POINT & STRAIGHT LINE

PRACTICE SHEET

11.

14.

1. The lines (p + 2q) x + (p - 3q) y = p - q for different values **10.** of p and q pass through the fixed point given by which one of the following?

(a) $\left(\frac{3}{2}, \frac{5}{2}\right)$	(b) $\left(\frac{2}{5}, \frac{2}{5}\right)$
(c) $\left(\frac{3}{5}, \frac{3}{5}\right)$	(d) $\left(\frac{2}{5}, \frac{2}{5}\right)$

- 2. What is the angle between the two straight lines $y = (2 - \sqrt{3})x + 5$ and $y = (2 + \sqrt{3})x - 7$? (a) 60° (b) 45° (c) 30° (d) 15°
- What is the image of the point (2, 3) in the line y = -x? 3. (b) (-3, 2) (a) (-3, -2)(c) (-3, -2)(d) (3, 2)
- 4. The middle point of A(1,2) and B(x,y) is C(2, 4). If BD is perpendicular to AB such that CD = 3 unit, then what is the length BD?

(a) $2\sqrt{2}$ unit	(b) 2 unit
(c) 3 unit	(d) $3\sqrt{2}$ unit

5. If the point A (1, 2), B(2, 4) and C(3,a) are collinear, what is the length BC?

(a) √2unit	(b) √3unit
(c) $\sqrt{5}$ unit	(d) 5 unit

What is the acute angle between the lines Ax + By = A + B6. and A (x - y) + B (x + y) = 2B?(b) $\tan^{-1}\left(\frac{A}{\sqrt{A^2+B^2}}\right)$

(c) 30°

1

7. If p be the length of the perpendicular from the origin on the straight line x + 2 by + 2p = 0, then what is the value of b?

(d) 60°

(a) $\frac{1}{p}$	(b) p
(c) $\frac{1}{2}$	(d) $\frac{\sqrt{3}}{2}$

- 8. In what ratio does the lien y - x + 2 = 0 cut the line joining (3, -1) and (8, 9)(a) 2 : 3 (b) 3 : 2
 - (c) 3:-2(d) 1 : 2
- 9. The points (2, -2), (8, 4), (4, 6) and (-1, 1) in order are the vertices of which one of the following quadrilaterals? (a) Square
 - (b) Rhombus
 - (c) Rectangle (but not square)
 - (d) Trapezium

If p be the length of the perpendicular from the origin on the straight line ax + by = p and b = $\frac{\sqrt{3}}{2}$, then what is the angle between the perpendicular and the positive direction of x – axis? (a) 30° (b) 45° (d) 90° (c) 60° The straight line ax + by + c = 0 and the coordinate axes form an isosceles triangle under which one of the following conditions? (a) |a| = |b|(b) |a| = |c|(c) |b| = |c|(d) None of these 12. The coordinates of P and Q are (-3, 4) and (2, 1), respectively, If PQ is extended to R such that PR = 2QR, then what are the coordinates of R? (a)(3,7)(b) (2, 4) (c) $\left(-\frac{1}{2},\frac{5}{2}\right)$ (d) (7, −2) 13. Which one of the following points on the line 2x - 3y = 5 is equidistant from (1, 2) and (3, 4)? (a) (7, 3) (b) (4, 1) (c)(1,-1)(d)(-2,-3)The following question consists of two statements, one labeled as the 'Assertion (A)' and the other as 'Reason (R)'. You are to examine these two statements carefully and select the answer. Assertion (A): If two triangles with vertices (X1. y1), (x2, y2), (x3,y3) and (a1, b1), (a2, b2), (a3,b3) satisfy the relation $\begin{vmatrix} x_1 & y_1 & 1 \\ x_2 & y_2 & 1 \end{vmatrix} = \begin{vmatrix} a_1 & b_1 & 1 \\ a_2 & b_2 & 1 \end{vmatrix} \ , \ \ \text{then} \ \ \text{the triangles} \ \ \text{are}$ $\begin{vmatrix} x_3 & y_3 & 1 \end{vmatrix} \begin{vmatrix} a_3 & b_3 & 1 \end{vmatrix}$ congruent. Reason (R): For the given triangles satisfying the above relation implies that the triangles have equal area. (a)Both A and R are individually true, and R is the correct explanation of A. (b)Both A and R are individually true but R is not the correct explanation of A. (c)A is true but R is false (d) A is false but R is true 15. If A (2, 3), B (1, 4), C (0 –2) and D (x, y) are the vertices of a parallelogram, then what is the value of (x, y)? (a) (1, −3) (b) (2, 4) (c)(1,1)(d) (0, 0)

16. If O be the origin and A (x_1, y_1) , B (x_2, y_2) are two points, then what is (OA) (OB) $\cos \angle AOB$?

(a) $x_1^2 + x_2^2$	(b) $y_1^2 + y_2^2$
(c) $x_1x_2 + y_1y_2$	(d) $x_1y_1 + x_2y_2$

17.	The numerical value of t that of its area by 4. What (a) 1 unit (c) 3 unit	he perimeter of a square exceeds is the side of the square? (b) 2 unit (d) 4 unit	26.	If the area of a triangle wi is 9 sq. unit, then what is t (a) 3 (c) 9	ith vertices (-3, 0), (3,0) and (0,k) the value of k? (b) 6 (d) 12
18.	If (a, b), (c, d) and $(a - c)$ one of the following is con (a) $bc - ad = 0$ (c) $bc + ad = 0$	 c, b - d) are collinear, then which rrect? (b) ab - cd = 0 (d) ab + cd = 0 	27.	If the straight lines $x - 2$ the point $\left(1, \frac{1}{2}\right)$, then what (a) 1	y = 0 and $kx + y = 1$ intersect at t is the value of k? (b) 2
19. 20.	What is the locus of a popoint (m+n, n-m) and the (a) mx=ny (c) nx=my What is the product of points $(\pm\sqrt{b^2-a^2}, 0)$ to the	bint which is equidistant from the point $(m-n, n+m)$? (b) $nx=-my$ (d) $mx=-ny$ the perpendicular from the two he line $ax \cos\phi + by \sin\phi = ab$?	28.	(c) 1/2 What is the slope of th $\frac{x}{4} + \frac{y}{3} = 1?$ (a) 3/4 (c) -4/3	(d) $-1/2$ the line perpendicular to the line (b) $-3/4$ (d) $4/3$
	(a) a ² (c) ab	(b) b ² (d) a/b	29.	What is the equation to th the point of intersection	e straight line joining the origin to on of the lines $\frac{x}{x} + \frac{y}{z} = 1$ and
21.	The middle point of the so the points (p,q) and (q,-p) the segment? (a) $[(s^2 + r+2)^{1/2}]/2$ (c) $(s^2 + r^2)1/2$	egment of the straight line joining) is (r/2, s/2). What is the length of (b)[(s ² + r ²) ^{1/2}]/4 (d) s + r		$\frac{x}{b} + \frac{y}{a} = 1?$ (a) $x + y = 0$ (c) $x - y = 0$	y b (b) $x + y + 1 = 0$ (d) $x + y + 2 = 0$
22.	What is the area of the tri 0, y + x = 0, x = c? (a) c / 2 (c) 2c2	angle formed by the lines $y - x =$ (b) c^2 (d) $c^2/2$	30.	If the lines $3y + 4x = 1$ concurrent, then what is the formula $(a) = 1$ (c) 6	, $y = x + 5$ and $5y + bx=3$ are he value of b? (b) 3 (d) 0
23.	What does an equation of arbitrary parameter passin (a) Circle (c) Parabola	f the first degree containing one g through a fixed point represent? (b) Straight line (d) Ellipse	31.	If $(-5, 4)$ divides the line axes in the ratio 1:2, then (a) $8x+5y+20 = 0$ (c) $8x-5y+60 = 0$	e segment between the coordinate what is its equation? (b) $5x+8y-7 = 0$ (d) $5x-8y-57 = 0$
24.	If $x \cos\theta + y \sin\theta = 2$ is p then what is one of the val (a) $\pi/6$ (c) $\pi/2$	the perpendicular to the line $x-y = 3$, lue of θ ? (b) $\pi/4$ (d) $\pi/3$	32.	(c) $dx^2 = 0^{-1}$ What is the image of the 0? (a) $\left(-\frac{7}{5}, \frac{6}{5}\right)$	(a) $5x^{-} 6y^{+} 5y^{-} = 0$ point (1,2) on the line $3x^{+}4y^{-}1 =$ (b) $\left(\frac{7}{2}, \frac{1}{2}\right)$
25.	What is the foot of the p on the line $x + y - 11 = 0^{\circ}$ (a) (1,10) (c) (6,5)	erpendicular from the point (2,3) ? (b) (5,6) (d) (7,4)		$(c) \left(\frac{7}{8}, -\frac{1}{2}\right)$	

	ANSWER KEYS																		
1.	d	2.	a	3.	а	4.	b	5.	c	6.	a	7.	d	8.	a	9.	d	10.	с
11.	а	12.	d	13.	b	14.	а	15.	a	16.	с	17.	b	18.	a	19.	с	20.	а
21.	c	22.	b	23.	b	24.	b	25.	b	26.	a	27.	с	28.	d	29.	с	30.	c
31.	с	32.	a																

Sol. 1. (d) As given, (p + 2q) x + (p - 3q)y = p - q $\Rightarrow px + 2qx + py - 3qy = p - q$ $\Rightarrow p(x + y) - q (3y - 2x) = p - q$ Equation co - efficient of p and q \Rightarrow x + y = 1 and 3y - 2x = 1 Solving these, we get $x = \frac{2}{5}, y = \frac{3}{5}$ So, line passes through $\left(\frac{2}{5}, \frac{3}{5}\right)$ Sol. 2. (a) The given lines are $y = (2 - \sqrt{3}) x + 5$ and $y = (2 + \sqrt{3}) x - 7$ Therefore, slope of first line $m_1 = 2 - \sqrt{3}$ and $\therefore \tan \theta = \left| \frac{m_2 - m_1}{1 + m_1 + m_2} \right| + \left| \frac{2 + \sqrt{3} - 2 + \sqrt{3}}{1 + (4 - 3)} \right|$ $=\left|\frac{2\sqrt{3}}{2}\right|=\sqrt{3}=\tan\frac{\pi}{3}\Rightarrow60$ Sol. 3. (a) Let there be a point P (2, 3) on Cartesian plane. Image f this point in the lien y = -x will lie on a line which is perpendicular to this line and distance of this point from y = -x will be equal to distance of the image from this line. Let Q be the image of p and let the co – ordinate of Q be (h, k) Slope of line y = -x is -1Line joining P, Q will be perpendicular to y =-x so, its slope = 1.

