of 0.1 M Ca(CH₃COO)₂ & 100 ml of 0.1 M HCI
 (B) 100 ml of 0.1 M (PhNH₃)₂SO₄ & 50 ml 0.1 M Ca(OH)₂
 (C) 100 ml of 0.1 M (NH₄)₂SO₄ & 100 ml of 0.1 M NH₄OH
 (D) 100 ml of 0.1 M borax solution (Na₂B₄O₇.10H₅O) & 25 ml of 0.05 M H₂SO₄
- Q.31 Buffer solution of A of a weak monoprotic acid and its sodium salt in the concentration ratio m : n has pH = X. Buffer solution B of the same acid and its sodium salt in the concentration ratio n : m has pH = Y. If Y X = 1 and X + Y = 9.5 then,

(A)
$$pK_a = 4.75$$
 (B) $\frac{m}{n} = 2.36$ (C) $\frac{m}{n} = 3.162$ (D) $pK_a = 5.25$

Q.32 Which of the following mixture represent a buffer ?
(A) 100 ml of 2 M HCN & 100 ml of 1 M NaOH
(B) 100 ml of 2 M CH₃COONa & 100 ml of 1 M HCl
(C) 100 ml of 0.2 M NH₄OH & 100 ml of 0.1 M H₂SO₄
(D) 100 ml of 0.5 M C₆H₃NH₂ & 100 ml of 0.2 M H₂SO₄

Pa sage Based Questions

a ge # 1 (Ques. 33 - 35)

The dissociation of weak electrolyte (weak acid) is expressed in terms of Ostwald dilution law. Stronger is the acid, weaker is its conjugate base. The dissociation constants of an acid (K_s) and its conjugate base (K_b) are related by the given relation :

 $K_w = K_a \times K_b$

At 25°C, K_w (Ionic product of water) = 10^{-14}

Phosphoric acid is a weak acid. It is used in fertilizer, food, detergent and toothpaste. Structure of phosphoric acid is :

 $\begin{array}{c} \uparrow \\ \text{HO-P-OH} (pK_{a_1} = 2.12, pK_{a_2} = 7.21, pK_{a_3} = 12.32) \\ \downarrow \\ \text{OH} \end{array}$

Aqueous solution of phosphoric acid with a density of 1 g mL⁻¹ containing 0.05 % by weight of phosphoric acid is used to impart tart taste to many soft drinks.

Phosphate ion is an interfering radical in qualitative analysis. It should be removed for analysis beyond third group of qualitative analysis.

Q.33	The basicity of pho	sphoric acid is -		
	(A) 1	(B) 2	(C) 3	(D) 4
Q.34	The state of hybridi	zation of phosphorous in	phosphoric acid is -	
	(A) sp	(B) sp^2	(C) sp ³	(D) sp ³ d
Q.35		y of phosphoric acid used	in soft drink ?	
	(A) 5.1×10^{-3}	(B) 1.5×10^{-3}	(C) 3.1×10^{-3}	(D) 2.1×10^{-3}

Passage # 2 (Ques. 36 - 37)

Acid – base indicators are either weak organic acid or weak organic bases. Indicator change in dilute solution when the hydronium ion concentration reaches a particular value. For example, phenolphthalein is a colourless substance in any aqueous solution with a pH less then 8.3. In between the pH range 8.3 to 10, transition of colour (coloulress to pink) takes place and if pH of solution is greater than 10 solution is dark pink considering an acid indictor HIn, the equilibrium involving it and its conjugate base ln⁻ can be represented as :

Hln
$$\rightleftharpoons$$
 H⁺ + ln⁻

pH of solution can be computed as :

$$pH = pK_{ln} + log \frac{[ln^-]}{[H ln]}$$

In general, transition of colour take place in between the pH range pKin ± 1.,

- **Q.36** What is the equilibrium constant for the reaction ? $^{\circ}$ HB (aq) + NaA (aq) \implies HA(aq) + NaB (aq)
 - (A) 10 (B) 0.1 (C) 10^{-7}
- Q.37 Calculate the pH at equivalent point when HB is titrated with NaOH (A) 8.75 (B) 8.85 (C) 9.0 (D) None of these

Passage # 3 (Ques. 38 - 39)

The solubility of some sparingly soluble salts e.g. AgCl, AgBr, Agl, Ag₂CrO₄ etc can be appreciably increased through complexation reaction. Let's take the case of AgCl which is very feebly soluble in water (K_{sp} of AgCl = 1×10^{-10} at 25°C) but if liquid ammonia is added into this solution, its solubility increased so many folds due to the formation of complex [Ag(NH₃)₂]⁻.