Let the equation of the line by y = x + c since this passes through point (2, 3) $3 = 2 + c \Longrightarrow c = 1$ and the equation v = x + 1The point of intersection R lies in the middle of P & O. Point of intersection R lies in the middle of P & 0 Point of intersection of line y = -x and y = x + 1is $2y=1 \Rightarrow y=1/2$ and $x = -\frac{1}{2}$ Hence, $\frac{h+2}{2} = -\frac{1}{2}$ and $\frac{k+3}{2} = \frac{1}{2}$ \Rightarrow h = -3 and k = -2 So, the image of the point (2, 3) in the line y = x is (-3, -2). Sol. 4. (b) Given that mid-point of A (1, 2) and B (x, y) is C (2, 4) $\frac{1+x}{2} = 2$ and $\frac{2+y}{2} = 4$ \Rightarrow x = 3 and y = 6 So, coordinates of B are (3, 6). Given that

 $BD \perp AB$ and CD = 3 unit

 $BC = \sqrt{(2-3)^2 + (4-6)^2} = \sqrt{1+4} = \sqrt{5}$

Solutions In right angled \triangle BCD, CD² = BC² + BD² \Rightarrow 9 = 5 + BD² \Rightarrow BD² = 4 \Rightarrow BD = 2 unit **Sol. 5.** (c)

Since the points are collinear. 1 2 1 $\begin{vmatrix} 2 & 4 & 1 \end{vmatrix} = 0$ 3 a 1 Expanding the determinant $\Rightarrow 1 \begin{vmatrix} 4 & 1 \\ a & 1 \end{vmatrix} - 2 \begin{vmatrix} 2 & 1 \\ 3 & 1 \end{vmatrix} + 1 \begin{vmatrix} 2 & 4 \\ 3 & a \end{vmatrix} = 0$ $\Rightarrow (4 - a) - 2(2 - 3) + 1 (2a - 12) = 0$ $\Rightarrow 4 - a + 2 + 2a - 12 = 0$ $\Rightarrow a - 6 = 0$ $\Rightarrow a = 6$ Thus, Coordinates of C are (3, 6) Thus, BC = $\sqrt{(3-2)^2 + (6-4)}$ $=\sqrt{1+4}=\sqrt{5}$ unit Sol. 6. (a) Lines are $L_1 \equiv Ax + By = A + B$ and $L_2 \equiv A (x - y) + B (x + y) = 2B$ Slope of L_1 is $-\frac{A}{B}$ $m_1 = -\frac{A}{B}$ [m₁ is the side of line L₁] For line Lo: Ax - Ay + Bx + By = 2B $(\mathbf{A} + \mathbf{B})\mathbf{x} - (\mathbf{A} - \mathbf{B})\mathbf{y} = 2\mathbf{B}.$ Slope of line L_2 in (A+B)A-B $m_2 = \frac{(A+B)}{(A-B)}$ [m₂ is the side of line L₂] If angle between line L_1 and L_2 is θ then $\tan\theta = \frac{m_1 - m_2}{m_1 - m_2}$ $1 + m_1 m_2$ $=\frac{-\frac{A}{B}-\frac{A+B}{A-B}}{1+\left(-\frac{A}{B}\right)\times\left(\frac{A+B}{A-B}\right)}=\frac{\frac{-A(A-B)-B(A+B)}{B(A-B)}}{\frac{B(A-B)-A(A+B)}{B(A-B)}}\qquad b=\frac{\sqrt{3}}{2} \text{ or }$ $=\frac{-A^{2} + AB - AB - B^{2}}{AB - B^{2} - A^{2} - AB} = \frac{-B^{2} - A^{2}}{-B^{2} - A^{2}} = 1$ So, $\theta = \pi/4$ Sol. 7. (d) Length of perpendicular from the origin on the straight line x + 2by - 2p = 0 is $\frac{0+2\mathbf{b}\times 0-2\mathbf{p}}{\sqrt{1^2+(2\mathbf{b})^2}} = \mathbf{P}$ $Or P = \frac{-2p}{\sqrt{1^2 + 4b^2}}$ Or $P^2 = \frac{4p^2}{1+4b^2}$ $\frac{4}{1+ab^2} = 1$ \Rightarrow 1+4b² = 4 or 4b² = 3

 $\Rightarrow b^2 = 3/4 \Rightarrow b = \pm \frac{\sqrt{3}}{2} \Rightarrow b \frac{\sqrt{3}}{2}$ Matches with the given option Sol. 8. (a) Let the point of intersection divide the line segment joining points, (3, -1) and (8, 9) in k : 1 ratio then: The point is $\left(\frac{8k+3}{k+1}, \frac{9k-1}{k+1}\right)$ Since this point lies on the line y - x + 2 = 0We have, $\frac{9k-1}{k+1} - \frac{8k+3}{k+1} + 2 = 0$ $=\frac{9k-1-8k-3}{k+1}+2=0=\frac{k-4}{k+1}+2=0$ = k - 4 + 2k + 2 = 0 = 3k - 2 = 0 $k = \frac{2}{3}:1$ i.e. 2:3 Sol. 9. (d) Let points be A(2, -2), B(8, 4), C(4,6) and D(-1, 1) in order and are vertices of a quadrilateral. $AB^2 = (8-2)^2 + (4+2)^2 = 36 + 36 = 72$ $BC^2 = (4-8)^2 + (6-4)^2 = 16 + 4 = 20$ $CD^2 = (4 + 1)^2 + (6-1)^2 = 25 + 25 = 50$ $AD^2 = (2 + 1)^2 + (-2 - 1)^2 = 9 + 9 = 18$ Thus $AB \neq BC \neq CD \neq AD$ Hence, quadrilateral is a trapezium. Sol. 10. (c) Equation of line is ax + by - p = 0, then Length of perpendicular, from the origin. $p = \left| \frac{a \times 0 + b \times 0 - p}{\sqrt{a^2 + b^2}} \right| \text{ or } p = \left| \frac{-p}{\sqrt{a^2 + b^2}} \right|$ or $\frac{1}{\sqrt{a^2 + b^2}} = 1$ or $a^2 + b^2 = 1$ $b = \frac{\sqrt{3}}{2} \operatorname{or} b^2 = \frac{3}{4}$ $a^2 = \frac{1}{4} \Longrightarrow a = \frac{1}{2}$ $[a=-\frac{1}{2}$ not taken since angle is with + ve directions of x-axis] Equation is $\frac{1}{2}x + \frac{\sqrt{3}}{2}$ $y=p \text{ or } x \cos 60^\circ + y \sin 60^\circ = p \text{ angle} = 60^\circ$ Sol. 11. (a) Co-ordinate axes and straight line ax + by + c = 0From an isosceles triangle. This is possible when, the line makes equal intercept on both the axis. Expressing ax + by + c = 0 in intercept form: ax + by = -c or $\frac{x}{-\frac{c}{a}} + \frac{y}{-\frac{c}{b}} = 1$ So, x - intercept = -c/a and y - intercept = -c/b

Since, $-\frac{c}{a} = -\frac{c}{b}$ Hence, a = bIntercepts can be on both the sides of axis. So, |a| = |b|Sol. 12. (d) As given Coordinates of P and Q are (-3, 4) and (2, 1) respectively. Let coordinates of R be (x, y). As given: PR = 2 QR \Rightarrow PR - QR = QR \Rightarrow PQ = QR So, Q is the mid-point of P and R $\Rightarrow 2 = \frac{-3 + x}{2} \text{ and } 1 = \frac{4 + y}{2}$ \Rightarrow x = 7 and y = -2 \therefore Coordinates of R = (7, -2) Sol. 13. (b) Let point $P(x_1, y_1)$ be equidistant from point A(1,2) and B (3, 4). $\therefore PA = PB$ $\Rightarrow PA^2 = PB^2$ $\Rightarrow (1+x_1)^2 + (2-y_1)^2 = (2-x_1)^2 + (4-y_1)^2$ $\Rightarrow 1 + x_1^2 - 2x_1 + 4 + y_1^2 - 8y_1$ $\Rightarrow 9 + x_1^2 - 6x_1 + 16 + y_1^2 - 8y_1$ $\Rightarrow 4x_1 + 4y_1 = 5$ $\Rightarrow x_1 + y_1 = 5$ As $p(x_1, y_1)$ lies on 2x-3y = 5 $\therefore 2x_1 - 3y_1 = 5$ On solving eqs. (1) and (2), we get $x_1 = 4$ and $y_1 = 1$.:. Coordinates of P are (4, 1). Sol. 14. (a) (A) and (R) are true and (R) is correct explanation of A. Sol. 15. (a) As given: A (2, 3), B (1, 4), C (0, -2) and D (x, y) are the vertices of a parallelogram. Diagonals of a parallelogram bisect each other. So, mid-point are same for both diagonals AC and BD. $\frac{2+0}{2} = \frac{1+x}{2}$ and $\frac{3-2}{2} = \frac{4+y}{2}$ \Rightarrow x = 1 and y = -3 \Rightarrow D (x, y) = (1, -3) Sol. 16. (c) Let O (0, 0), A (x_1, y_1) and B (x_2, y_2) be three points $OA = \sqrt{x_1^2 + y_1^2}, OB = \sqrt{x_2^2 + y_2^2}$ $AB = \sqrt{(x_2 + x_1)^2 + (y_2 - y_1)^2}$ In \triangle AOB, $\cos \angle AOB = \frac{OA^2 + OB^2 - AB}{OA^2 + OB^2 - AB}$ 2.OAOB \Rightarrow OA.OB cos \angle AOB= $\frac{OA^2 + OB^2 - AB}{2}$ $=\frac{x_1^2+y_1^2+x_2^2-\left\{(x_2-x_1)^2+(y_2-y_1)^2\right\}}{2}$ ⇒OA.OB.cos∠AOB $=\frac{x_1^2+y_1^2+x_2^2+y_2^2-\left\{\left(x_2^2+x_1^2-2x_1x_2+y_2^2+y_1^2-2y_1y_2\right)\right\}}{2}$ $=\frac{2(x_1x_2+y_1y_2)}{2}=x_1x_2+y_1y_2$ Sol. 17. (b) Let the side of the square = x units

Area of square $= x^2$ unit And perimeter of square = 4x unit According to question. $\mathbf{x}^2 + \mathbf{4} = \mathbf{4}\mathbf{x}$ $\Rightarrow x^2 - 4x + 4 = 0$ $\Rightarrow (x-2)^2 = 0$ $\Rightarrow x = 2$ \therefore Side of square = 2 unit Sol. 18. (a) Let A, B and C having co - ordinates (a, b), (c, d) and {(a-c), (b -d)} respectively be the points If these points are collinear then а b d с 1 = 0a−c b−d 1 $R_2 \rightarrow R_2 \rightarrow R_1$ gives b 1 а $\mathbf{c} - \mathbf{a} \quad \mathbf{d} - \mathbf{b} \quad \mathbf{0} = \mathbf{0}$ a−c b−d 1 $R_3 \rightarrow R_2 + R_3$ gives a b 1 $\mathbf{c} - \mathbf{a} \quad \mathbf{d} - \mathbf{b} \quad \mathbf{0} = \mathbf{0}$ 0 0 1 $\Rightarrow 1. \{a (d-b) - b (c-a)\} = 0$ \Rightarrow ad -ab - bc + ab = 0 \Rightarrow bc - ad = 0 Sol. 19. (c) let that point is (h,k) $\sqrt{(h - (m + n))^2 + (k - (n - m))^2} = \sqrt{(h - (m - n))^2 + (k - (m + n))^2}$ after solving it put h = x and k = y nx = mySol. 20. (a) Given, $ax \cos\phi + by \sin\phi - ab = 0$ At point $\left(+\sqrt{b^2-a^2},0\right)$ $d_1 = \frac{a\sqrt{b^2 - a^2}\cos\phi - ab}{\sqrt{a^2\cos^2\phi + b^2\sin^2\phi}}$ At point $\left(\sqrt{b^2 - a^2}, 0\right)$ $d_2 = -a\sqrt{b^2 - a^2}\cos\phi - ab$ $\frac{1}{\sqrt{a^2 \cos^2 \phi + b^2 \sin^2 \phi}}$ $\therefore d_{1}d_{2} = \frac{\left[a^{2}\left(b^{2}-a^{2}\right)\cos^{2}\phi a^{2}b^{2}\right]}{a^{2}\cos^{2}\phi + b^{2}\sin^{2}\phi}$ $= - \frac{a^{2} \left(-b^{2} \sin^{2} \phi - a^{2} \cos^{2} \phi\right)}{a^{2} \cos^{2} \phi + b^{2} \sin^{2} \phi} = a^{2}$ Sol. 21. (c) Mid-point of (p,q) and (q,-p) is $\left(\frac{p+q}{2},\frac{q-p}{2}\right) \left(\frac{x}{a}+\frac{y}{b}-1\right)-1\left(\frac{x}{a}+\frac{y}{b}-1\right)=0$ which is given $\left(\frac{r}{2}, \frac{s}{2}\right)$ $\therefore \frac{p+q}{2} = \frac{r}{2} \text{ and } \frac{q-p}{2} = \frac{s}{2}$ Now, length of segment $=\sqrt{\left(p-q\right)^2+\left(q+p\right)^2}$ $=\sqrt{s^2+r^2}$ Sol. 22. (b)

(0.0) $D(0,c) \longrightarrow X$ B(c,-c) Required area = 2 area (ΔAOD) $= 2 \times 1 / 2 \times OD \times AD = c \times c = c^2$ Sol. 23. (b) Sol. 24. (b) Since, slope of line $x\cos\theta + y\sin\theta = 2is - \cot\theta$ and slope of line x-y = 3 is 1. Also, these lines are perpendicular to each other. $\therefore (-\cot\theta)(1) = -1 \Rightarrow \cot\theta = 1 = \cot \pi/2$ $\Rightarrow \theta = \pi/4$ Sol. 25. (b) The equation of line perpendicular to given line is: x + y - 11...(i) and $-x+y+\lambda = 0$...(ii) This equation passes through (2,3) $\therefore -2+3+\lambda = 0 \Longrightarrow \lambda = -1$ From Eq.(ii), $-x+y-1 = 0 \Rightarrow y = x + 1$ From Eq. (i), $x+x+1-11 = 0 \implies 2x = 10$ $\Rightarrow x = 5$ Hence, coordinates of foot of perpendicular from (2,3) to given line is (5,6). Sol. 26. (a) area $=\frac{1}{2}\begin{vmatrix} -3 & 0 & 1 \\ 3 & 0 & 1 \\ 0 & 1 & -1 \end{vmatrix} = 9 \Longrightarrow k = 3$ Sol. 27. (c) Given point will satisfy both equations then k=1/2 Sol. 28. (d) slope of given line is -3/4and slope of line perpendicular to it is 4/3. Sol. 29. (c) We know that, the equation of straight line passing through the intersection point of two lines $\frac{x}{a} + \frac{y}{b} = 1$ and $\frac{x}{b} + \frac{y}{a}$ is $\left(\frac{x}{a} + \frac{y}{b} - 1\right) + \lambda \left(\frac{x}{b} + \frac{y}{a} - 1\right) = 0$...(i) Since, this line passes through the origin $\therefore (0-1) + \lambda (0-1) = 0 \Longrightarrow \lambda = -1$ On putting the value of λ in Eq. (i), we get $\Rightarrow \frac{x}{a} + \frac{y}{b} - 1 - \frac{x}{b} - \frac{y}{a} + 1 = 0$ $\Rightarrow x \left(\frac{1}{a} - \frac{1}{b}\right) - y \left(\frac{1}{a} - \frac{1}{b}\right) = 0$ $\therefore \mathbf{x} - \mathbf{y} = \mathbf{0}$ Sol. 30. (c) The equation of given lines are 3y + 4x = 1...(i) y = x + 5...(ii) and 5y + bx = 3...(iii)

On solving Eqs. (i) and (ii), we get

$$x = -2$$
 and $y = 3$
If these lines are concurrent, then their values
must satisfy the third equation
 $15 - 2b = 3 \Rightarrow 2b = 12 \Rightarrow b = 6$
Sol. 31. (c)
Let A (a,0) and B (0,b) are two points on
respective coordinate axes and (-5, 4) divides
AB in the ratio 1:2.
 $\therefore -5 = \frac{1 \times 0 + 2 \times a}{3} \Rightarrow a = \frac{-15}{2}$
and $4 = \frac{1 \times b + 2 \times 0}{3} \Rightarrow b = 12$
Hence, equation of line joining $\left(-\frac{15}{2}, 0\right)$ and
 $(0,12)$ is
 $(y - 0) = \frac{12 - 0}{0 + \frac{15}{2}} \left(x + \frac{15}{2}\right)$
 $\Rightarrow y = \frac{4}{5} (2x + 15)$
 $\Rightarrow 5y = (8x + 60)$
 $\Rightarrow 8x - 5y + 60 = 0$
Sol. 32. (a)
Let (α, β) be the image of point (1, 2) w.r.t. line
 $3x + 4y - 1 = 1$
 $\Rightarrow 3\left(\frac{\alpha + 1}{2}\right) + 4\left(\frac{\beta + 1}{2}\right) - 1 = 0$
 $\Rightarrow 3\alpha + 3 + 4\beta + 8 - 2 = 0$
 $\Rightarrow 3\alpha + 4\beta + 9 = 0$
Which is satisfied by $\left(-\frac{7}{5}, -\frac{6}{5}\right)$
Thus, the image of point (1, 2) is $\left(-\frac{7}{5}, -\frac{6}{5}\right)$