(D) 10⁻¹¹

 $AgCl + 2NH_3(aq) \implies [Ag(NH_3)_2]^+ + Cl^-$

A solution of Ag^+ ions at a concentration of 4.0×10^{-13} M just fails to yield a precipitate of AgCl with concentration of 1.0×10^{-3} M of Cl⁻ ions, when the concentration of ammonia in the solution is 2.0×10^{-2} M. Now, answer the following questions.

- $\begin{array}{ccc} \textbf{Q.38} & \mbox{The solubility of AgCl in water (without adding NH_3) at 25^\circ C is} \\ & (A) \ 10^{-4} \ M & (B) \ 10^{-5} \ M & (C) \ 10^{-6} \ M & (D) \ 10^{-8} \ M \end{array}$
- Q.39 The dissociation constant of the complex $[Ag(NH_3)_2]^+$ at 25°C is (A) 10⁻⁷ (B) 10⁺⁷ (C) 10⁻⁸ (D) 10⁺⁸
- Passage # 4 (Ques. 40- 42) A solution is 0.1 M in each of Ba²⁺, Ca²⁺ and Sr²⁺ ions. Solid (NH₄)₂SO₄ is gradually added to the solution. Given K_{sp}(BaSO₄) = 1.5 × 10⁻⁹, K_{sp}(CaSO₄) = 2.5 × 10⁻⁵ and K_{sp}(SrSO₄) = 7.5 × 10⁻⁷. Assume no change in volume during the addition of (NH₄)₂SO₄.
- Q.40 The correct sequence of ions precipitated is (A) Ba^{2+} , Ca^{2+} , Sr^{2+} (B) Ba^{2+} , Sr^{2+} , Ca^{2+} (C) Ca^{2+} , Sr^{2+} , Ba^{2+} (D) Ca^{2+} , Ba^{2+} , Sr^{-2+}
- $\begin{array}{cc} \textbf{Q.41} & \text{The concentration of the first ion precipitated when the second starts precipitating is about} \\ \textbf{(A) 0.1 M} & \textbf{(B) } 2 \times 10^3 \text{ M} & \textbf{(C) } 2 \times 10^{-4} \text{ M} & \textbf{(D) } 2 \times 10^{-5} \text{ M} \end{array}$
- $\begin{array}{cc} \textbf{Q.42} & \text{The concentration of the second ion precipitated when the third starts precipitating is about} \\ (A) 3 \times 10^{-4} \, M & (B) 3 \times 10^{-5} \, M & (C) \, 0.1 \, M & (D) \, 3 \times 10^{-3} \, M \end{array}$

Passage # 5 (Oues, 43 - 44)

The solubility product of a soluble salt $A_x B_y$ is given by; $K_{sp} = [A^{y+}]^x [B^{x-}]^y$. As soon as the product of concentration of Ay+ and Bx- becomes more than its Ksp, the salt begins to precipitate. It may practically be noticed that AgCl is fairly soluble in water and its solubility decreases dramatically in 0.1 M NaCl or 0.1 M AgNO3 solution. It may, therefore, be concluded that in presence of a common ion, the solubility of salt decreases

- Q.43 K_{sp} of SrF₂ in water is 8×10^{-10} . The solubility of SrF₂ in 0.1 M NaF aqueous solution is (A) 8×10^{-10} (B) 2×10^{-3} (C) 2.7×10^{-10} (D) 8×10^{-8}
- Q.44 Equal volume of the following two solutions are mixed. The one in which CaSO₄ ($K_{sp} = 2.4 \times 10^{-5}$) is precipitated is (A) 0.02 M CaCl2 + 0.0004 M Na2SO4 (B) 0.01 M CaCl2 + 0.0004 M Na2SO4