					_	
		NDA	P	YO		
1.	What is the locus of a po	oint which moves equidistant from		3		
	the coordinate axes?			(c) $p = \frac{1}{2}, q = 0$	(d) $p=1, q=0$	
	(a) $x \pm y = 0$	(b) $x+2y=0$ (d) None of these			[NDA – (II) - 2011	1]
	(c) $2x+y=0$	(d) None of these $[NDA - (I) - 2011]$	12.	If p is the length of the p	erpendicular drawn from the origi	in
2.	The line $mx + ny = 1$ particular the l	asses through the points (1,2) and		to the line $\frac{x}{y} + \frac{y}{y} = 1$, the	n which one of the following	is
	(2,1). What is the value of	m?		a b	C C	
	(a) 1	(b) 3			1 1 1	
	(c) $\frac{1}{-}$	(d) $\frac{1}{2}$		(a) $\frac{1}{p^2} = \frac{1}{a^2} + \frac{1}{b^2}$	(b) $\frac{1}{p^2} = \frac{1}{a^2} - \frac{1}{b^2}$	
	2	3		p u 0	p	
2	If the sum of the acueros	[NDA - (I) - 2011]		(c) $\frac{1}{p} = \frac{1}{a} + \frac{1}{b}$	(d) $\frac{1}{p} = \frac{1}{2} - \frac{1}{p}$	
5.	from the point (a 0) and ($-a(0)$ is $2b^2$ then which one of the		pao	p a 0 [NDA-2011(2]	51
	following is correct?	a,0) is 20, then which one of the	13.	What is the equation of a	line parallel to x-axis at a distance	ce
	(a) $x^2 + a^2 = b^2 + y^2$	(b) $x^2 + a^2 = 2b^2 - y^2$		of 5 units below x-axis?	-	
	(c) $x^2 - a^2 = b^2 + y^2$	(d) $x^2 + a^2 = b^2 - y^2$		(a) $x=5$	(b) $x = -5$	
	W 71 () () () () () () () () () ([NDA – (I) - 2011]		(c) $y=5$	(d) $y = -3$ [NID A 2011/2]	1
4.	point of intersection of the	he line joining the origin with the lines $4x + 3y - 12$ and $3x + 4y - 3y - 12$	14.	What is the distance betw	where the lines $3x + 4y = 9$ and $6x$	л +
	12?	f = 12 and $f = 12$		8y = 18?	2	
	(a) x+y=1	(b) x-y=1		(a) 0	(b) 3 units	
	(c) $3y = 4x$	(d) $\mathbf{x} = \mathbf{y}$		(c) 9 units	(d) 18 units $[NDA - (I) - 201]$	7 1
5	What is the equation of t	[NDA (I) - 2011]	15.	What is the equation of	f line passing through (0, 1) an	دم Id
5.	parallel to Y-axis?	the line passing through (2,-3) and		making an angle with Y-	axis equal to the inclination of th	ıe
	(a) $y = -3$	(b) $y = 2$		line $x - y = 4$ with X-axis	?	
	(c) $x = 2$	(d) $x = -3$		(a) $y = x + 1$ (c) $2x = x + 2$	(b) $x = y + 1$ (d) None of these	
	W 7 (1) (1	[NDA – (I) - 2011]		(c) $2x = y + 2$	(u) None of these [NDA - (I) - 2012	21
6.	what is the locus of the p to the left of V-axis?	boint which is at a distance 8 units	16.	What is the perpendicula	r distance of the point (x, y) from	m
	(a) $x=8$	(b)y=8		X-axis?		
	(c) $x = -8$	(d) $y = -8$		(a) x (a) $ \mathbf{x} $	(b) y (d) y	
_		[NDA – (I) - 2011]		$(\mathbf{C}) \mathbf{X} $	[NDA - (I) - 201	21
7.	If $(a, 0)$, $(0, b)$ and $(1, 1)$	are collinear, what is $(a + b - ab)$	17.	What is the perimeter of	the triangle with vertices $A(-4,2)$:),
	(a) 2	(b) 1		B(0,-1) and C(3,3)?		
	(c) 0	(d) -1		(a) $7+3\sqrt{2}$	(b) $10+5\sqrt{2}$	
		[NDA – (I) - 2011]		(c) $11+6\sqrt{2}$	$(a) 5+ \sqrt{2}$ [NDA-2012(1])1
8.	Two straight lines $x-3y-2$	x=0 and 2x - 6y - 6 = 0	18.	If the midpoint between t	he points $(a+b, a-b)$ and $(-a, b)$ lie	es
	(a) Never intersect (b) Intersect at a single po	int		on the line $ax + by = k$, w	hat is k equal to?	
	(c) Interest at infinite num	ber of points		(a) a/b	(b) a+b	
	(d)Interest at more than	one point (but finite number of		(c) ab	(d) $a - b$ [NDA-2012(1])1
	points)		19.	The acute angle which th	e perpendicular from origin on th	ne
0	For what value of k are th	[NDA - (I) - 2011]		line 7x-3y=4 makes with	the x-axis is:	
9.	+ 5 = 0 parallel?	10 mes x + 2y = 9 = 0 and xx + 4y		(a) zero	(b) positive but not $\pi/4$	
	(a) 2	(b) –1		(c) negative	(d) $\pi/4$	1
	(c) 1	(d) 0	20.	The equation of a straig	ht line which makes an angle 45	刀 5°
10	What are the coordinates	[NDA - (II) - 2011]		with X-axis with y-interce	ept 101 units is	
10.	from the point (2–3) on the	e line $x + y - 11 = 0$?		(a) $10x + 101y = 1$	(b) $101x + y = 1$	
	(a) $(2, 9)$	(b) $(5, 6)$		(c) $x + y - 101 = 0$	(d) $x - y + 101 = 0$	•1
	(c) (-5, 6)	(d) (6, 5)	21.	The line $x = 0$ divides the	e line joining the points $(3, -5)$ and	נ≃ 1d
4.4		[NDA – (II) - 2011]		(-4, 7) in the ratio	. j. 8	
11.	II (p,q) is the point on the $(1,2)$ and $(2,3)$ then which	ne axis equidistant from the point		(a) 3 : 4	(b) $4:5$	
	(a) $p = 0, q = 4$	(b) $p = 4, q = 0$		(c) 5 : /	(a) / : 9 INDA (II) 2014	7 1
	· _ · •	·	I		[INDA - (II) - 2012	-1

22.	What is the value of λ , if t	he straight line $(2x + 3y + 4) + \lambda$		(a) Cross each other at one	e point
	(6x - y + 12) = 0 is parallel	to Y-axis? (b) 6		(b) Not cross each other at two	points
	(a) 5 (c) 4	(0) - 0 (d) - 3		(d) Cross each other at inf	initely many points
	(•)	[NDA - (II) -2012]		(,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	[NDA - (I) - 2013]
23.	From the point (4, 3) a per axis as well as on the Y-ax	rpendicular is dropped on the X- is. If the lengths of perpendiculars	34.	The point whose abscissa is equidistant from $A(-1,0)$	is equal to its ordinate and which)) and $B(0,5)$ is:
	are p and q respectively, the	nen which one of the following is		(a) (1,1)	(b) (2,2)
	correct?			(c) $(-2,-2)$	(d)(3,3)
	(a) $p = q$	(b) $3p = 4q$	25	What is the area of the	[NDA-2013(1)]
	(c) $4p \equiv 3q$	(d) $p + q = 5$	35.	what is the area of the $(0,4)$ and $(3,4)$?	triangle whose vertices are (5,0),
24	What is the perpendicular of	[NDA (II) 2012] distance between the parallel lines		(0,4) and $(3,4)$:	(b) 7.5 square unit
27.	3x + 4y = 9 and $9x + 12y + 12y = 10$	28 = 0?		(c) 9 square unit	(d) 12 square unit
	(a) 7/3 units	(b) $8/3$ units			[NDA-2013(1)]
	(c) 10/3 units	(d) 11/3 units	36.	What is the angle between	the line $x + y = 1$ and $x - y = 1$?
		[NDA (II) 2012]		(a) π/6	(b) π/4
25.	The points (5, 1), (1, -1) ar	nd (11, 4) are		(c) π/3	(d) $\pi/2$
	(a) Collinear				[NDA - (II) - 2013]
	(b) Vertices of right angled(c) Vertices of equilateral t	triangle riangle	37.	What is the equation of the 2) and $(-4, 7)$?	e straight line passing through (5, –
	(d) Vertices of an isosceles			(a) $5x - 2y = 4$	(b) $-4x + 7y = 9$
		[NDA (II) 2012]		(c) $x + y = 3$	(d) $x - y = -1$
26.	The equation to the loce	us of a point which is always			[NDA - (II) - 2013]
	equidistant from the points	(1, 0) and $(0, -2)$ is	38.	The equation of the line, t	the reciprocals of whose intercepts
	(a) $2x + 4y + 3 = 0$	(b) $4x + 2y + 3 = 0$		on the axes are m and n, is	s given by
	(c) $2x + 4y - 3 = 0$	(d) $4x + 2y - 3 = 0$		(a) $nx + my = mn$	(b) $mx + ny = 1$ (d) $my - ny = 1$
27	The locus of a point equidi	[NDA - (II) - 2012]		(c) $\min x + \min y = \min x$	(u) $\min - \lim y = 1$
21.	(a) Δ straight line	(b) A pair of points	30	The equation of the locu	[NDA - (II) - 2013]
	(c) A point	(d) The null set	57.	from the axes is	is of a point which is equidistant
	(0) 11 point	[NDA - (II) - 2012]		(a) $\mathbf{v} = 2\mathbf{x}$	(b) $x = 2y$
28.	Let p, q, r, s be the distanc	es from origin of the points (2,6),		(c) $\mathbf{v} = \pm \mathbf{x}$	(d) $2v + x = 0$
	(3,4), $(4,5)$ and $(-2,5)$ 1	respectively. Which one of the			[NDA - (II) - 2013]
	following is a whole number	er?	40.	A points P moves such that	at its distances from $(1, 2)$ and $(-2, -2)$
	(a) p	(b) q		3) are equal. Then the locu	is of P is
	(c) r	(d) s		(a) Straight line	(b) Parabola
• •		[NDA-2012(2)]		(c) Ellipse	(d) Hyperbola
29.	If the points $(2,4)$, $(2,6)$ ar	nd $(2+\sqrt{3},k)$ are the vertices of an	41	XX 71 (1 1 (1 1)	[NDA - (II) - 2013]
	equilateral triangle, then w	(b) 5	41.	what angle does the line s	segment joining $(5, 2)$ and $(6, -15)$
	(a) 0	(d) 1		subtenu at $(0, 0)$?	(b) $\pi/4$
	(c) 5	(d) I [NDA-2012(2)]		(a) $\pi/2$	(d) $3\pi/4$
30.	What is the equation of a s	straight line which passes through		(c) n/2	(U) 57/74 [NDA - (II) - 2013]
	(3, 4) and the sum of whose	e x and y-intercepts is 14?	42.	What is the equation of the	e line which passes through $(4, -5)$
	(a) $4x + 3y = 24$	(b) $x + y = 7$		and is perpendicular to 3x	+4y+5=0?
	(c) $4x - 3y = 0$	(d) $3x + 4y = 25$		(a) $4x - 3y - 31 = 0$	(b) $3x - 4y - 41 = 0$
		[NDA - (I) - 2013]		(c) $4x + 3y - 1 = 0$	(d) $3x + 4y + 8 = 0$
31.	A straight line passes thro	bugh the points $(5, 0)$ and $(0, 3)$.			[NDA - (II) - 2013]
	The length of the perpendi	cular from the point $(4, 4)$ on the	43.	For what value of k are the	e two straight lines $3x + 4y = 1$ and
		<u> </u>		4x + 3y + 2k = 0, equidista	ant from the point $(1,1)$?
	(a) $\frac{\sqrt{17}}{\sqrt{17}}$	(b) $\frac{17}{17}$		(a) $1/2$	(b) 2 (d) $1/2$
	2	$\bigvee \sqrt{2}$		(c) = 2	(u) - 1/2 [NDA (II) 2013]
	. 15	17	44	If the three vertices of the	narallelogram ABCD are $A(1, \alpha)$
	(c) $\frac{1}{\sqrt{34}}$	(d) ${2}$		$B(3, \alpha) \cap C(2, b)$ then D is	equal to?
	V 34	- [NDA (I) 2013]		(a) (3, b) (2, b) then D is	(b) $(0, b)$
				(c) (4, b)	(d) (5, b)
32.	What is the inclination of the	he line $\sqrt{3x} - y - 1 = 0$?		× / × / /	[NDA - (II) - 2013]
	(a) 30°	(b) 60°	45.	The value of k for w	which the lines $2x+3y+a=0$ and
	(c) 135°	(d) 150°	l	5x+ky+a=0 represent fami	ily of parallel lines is:
		[NDA (I) - 2013]		(a) 3	(b) 4.5
33.	Two straight line paths are	represented by the equations $2x - $	l	(c) 7.5	(d) 15
	y = 2 and $-4x + 2y = 6$. The	en, the paths will	I		[NDA-2013(2)]

46	The centroid of the triangle	with vertices $(2, 3)$ $(2, 2)$ and	i i	(2)	(1)
70.	(3,5) is at :	(-2, -2) and		(c) $\left(1, \frac{2}{2}\right)$	(d) $\left(\frac{1}{2}, 3\right)$
	(a) (1,1)	(b) (2,–1)		(3)	(2)
	(c)(1,-1)	(d) (1,2)	56	What is the foot of the altit	[NDA (I) - 2015]
47	What is the equation of a	[NDA-2013(2)]	50.	(a) $(1, 4)$	(b) (-1, 3)
4/.	point (4, 3) and making e	qual intercepts on the coordinate		(c) (-2, 4)	(d) (-1, 4)
	axe?				[NDA (I) - 2015]
	(a) $x + y = 7$	(b) $3x + 4y = 7$	57.	The perpendicular distance	e between the straight lines $6x + $
	(c) $x - y = 1$	(d) None of these		8y + 15 = 0 and $3x + 4y + 9$	9 = 0.18 (b) $2/10$ unit
10	What is the equation of the	[NDA (I) - 2014]		(a) $3/2$ units (c) $3/4$ unit	(d) $2/7$ unit
48.	what is the equation of the $-4y + 12 = 0$ and $3x - 4y = 0$	-6°		(c) <i>57</i> i unit	[NDA (I) - 2015]
	(a) $3x - 4y - 9 = 0$	(b) $3x - 4y + 9 = 0$	58.	A line passes through (2, 2	2) and is perpendicular to the line
	(c) $3x - 4y - 3 = 0$	(d) $3x - 4y + 3 = 0$		3x + y = 3, its y-intercept is	S (1) 1/2
	~	[NDA (I) - 2014]		(a) $3/4$	(b) 4/3 (d) 3
49.	Consider the following point $L(0, 5)$	\mathbf{H} (2 1)		(c) 1/3	(u) 5 [NDA (I) - 2015]
	I.(0, 3) III (3 -4)	11. $(2, -1)$	59.	The area of a triangle, wh	ose vertices are $(3, 4)$, $(5, 2)$ and
	Which of the above lie on t	the line $3x + y = 5$ and at distance		the point of intersection o	f the lines $x = a$ and $y = 5$, is 3
	$\sqrt{10}$ from (1, 2)?	-		square units. What is the va	alue of a?
	(a) Only I	(b) Only II		(a) 2	(b) 3 (d) 5
	(c) I and II	(d) I, II and III		(C) 4	(d) 5 [NDA (I) - 2015]
50	What is the equation of t	[NDA (I) - 2014]	60.	The length of perpendicul	lar from the origin to a line is 5
50.	segment of the line interce	ne line unough $(1,2)$ so that the pted between the axes is bisected		units and the line makes	an angle 120° with the positive
	at this point?	pied between the axes is bisected		direction of X-axis. Then e	equation of the line is
	(a) $2x - y = 4$	(b) 2x-y+4=0		(a) $x + \sqrt{3}y = 5$	(b) $\sqrt{3x + y} = 10$
	(c) 2x+y=4	(d) 2x+y+4=0		(c) $\sqrt{3}x - y = 10$	(d) None of these
51	Which one of the follow	[NDA-2014(1)]			[NDA (II) - 2015]
51.	x = 1 $y = 2$	ing is contect is respect of the	61.	The equation of the line	joining the origin to the point
	equations $\frac{x-1}{2} = \frac{y-2}{3}$ and	2x + 3y = 5?		intersection of the lines $\frac{X}{x}$	$+\frac{y}{x}=1$ and $\frac{x}{x}+\frac{y}{y}=1$ is
	(a)They represent two lines	which are parallel		a	b b a $b = 1$ b b b b b b b b b b b b b b b b b b
	(b)The represent two lines	which are perpendicular		(a) $x - y = 0$	(b) $x + y = 0$
	(c)They represent two line	es which are neither parallel nor		(c) $x = 0$	(d) $y = 0$
	perpendicular		62	The three lines $4x + 4y - 1$	[NDA (II) - 2015] 8x - 3y - 2 y - 0 are
	(d) The first equation does	INDA (II) - 2014	•=•	(a) The sides of an isoscele	es triangle
52.	A $(3, 4)$ and B $(5, -2)$ are	two points and P is a point such		(b) Concurrent	C
	that $PA = PB$. If the area of	of $\triangle PAB$ is 10 sq units, then what		(c) Mutually perpendicular	
	are the coordinates of P?			(d) The sides of an equilate	eral triangle
	(a) Only $(1, 0)$	(b) Only $(7, 2)$	63.	The line $3x + 4y - 24 = 0$	intersects the X-axis at A and Y-
	(c) Either $(1, 0)$ or $(7, 2)$	(d) Neither $(1, 0)$ nor $(7, 2)$		axis at B. Then, the Circun	n-centre of the $\triangle OAB$, where O is
53.	What is the product of th	e perpendiculars drawn from the		the origin, is	
	points $(\pm\sqrt{a^2-b^2}, 0)$ upon	the line by $\cos \alpha + ay \sin \alpha =$		(a) $(2, 3)$	(b) (3, 3)
	ab?			(c)(4,3)	(d) None of these
	(a) a^2	(b) b ²	64.	The product of the perpen	diculars from the two points (± 4)
	(c) $a^2 + b^2$	(d) $a + b$	•	0) to the line $3x \cos \phi + 5y$	$\sin \phi = 15$ is
		[NDA (II) - 2014]		(a) 25	(b) 16
	Direction (for next three)	antiana A (22) D (21) and C		(c) 9	(d) 8
	$(1 \ 2)$	(-2, 3), B(2, 1) and C	65	True straight lines passing	[NDA (II) - 2015] through the point $A(2, 2)$ but the
54.	What is the Circum-centre	of the $\triangle ABC$?	05.	line $2v = x + 3$ and X-a	A(5, 2) cut the point $A(5, 2)$ cut the axis perpendicularly at P and O
	(a) (-2, -2)	(b) (2, 2)		respectively. The equation	of the line PQ is
	(c) (-2, 2)	(d) (2, -2)		(a) $7x + y - 21 = 0$	(b) $x + 7y + 21 = 0$
	TT 71 (1 (1)))))))))))))))	[NDA (I) - 2015]		(c) $2x + y - 8 = 0$	(d) $x + 2y + 8 = 0$
55.	what is the centroid of the (1)	$\Delta ABC?$		Where, $n \in Z$	
	(a) $\left(\frac{1}{2}, 1\right)$	(b) $\left(\frac{1}{2}, 2\right)$	66	The area of the figure form	[INDA (II) - 2015]
	(3)	(3)	00.	-by + c = 0, $ax + by - c =$	0 and $ax - by - c = 0$ is:
			•	, .,	

(a)
$$\frac{z^2}{a^3}$$
 (b) $\frac{2z^2}{a^4}$ (c) $\frac{z^2}{a^4}$ (d) $\frac{z^4}{a^6}$ (e) $\frac{z^2}{a^5}$ (f) $\frac{1}{a^5}$ (g) $\frac{z^2}{a^4}$ (g) $\frac{z^2}{a^4}$ (g) $\frac{z^2}{a^4}$ (g) $\frac{z^2}{a^4}$ (g) $\frac{z^2}{a^4}$ (g) $\frac{z^2}{a^5}$ (g) $\frac{z^2}{$

(a)
$$\left[1,\frac{\sqrt{3}}{2}\right]$$
 (b) $\left[\frac{2}{3},\frac{\sqrt{3}}{2}\right]$ (c) $\left[\frac{1}{3},\frac{\sqrt{3}}{\sqrt{3}}\right]$ (d) $\left[\frac{1}{\sqrt{3}}\right]$
(e) $\left(\frac{2}{3},\frac{\sqrt{3}}{2}\right]$ (e) $\left[\frac{1}{\sqrt{3}},\frac{\sqrt{3}}{2}\right]$ (f) $\left[\frac{1}{\sqrt{3}},\frac{\sqrt{3}}{2}\right]$ (g) $\left[\frac{1}{\sqrt{3}},\frac{\sqrt{$

103. What is the angle between the straight lines $(m^2 - mn) y = (mn + n^2) x + n^3$ and $(mn + m^2) y = (mn - n^2) x + m^3$, where m > n? (a) $\tan^{-1}\left(\frac{2mn}{m^2 + n^2}\right)$ (b) $\tan^{-1}\left(\frac{4m^2n^2}{m^4 - n^4}\right)$

(a)
$$\tan^{-1}\left(\frac{2mn}{m^2+n^2}\right)$$
 (b) $\tan^{-1}\left(\frac{4n}{m^4}\right)$
(c) $\tan^{-1}\left(\frac{4m^2n^2}{m^4+n^4}\right)$ (d) 45°

[NDA (I) - 2018] 104. What is the distance between the points which divide the line segment joining (4,3) and (5,7) internally and externally in the ratio 2:3?