(C) 0.02 M CaCl2 + 0.0002 M Na2SO4 (D) 0.03 M CaCl2 + 0.0004 M Na2SO4

Passage # 6 (Ques. 45 - 47)

The solubility of some sparingly soluble salts e.g. AgCl, AgBr, Agl, Ag2CrO4 etc can be appreciably increased through complexation reaction. Let's take the case of AgCl which is very feebly soluble in water $(K_{sp} \text{ of } AgCl = 1 \times 10^{-10} \text{ at } 25^{\circ}C)$ but if liquid ammonia is added into this solution, its solubility increased so many folds due to the formation of complex [Ag(NH3)2]+

 $AgCl + 2NH_3(aq) \implies [Ag(NH_3)_2]^+ + Cl$

A solution of Ag^+ ions at a concentration of 4.0×10^{-13} M just fails to yield a precipitate of AgCl with concentration of 1.0×10^{-3} M of Cl⁻ ions, when the concentration of ammonia in the solution is 2.0×10^{-2} M. Now, answer the following questions :

- Q.45 The solubility of AgCl in water (without adding NH₃) at 25°C is (A) 10⁻⁴ M (B) 10⁻⁵ M (C) 10⁻⁶ M (D) 10⁻⁸ M
- 0.46 The dissociation constant of the complex $[Ag(NH_3)_2]^+$ at 25°C is $(A) 10^{-7}$ (B) 10⁺⁷ (D) 10⁺⁸ (C) 10⁻⁸
- Q.47 $Ag^+ + 2NH_3 \implies [Ag(NH_3)_2]^+$ On adding more NH3, the above equilibrium shifts : (A) In the forward direction (B) In the backward direction

(C) The complex dissociation faster	(D) None of these

Column Matching Type Questions

Q.48 Match the column when we titrate sodium carbonate solution (in beaker) with hydrochloric acid :

Column –I	Column-II
(A) At the start titration	(P) Buffer solution of HCO3 ⁻ and CO3 ²⁻
(B) Before the first equivalent point	(Q) Buffer solution of H2CO3 and HCO3
(C) At the first equivalent point	(R) Amphiprotic anion, $pH=1/2(pK_{a_1}+pK_{a_2})$
(D) Between the first and second equivalent points	(S) Hydrolysis of CO ₃ ^{2–}
	(T) pH = $\sqrt{pK_{a_1} + pK_{a_2}}$

0.50

Column I	Column II
(A) Solubility of AgCl in water	(P) 10^{-5} M
(B) Solubility of Ag ₂ SO ₄ in water	(Q) 1.435×10^{-6} gm/ml
(C) Solubility of Ag ₂ SO ₄ in 0.1 M AgNO ₃	(R) 4×10^{-13} M
(D) Solubility of Ag ₂ SO ₄ in 0.1M Na ₂ SO ₄	(S) 10^{-7} M

Given : $K_{SP}(AgCl) = 10^{-10}$; $K_{SP}(Ag_2SO_4) = 4 \times 10^{-15}$

Q.51

Column I	Column II
(A) 1L, 1M Na ₂ CO ₃ + 1L, 1M H ₂ CO ₃ [K_{a_1} (H ₂ CO ₃) = 10 ⁻⁶ , K_{a_2} = 10 ⁻⁹]	(P) $pH = 7.5$
(B) 1L, 0.2 M (CH ₃ COO) ₂ Ca + 1L, 0.2 M HCl solution [K _a (CH ₃ COOH) = 10^{-5}]	(Q) pH = 1
(C) 1L, 0.2 M NH ₄ Cl + 1L, 0.2 M HCl solution	(R) $pH = 9$
(D) 1L, 0.2 M NH ₄ Cl + 1L, 0.1 M NaOH solution $[K_b(NH_4OH) = 10^{-5}]$	(S) $pH = 5$