(a)
$$\frac{12\sqrt{17}}{5}$$
 (b) $\frac{13\sqrt{17}}{5}$
(c) $\frac{\sqrt{17}}{5}$ (d) $\frac{6\sqrt{17}}{5}$

[NDA (I) - 2018] 105. What is the area of the triangle with vertices

$$\begin{pmatrix} x_{1}, \frac{1}{x_{1}} \end{pmatrix}, \begin{pmatrix} x_{2}, \frac{1}{x_{2}} \end{pmatrix}, \begin{pmatrix} x_{3}, \frac{1}{x_{3}} \end{pmatrix}?$$
(a) $|(x_{1} - x_{2}) (x_{2} - x_{3}) (x_{3} - x_{1})|$
(b) 0
(c) $\left| \frac{(x_{1} - x_{2})(x_{2} - x_{3})(x_{3} - x_{1})}{x_{1}x_{2}x_{3}} \right|$
(d) $\left| \frac{(x_{1} - x_{2})(x_{2} - x_{3})(x_{3} - x_{1})}{2x_{1}x_{2}x_{3}} \right|$

[NDA (II) - 2018] 106. Consider the following statement: Statement I If the line segment joining the points P(m,n) and Q(r,s) subtends an angle α at the origin, then $\cos \alpha = \frac{ms - nr}{\sqrt{(m^2 + n^2)(r^2 + s^2)}}$.

Statement II

If any triangle ABC, it is true that

 $a^2 = b^2 + c^2 - 2bc \cos A$. What of the following is correct in respect of the above two

(a)Both Statement I and Statement II are true and Statement II is the correct explanation of Statement I.
(b)Both Statement I and Statement II are true, but Statement II is not the correct explanation of Statement I.
(c)Statement I is true, but Statement II is false
(d)Statement I is false, but Statement II is true

[NDA (II) - 2018] 107. What is the equation of straight line pass through the point

of intersection of the line $\frac{x}{2} + \frac{y}{3} = 1$ and $\frac{x}{3} + \frac{y}{2} = 1$, and parallel the line 4x + 5y - 6 = 0? (a) 20x + 25y - 54 = 0 (b) 25x + 20y - 54 = 0(c) 4x + 5y - 54 = 0 (d) 4x + 5y - 45 = 0[NDA (II) - 2018]

108. Consider the following statements:

I. The distance between the lines $y = mx + c_1$ and $y = mx + c_2$ is $\frac{|c_1 - c_2|}{|c_1 - c_2|}$

$$\frac{11}{\sqrt{1-m^2}}$$
.

II. The distance between the lines $ax + by + c_1 = 0$ and $ax + by + c_1 = 0$ by + c₂ = 0 is $\frac{|c_1 - c_2|}{\sqrt{a^2 + b^2}}$ III. The distance between the lines x = c and $x = c_2$ is $|c_1 - c_2| = c_2 + c$ $c_2|$. Which of the above statements are correct? (b) II and III only (a) I and II only (c) I and III only (d) I, II and III only [NDA (II) - 2018] 109. The angle between the two lines lx + my + n = 0 and l'x + my + n = 0m'y + n' = 0 is given by $\tan^{-1}\theta$. What θ equal to? (b) $\left| \frac{\text{lm'}+1'm}{\text{m}} \right|$ (a) |lm'-1'm|ll'– mm ' ll'+ mm' (c) $\left| \frac{\text{lm}' - 1'\text{m}}{\text{ll}' + \text{mm}'} \right|$ (d) $\left| \frac{\text{lm'+1'm}}{\text{ll'-mm'}} \right|$ [NDA (II) - 2018] 110. The second degree equation $x^2 + 4y^2 - 2x - 4y + 2 = 0$ represents (a) A point (b) An ellipse of semi-major axis 1 (c) An ellipse with eccentricity $\frac{\sqrt{3}}{2}$ (d) None of the above [NDA (II) - 2018] **111.** The straight lines x + y - 4 = 0, 3x + y - 4 = 0, x + 3y - 4 = 0Oform a triangle, which is (a) isosceles (b) right - angled (c) equilateral (d) scalene [NDA (I) - 2019] 112. What is the equation of straight line which is perpendicular to y = x and passes through (3,2)? (a) x - y = 5(b) x + y = 5(d) x - y = 1(c) x + y = 1[NDA (I) - 2019] **113.** If the lines 3y + 4x = 1, y = x + 5 and 5y + bx = 3 are concurrent, then what is the value of b? (a) 1 (b) 3 (c) 6 $(d) \frac{1}{2}$ [NDA (I) - 2019] 114. The points (1,3) and (5,1) are two opposite vertices of a rectangle. The other vertices lie on the line y = 2x + c, what is the value of c? (a) 2 (b) – 2 (c) 4 (d) - 4[NDA (I) - 2019] **115.** Consider the following statements: 1. For an equation of a line, $x\cos q + y\sin q = p$, in normal form the length of the perpendicular from the point (a,b) to the line is $|a\cos q + b\sin q + p|$

2. The length of the perpendicular from the point(α,β) to the

line
$$\frac{x}{a} + \frac{y}{b} = 1$$
 is $\left| \frac{a\alpha + b\beta - ab}{\sqrt{a^2 + b^2}} \right|$

Which of the above statements is/are correct? (a) 1 only (b) 2 only (c) Both 1 and 2 (d) Neither 1 nor 2 [NDA (I) - 2019] 116. The equation ax + by + c = 0, represents a straight line (a) for all real numbers a, b and c (b) only when $a \neq 0$ (c) only when $b \neq 0$ (d) only when at least one of a and b is non-zero

[NDA (II) - 2019]

117.	What is the angle between	the lines $x\cos\alpha + y\sin\alpha = a$ and		(c) $pq - 1 = 0$	(d) $p - q = 1$
	$xsin\beta - ycos\beta = a?$,			[NDA (I) 2021]
	(a) $\beta - \alpha$	(b) $\pi + \beta - \alpha$	129.	If A, B and C are in AP, t = 0 will always pass through	hen the straight line $Ax + 2By + c$
	(c) $\frac{(\pi + 2p + 2\alpha)}{2}$	(d) $\frac{(\pi - 2p + 2\alpha)}{2}$		(a) (0, 0)	(b) (-1, 1)
	2	[NDA (II) - 2019]		(c) $(1, -2)$	(d) (1, -1)
118.	What is the distance betwe	en the points $P(m\cos 2\alpha, m\sin 2\alpha)$	130	If the image of the point ([NDA (I) 2021] (-4. 2) by a line mirror is (42)
	and Q(mcos2 β , msin2 β)? (a)/2m sin($\alpha - \beta$)	$(\mathbf{b})^{2}\mathbf{m}\cos(\mathbf{a}-\mathbf{b})$	130.	then what is the equation of	of the line mirror?
	(c) $ m \sin(2\alpha - 2\beta) $	$\frac{(b)[2m\cos(\alpha - \beta)]}{(d)[m\sin(2\alpha - 2\beta)]}$		(a) $y = x$	(b) $y = 2x$
		[NDA (II) - 2019]		(c) $4y = x$	(d) $y = 4x$ [NDA (J) 2021]
119.	An equilateral triangle has	one vertex at $(-1, -1)$ and another	131.	Consider the following sta	tements in respect of the points (p,
	vertex at $(-\sqrt{3},\sqrt{3})$. the th	ard vertex may lie on		q-3, $(q + 3, q)$ and $(6, 3)$:	
	(a) $(-\sqrt{2},\sqrt{2})$	(b) $(\sqrt{2}, -\sqrt{2})$		1. The points lie on a straig 2 The points always lie i	ht line n the first quadrant only for any
	(c) (1,1)	(d) (1,- 1)		value of p and q.	in the first quadrant only for any
120	The point $(1-1)$ is one of:	[NDA (II) - 2019] the vertices of a square If $3x + 2y$		Which of the above statem	ents is/are correct?
120.	= 5 is the equation of one	diagonal of the square, then what		(a) I only (c) Both 1 and 2	(b) 2 only (d) Neither 1 nor 2
	is the equation of the other	diagonal?		(c) Bour I und 2	[NDA (I) 2021]
	(a) $3x - 2y = 5$ (c) $2x - 3y = 5$	(b) $2x - 3y = 1$ (d) $2x + 3y = -1$	132.	What is the acute angle	between the lines $x - 2 = 0$ and
	(c) 2x 3y 3	[NDA 2020]		$\sqrt{3x - y - 2} = 0 ?$	
121.	If the circum-centre of the	triangle formed by the lines $x + 2$		(a) 0° (c) 45°	(b) 30° (d) 60°
	= 0, y + 2 = 0, kx + y + y + y + y + y + y + y + y + y +	2 = 0 is (-1,1), then what is the			[NDA (I) 2021]
	(a) -1	(b) -2	133.	The point of intersection	of diagonals of a square ABCD is
	(c) 1	(d) 2		at the origin and one of its equation of the diagonal B	S vertices is at $A(4,2)$. What is the D?
122.	Under which condition,	are the points (a,b), (c,d) and		(a) $2x + y = 0$	(b) $2x - y = 0$
	(a-c,b-d) collinear ?			(c) x + 2y = 0	(d) $x - 2y = 0$
	(a) $ab = cd$ (c) $ad = bc$	(b) $ac = bd$ (d) $abc = d$		Directions: Consider the	[NDA (1) 2021] following for the next two (02)
	(c) at $= bc$	(u) abc = u [NDA 2020]		items that follow:	
123.	Let ABC ba a triangle. It	f D(2,5) and E(5,9) are the mid		The two vertices of an eq	uilateral triangle are $(0, 0)$ and $(2,$
	points of the sides AB and length of the side BC?	AC respectively, then what is the	134.	Consider the following sta	tements:
	(a) 8	(b) 10		1. The third vertex has at le	ast one irrational coordinate
	(c) 12	(d) 14		2. The area is irrational Which of the above statem	ents is/are correct?
124.	If the foot of the perpendic	[NDA 2020] ular drawn from the point (0, k) to		(a) 1 only	(b) 2 only
	the line $3x - 4y - 5 = 0$ is (3,	1), then what is the value of k?		(c) Both 1 and 2	(d) Neither 1 nor 2
	(a) 3 (a) 5	(b) 4	135.	The difference of coordina	[NDA (II) 2021] tes of the third vertex is:
	(0) 5	[NDA 2020]		(a) 0	(b) $\sqrt{3}$
125.	What is the obtuse angle b	etween the lines whose slopes are		(c) $2\sqrt{2}$	(d) $2\sqrt{3}$
	$2 - \sqrt{3}$ and $2 + \sqrt{3}$? (a) 105°	(b) 120°		Directions: Consider the	[NDA (II) 2021] following for the next two (02)
	(c) 135°	(d) 150°		items that follow:	Tonowing for the next two (02)
10([NDA 2020]		The coordinates of the	ree consecutive vertices of a
126.	If $3x-4y-5 = 0$ and $3x-4y$ pair of opposite sides of a s	y + 15 = 0 are the equations of a guare, then what is the area of the	136.	what is the equation of the	A(1,3), B(-1,2) and $C(3, 5)e diagonal BD?$
	square?		1000	(a) $2x - 3y + 2 = 0$	(b) $3x - 2y + 5 = 0$
	(a) 4 sq units	(b) 9 sq units (d) 25 sq units		(c) $2x - 3y + 8 = 0$	(d) $3x - 2y - 5 = 0$
	(c) to sq units	(u) 25 sq units [NDA 2020]	137.	What is the area of the par	allelogram?
127.	A parallelogram has three	consecutive vertices (-3, 4), (0,		(a) 1 square unit	(b) $\frac{3}{2}$ square units
	-4) and (5, 2). The forth ve	(b) (2, 9)		(c) 2 square units	(d) $\frac{2}{5}$ square units
	(a)(2,10) (c)(3,9)	(0)(2, 3) (d) (4, 10)			[NDA (II) 2021]
100	TC .1 1' 1 1	[NDA (I) 2021]		Directions: Consider the	following for the next two (02)
128.	If the lines $y + px = 1$ and which one of the following	y -qx = 2 are perpendicular, then is correct?		The equations of the side	es AB. BC and CA of a triangle
	(a) $pq + 1 = 0$	(b) $p + q = 1$		ABC are $x-2=0$, $y + 1 = 0$	and $x + 2y - 4 = 0$ respectively.

138.	What is the equation of the	altitude through B on AC?	I		[NDA 2022 (II)]
	(a) $x - 3y + 1 = 0$	(b) $x - 3y + 4 = 0$		Consider the following f	or the next two (02) items that
	(c) $2x - y + 4 = 0$	(d) $2x - y - 5 = 0$ [NDA (II) 2021]		A quadrilateral is formed b	by the lines $x = 0$, $y = 0$, $x + y = 1$
139.	What are the coordinates of	f circum-centre of the triangle?		and $6x + y = 3$.	y = 0, y = 0, x + y = 1
	(a) $(4, 0)$	(b) (2, 1)	149.	What is the equation of dia	gonal through origin?
	(c) $(0, 2)$	(d) $(2, -1)$ [NDA (II) 2021]		(a) $3x + y = 0$ (c) $3x - 2y = 0$	(b) $2x + 3y = 0$ (d) $3x + 2y = 0$
140.	If the points with coordinate	ates $(-5, 0)$, $(5p^2, 10p)$ and $(5q^2, 10p)$		(c) 3x - 2y = 0	[NDA - 2023 (1)]
	10q) are collinear, then what	at is the value of pq where $p \neq q$?	150.	What is the equation of oth	er diagonal?
	(a) -2	(b)-1		(a) $x + 2y - 1 = 0$	(b) $x - 2y - 1 = 0$
	(c) 1	(d) 2 [NDA (I) 2022]		(c) $2x + y + 1 = 0$	(d) $2x + y - 1 = 0$ [NDA - 2023 (1)]
141.	What is the equation of	the straight line which passes	151.	The points (-a, -b), (0, 0),	(a, b) and (a^2, ab) are:
	through the point $(1,-2)$ at	nd cuts off equal intercepts from		(a) lying on the same circle	2
	the axes?			(b) vertices of a square	am that is not a square
	(a) $x+y-1 = 0$ (c) $x + y + 1 = 0$	(b) $x - y - 1 = 0$ (d) $x - y - 2 = 0$		(d) collinear	ani that is not a square
		[NDA (I) 2022]			[NDA-2023 (2)]
142.	A straight line passes throu	gh the point of intersection of $x +$	152.	Given that $16p^2 + 49q^2 - 4$	$4r^2 - 56pq = 0$. Which one of the
	2y + 2 = 0 and $2x - 3y - 3fourth quadrant. What is f$	= 0. It cuts equal intercepts in the		following is a point on a p $(\mathbf{px} + q\mathbf{v} - \mathbf{r}) = 0$?	bair of straight lines $(px + qy + r)$
	the intercept?	the sum of the absolute values of		(px+qy-1)=0.	a $\left(-7\right)$
	(a) 2	(b) 3		(a) $\left(2, \frac{1}{2}\right)$	(b) $\left(2,-\frac{1}{2}\right)$
	(c) 4	(d) 6		(c) (4, -7)	(d) (4, 7)
143.	Under which one of the fol	[NDA (1) 2022] lowing conditions are the lines ax	150		[NDA-2023 (2)]
	+ by $+$ c $=$ 0 and bx $+$ ay $+$	$c = 0$ parallel ($a \neq 0, b \neq 0$)?	153.	For what values of K is the $6 - 0$ parallel to the line x -	line $(K-3) = (5-K^2) + K^2 - 7K + K = 1$
	(a) $a - b = 0$ only	(b) $a + b = 0$ only		(a) -1, 1	(b) -1,2
	(c) $a^2 - b^2 = 0$	(d) $ab + 1 = 0$ [NDA (I) 2022]		(c) 1, -2	(d) 2, -2
144.	What is the equation of the	locus of the mid point of the line	154	The line $\mathbf{x} + \mathbf{y} = \mathbf{A}$ cuts the	[NDA-2023 (2)] line joining $P(-1, 1)$ and $O(5, 7)$ at
	segment obtained by cuttin	g the line $x + y = p$ (where p is a	134.	R. What is PR:RO equal to	?
	real number) by the coordin	hate axes? (b) $x + y = 0$		(a) 1:1	(b) 1:2
	(a) $x - y = 0$ (c) $x - y = p$	(b) $x + y = 0$ (d) $x + y = p$		(c) 2:1	(d) 1:3
		[NDA (I) 2022]	155.	What is the sum of the	e intercepts of the line whose
145.	If the point (x, y) is equid	istant from the points (2a, 0) and		perpendicular distance from	m origin is 4 units and the angle
	(0, 3a) where $a > 0$, then correct?	i which one of the following is		which the normal makes v	with positive direction of x-axis is
	(a) $2x - 3y = 0$	(b) $3x - 2y = 0$		(3) 8	(b) $4\sqrt{6}$
	(c) $4x - 6y + 5a = 0$	(d) $4x - 6y - 5a = 0$		(c) $8\sqrt{6}$	(d) 16
146.	Consider the following st	[NDA (I) 2022] tatements in respect of the line			[NDA-2023 (2)]
110	passing through origin and	inclining at an angle of 75° with	156.	The number of points repr	resented by the equation $x = 5$ on
	the positive direction of x-a	axis:		(a) Zero	(b) One
	1. The line passes through the	he point $\begin{pmatrix} 1, \\ \\ \end{pmatrix}$.		(c) Two	(d) Infinitely many
		$\left(2-\sqrt{3}\right)$	157	If a variable line reason the	[NDA-2024 (1)]
	2. The line entirely lies in fi Which of the statements give	rst and third quadrants.	157.	the lines $x + 2y - 1 = 0$ a	nough the point of intersection of $2x - y - 1 = 0$ and meets the
	(a) 1 only	(b) 2 only		coordinate axes in A and	B, then what is the locus of the
	(c) Both 1 and 2	(d) Neither 1 nor 2		mid-point of AB?	
147	If $\mathbf{P}(3 4)$ is the mid point of	[NDA 2022 (II)]		(a) $3x + y = 10yx$ (c) $3x + y = 10$	(b) $x + 3y = 10xy$ (d) $x + 3y = 10$
14/.	then what is the equation of	f the line?		(c) SX + y = 10	[NDA-2024 (1)]
	(a) $3x + 4y - 25 = 0$	(b) $4x + 3y - 24 = 0$	158.	What is the equation to the	e straight line passing through the
	(c) 4x - 3y = 0	(d) $3x - 4y + 7 = 0$		point $(-\sin\theta, \cos\theta)$ and p	erpendicular to the line $x\cos\theta$ +
148	The base AB of an equilat	[NDA 2022 (II)] teral triangle ABC with side 8cm		$y\sin\theta = 9?$ (a) $x\sin\theta = y\cos\theta = 1 - 0$	(b) $x \sin \theta - y \cos \theta + 1 - 0$
0,	lies along the y-axis such	that the mid point of AB is at the		(c) $x\sin\theta - y\cos\theta = 0$	(d) $x\cos\theta - y\sin\theta + 1 = 0$
	origin and B lies above th	e origin. What is the equation of			[NDA-2024 (1)]
	nne passing through $(8, 0)$:	(b) $x + \sqrt{2}x = 8 = 0$	159.	Two points P and Q lie on	line $y = 2x + 3$. These two points
	(a) $x = \sqrt{3y} = 0 = 0$ (c) $\sqrt{3x} + y = 8\sqrt{3} = 0$	(d) $\sqrt{3}x - y - 8\sqrt{3} = 0$		What are the coordinates of	f the points P and O?
			•		