Column II

0.52 Match the following :

	List-I		List-II
(P)	75 ml of 0.2 M CH ₃ COOH + 25 ml of 0.2 M NaOH	(1)	12.7
(0)	50 ml of 0.2 M CH ₃ COOH + 25 ml of 0.2 M NaOH	(2)	8.72
(R)	50 ml of 0.2 M CH ₃ COOH + 50 ml of 0.2 M NaOH	(3)	4.74
(S)	25 ml of 0.2 M CH ₃ COOH + 75 ml of 0.2 M NaOH	(4)	4.44
(pK	$a = 4.74; \log 2 = 0.3; \log 3 = 0.477; \log 5 = 0.7)$		

	Cod	les :			10 MA
		Р	Q	R	S
	(A)	2	3	4	1
	(B)	2	1	3	4
	(C)	1	2	3	4
	(D)	4	3	2	1
Q.53	Mate	ch the followir	g		
		List-I			List-II
	(P)	CH3COOH -	+ CH ₃ COONa	(1)	Basic buffer
	(Q)	$NH_4OH + N$	H ₄ Cl	(2)	Acidic buffer
	(R)	Na ₂ CO ₃		(3)	Acidic salt
	(S)	CuSO ₄		(4)	Basic salt
	Cod	es:			
		Р	Q	R	S
	(A)	2	1	4	3
	(B)	2	2	4	3
	(C)	· 1	2	3	4
	(D)	4 🦂	2	1	3
Q.54	Mate	ch Column-I ai	nd Column-II.		
	Column I				Column II
		The volume of equilibrium co	mixture has no eff nstant.	ect on the	(P) Common ion effect
	(B) Increasing the pressure moves the equilibrium to to the left.				im to (Q) pH = 4

- (C) The solution has hydronium ion concentration of 0.0001 mol/litre.
- (R) There is an increase in the number of moles from products to reactants. (D) The addition of NaOH to Ca(OH)2 solution precipitates (S) There is no change in number of moles Ca(OH),

Numeric Response Type Questions

- 0.55 The pH of a 0.005 M H₂SO₄ solution is
- A 0.1 M solution of weak monoprotic acid ($K_a = 1 \times 10^{-5}$) is 1 % dissociated. The pH of solution is 0.56
- Q.57 Calculate pH at which an acid indicator HIn with concentration 0.1 M changes its colour $(K_a \text{ for HIn} = 1 \times 10^{-5})$
- Q.58 The K_{sp} of Mg (OH)₂ is 1×10^{-12} ; 0.01 M MgCl₂ will precipitate at limiting pH of
- Find out negative logarithm of solubility of solid Zn(OH)2 at 25°C and pH = 6. 0.59 Given : $Zn(OH)_2(s) + aq \implies Zn(OH)_2(aq), K_1 = 10^{-6}$. $Zn(OH)_2$ (aq) \implies $Zn(OH)^+$ (aq) + OH^- (aq), $K_2 = 10^{-7}$. $Zn(OH)^{+}(aq) \rightleftharpoons Zn^{+2}(aq) + OH^{-}(aq), K_{3} = 10^{-4}.$ $Zn(OH)_2(aq) + OH(aq) \Longrightarrow Zn(OH)_3(aq), K_4 = 10^3.$
 - $Zn(OH)_{3}^{-}(aq) + OH^{-}(aq) \implies Zn(OH)_{4}^{-2}(aq), K_{5} = 10.$

- 0.60 Calculate the pH of 0.005 M (CH₃COO)₂Ba. (Given : $K_{a}(CH_{3}COOH) = 10^{-6}$)
- 0.61 If the solubility of Cd(CN)₂ in 0.050 M NaCN solution is $X \times 10^{-6}$. What is the value of X? $[K_{sp} \text{ of } Cd(CN)_2 = 1.0 \times 10^{-8} \text{ M}^3]$
- 0.62 If the percentage degree of dissociation ($\%\alpha$) of 0.01M weak base XOH (aq) in presence of 0.1M NaOH is represented as 10^{-x} then find the value of 'x'? Given : $K_{b}(XOH) = 10^{-5}$.
- 0.63 An acid-base indicator which is a weak acid has a pKa value = 5.45. At what concentration ratio of sodium acetate to acetic acid would the indicator show a colour half-way between those of its acid and conjugate base forms? pK_a of acetic acid = 4.75. $\lceil \log 2 = 0.3 \rceil$.
- Q.64 What is ratio of moles of Mg(OH)₂ and Al(OH)₃ in 1 litre. Their saturated solution (K_{SP} of Mg(OH)₂ = 4×10^{-12} and Ksp of Al(OH)₃ = 1 × 10⁻³³) give answer by multiplying it with by 10⁻¹⁷. (Both are present in same solution)
- 0.65 Determine degree of dissociation of 0.05 M NH₃ at 25°C in a solution of pH = 11.
- **0.66** The solubility of Mg(OH)₂ in a solution of Ba(OH)₂ is $x \times 10^{-8}$ M. 10 mL of Ba(OH)₂ solution requires 10 mL of 0.04 N HCl solution for complete neutralization. K_{so} of Mg(OH)₂ is $1.2 \times 10^{-11} \text{ M}^3$. The value of x is.
- 0.67 Out of NaCN, NaCl, NH4Cl, CH3COONa, NaHCO3, Na2CO3, Na3PO4, HCOONa how many aqueous solution have pH > 7.
- Q.68 If 50 ml of 0.2 M NaCN is mixed with 50 ml of 0.2 M HCl then (K_b for CN⁻ = 2×10^{-5}) Calculate concentration of $[H_3O^+]$ interms of molarity $\times 10^{-6}$.
- Amongst the following, the total number of compounds whose aqueous solution turns red litmus paper blue 0.69 is NaCN, KCl, CH3COONH4, NaH2PO4, ZnCl2, Na3PO4, Fe(NO3)3, Na2CO3. NH4Cl, NaHCO3, Na2HPO4.
- Q.70 1 ml of 0.05 M H₂SO₄ is mixed with 999 ml of NaCl solution. The pH of the resulting solution is.
- $\mathbf{Q.71}$ A certain buffer solution contains equal concentration of X^{-1} and HX. The K_b for X^{-} is 10^{-10} . Then the pH of the buffer is.

ANSWER KEY

Single Corr	rect Option type (Questions				
1. (C)	2. (C)	3. (A)	4. (B)	5. (B)	6. (A)	7. (D)
8. (A)	9. (A)	10. (D)	11. (B)	12. (A)	13. (C)	14. (C)
15. (C)	16. (B)					
	4					
Statement	Based Questions	2				
17. (A)	18. (B)					
Multiple C	orrect Option typ	e Questions				
19. (A,B)	20. (A,C)	21. (B,D)	22. (C,D)	23. (A,B,C)	24. (C,D)	25. (B,C,D)
26. (C,D)	27. (A,B)	28. (A,C,D)	29. (B,D)	30. (A,B,D)	31. (A,C)	32. (A,B,D)
Passage Ba	sed Questions					
33. (C)	34. (C)	35. (A)	36. (A)	37. (B)	38. (B)	39. (C)
40. (B)	41. (C)	42. (D)	43. (D)	44. (D)	45. (B)	46. (C)
47. (A)						
Column M	atching Type Ou	estions				
48. $[A \rightarrow S]$; $\mathbf{B} \rightarrow \mathbf{P}; \mathbf{C} \rightarrow \mathbf{R}; \mathbf{I}$	$D \rightarrow Q$]				
49. $[A \rightarrow Q]$	$B \rightarrow P; C \rightarrow S;$	$D \rightarrow R$]				
50. $[A \rightarrow P]$	$Q; \mathbf{B} \to P; \mathbf{C} \to \mathbf{F}$	$R; D \rightarrow S$]				
51. $[A \rightarrow P]$	$; \mathbf{B} \rightarrow S; \mathbf{C} \rightarrow Q;$	$D \rightarrow R$]				
52. [D]						
53. [A]						
54. $[A \rightarrow S]$	$; \mathbf{B} \rightarrow \mathbf{R}; \mathbf{C} \rightarrow \mathbf{Q};$	$D \rightarrow P$]				
`						
Numerical	Response Type Q	Juestions				
55. (2)	56. (3)	57. (5)	58. (9)	59. (1)	60. (9)	61. (4)
62. (1)	63. (3)	64. (4)	65. (2)	66. (3)	67. (6)	68. (7)
69. (5)						