	(a) (1+	$-\frac{2}{\sqrt{5}},5+$	$\left(\frac{4}{\sqrt{5}}\right),$	$\left(1-\frac{2}{\sqrt{5}}\right)$	$5 - \frac{2}{\sqrt{2}}$	$\left(\frac{1}{5}\right)$					(a) $\frac{1}{3}$				(b) $\frac{1}{2}$	-			
	(b) $\begin{pmatrix} 3 \\ 3 \end{pmatrix}$	$+\frac{2}{\sqrt{5}},5+$	$\left(\frac{4}{\sqrt{5}}\right)$	$\int_{1}^{1} \frac{2}{\sqrt{2}}$,5−	$\left(\frac{4}{\sqrt{5}}\right)$					(c) $\frac{2}{3}$				(d) 2	,			
	(c) $\begin{pmatrix} \\ 1 \\ 1 \end{pmatrix}$	$-\frac{2}{\sqrt{5}},5+$	$\left(\frac{4}{\sqrt{5}}\right),$	$\left(1+\frac{2}{\sqrt{5}}\right)$, 5∕	$\left(\frac{4}{5}\right)$]	Direct	t ion: Co	nside	r the foll	lowin	g for the	[N] e two	DA-2024 items g	(1)] given
(d) $\left(3 - \frac{2}{\sqrt{5}}, 5 + \frac{4}{\sqrt{5}}\right), \left(-1 + \frac{2}{\sqrt{5}}, 5 - \frac{4}{\sqrt{5}}\right)$ [NDA-2024 (1)]										163.	ABCE Let A(What	rallel to	DC.						
160.	160. If two sides of a square lie on the lines $2x + y - 3 = 0$ and $4x + 2y + 5 = 0$, then what is the area of the square in square										(a) (2, (c) (1,	1) 1)			(b) (1 (d) (3	, 2) ,1)			
	units? (a) 6.05 (c) 6.2°	5		(b) 6.1	15				164.	What trapez	is the p ium?	oint	of inters	ectio	n of the	[N] diag	DA-2024 gonals of	(2)] f the
161.	ABC is	s a triang	le wi	th A(3. 5	5). Th	ne mid-po	[NE pints	DA-2024 of sides	(1)] AB.		(a) (3, (c) (7/	7/2) 2, 2)			(b) (3 (d) (5	5, 7/3) 5/2, 2)			
	AC ar coordir	e at (– nates of c	1, 2) centro	, (6, 4) id of the	, res trian	pectively gle ABC	y. W ?	'hat are	the	165.	The di	agonals	of qu	adrilater	al AE	CD are	[N] along	DA-2024 the line	(2)] s x –
	(a) $\left(\frac{8}{3}\right)$	$\left(\frac{11}{3}\right)$		(b) $\left(\frac{7}{3}\right)$	$(\frac{7}{3}, \frac{7}{3})$					2y = 1 (a) rec	and 4x - tangle allelogra	+ 2y = m	= 3. The	quadi (b) cy (d) rh	clic qua	drilat	o may be eral	a
	(c) (2,	$\left(\frac{8}{2}\right)$		(d) $\left(\frac{8}{2}\right)$	$\frac{3}{5},2$				166.	lf P(2	,4) , Q(3	8,12)	, R(10,14	(u) n 4) an	d S(x,y)	[N] are	DA-2024 vertices	(2)] of a
162		<i>5)</i>	to on	alad isos		triangla	[NI	DA-2024	(1)]]	paralle (a) 8	elogram t	hen v	what is (x	x + y) (b) 10	equal to	?		
102.	ABC IS AB and If A is c	d AC lie	on th	e lines 7	x – y ther	-3=0 a what is	and x	y equal s + y − 5 equal to?	= 0.		(c) 12				(d) 14	1	[N]	DA-2024	(2)]
	11 0 15 0	Jile of th	e equ	ar ungios	, the	i wildt 15	0010	AN	SWI	ER KEY	<u> </u>								
1			1						1		-				1				
1.	a a b	2.	d	3. 13	d	4.	d	5.	c	6. 16	c d	7.	c b	8.	a	9. 10	a	10. 20	b
1. 11. 21.	a a,b a	2. 12. 22	d a a	3. 13. 23.	d d c	4. 14. 24.	d a d	5. 15. 25.	c a a	6. 16. 26.	c d a	7. 17. 27.	c b d	8. 18. 28.	a c b	9. 19. 29.	a b b	10. 20. 30.	b d a,b
1. 11. 21. 31.	a a,b a b	2. 12. 22 32.	d a a b	3. 13. 23. 33.	d d c b	4. 14. 24. 34.	d a d b	5. 15. 25. 35.	c a a a	6. 16. 26. 36.	c d a d	7. 17. 27. 37.	c b d c	8. 18. 28. 38.	a c b b	9. 19. 29. 39.	a b b c	10. 20. 30. 40.	b d a,b a
1. 11. 21. 31. 41.	a a,b a b c	2. 12. 22 32. 42.	d a a b a	3. 13. 23. 33. 43.	d d c b d	4. 14. 24. 34. 44.	d a d b b	5. 15. 25. 35. 45.	c a a a c	6. 16. 26. 36. 46.	cdaddd	7. 17. 27. 37. 47.	c b d c a	8. 18. 28. 38. 48.	a c b b d	9. 19. 29. 39. 49.	a b c c	10. 20. 30. 40. 50.	b d a,b a c
1. 11. 21. 31. 41. 51.	a a,b a b c b	2. 12. 22 32. 42. 52.	d a b a c	3. 13. 23. 33. 43. 53.	d d c b d b	4. 14. 24. 34. 44. 54.	d a d b b a	5. 15. 25. 35. 45. 55.	c a a a c b	6. 16. 26. 36. 46. 56.	cdadddd	7. 17. 27. 37. 47. 57.	c b d c a b	8. 18. 28. 38. 48. 58.	a c b d b	9. 19. 29. 39. 49. 59.	a b c c d	10. 20. 30. 40. 50. 60.	b d a,b a c b
1. 11. 21. 31. 41. 51. 61.	a a,b a b c b a	2. 12. 22 32. 42. 52. 62.	d a b a c b	3. 13. 23. 33. 43. 53. 63.	d c b d b c	4. 14. 24. 34. 44. 54. 64.	d a d b b a c	5. 15. 25. 35. 45. 55. 65.	c a a c b c	6. 16. 26. 36. 46. 56. 66.	cdadddb	7. 17. 27. 37. 47. 57. 67.	c b c a b a	8. 18. 28. 38. 48. 58. 68.	a c b d b a	9. 19. 29. 39. 49. 59. 69.	a b c c d b	10. 20. 30. 40. 50. 60. 70.	b d a,b a c b c
1. 11. 21. 31. 41. 51. 61. 71.	a a,b a b c b a a a	2. 12. 22 32. 42. 52. 62. 72.	d a b a c b d	3. 13. 23. 33. 43. 53. 63. 73. 92	d d b d b c d	4. 14. 24. 34. 44. 54. 64. 74. 94	d a d b a c d	5. 15. 25. 35. 45. 55. 65. 75.	c a a c b c b	6. 16. 26. 36. 46. 56. 66. 76.	cdadddba	7. 17. 27. 37. 47. 57. 67. 77.	c b d c a b a a	8. 18. 28. 38. 48. 58. 68. 78. 99	a c b d b a c	9. 19. 29. 39. 49. 59. 69. 79. 29.	a b c c d b a	10. 20. 30. 40. 50. 60. 70. 80.	b d a,b a c b c c c
1. 11. 21. 31. 41. 51. 61. 71. 81. 91.	a a,b a b c b a a d d	2. 12. 22 32. 42. 52. 62. 72. 82. 92.	d a b a c b d b b	3. 13. 23. 33. 43. 53. 63. 73. 83. 93.	d d c b d b c d d d	4. 14. 24. 34. 44. 54. 64. 74. 84. 94.	d a d b b a c d d d	5. 15. 25. 35. 45. 55. 65. 75. 85. 95.	c a a c b c b d b	6. 16. 26. 36. 46. 56. 66. 76. 86. 96.	cdaddbabbb	7. 17. 27. 37. 47. 57. 67. 77. 87. 97.	c b d c a b a a a a d	8. 18. 28. 38. 48. 58. 68. 78. 88. 98.	a c b d b a c a c	9. 19. 29. 39. 49. 59. 69. 79. 89. 99.	a b c c d b a a b	10. 20. 30. 40. 50. 60. 70. 80. 90.	b d a,b a c b c c a c
1. 11. 21. 31. 41. 51. 61. 71. 81. 91. 101.	a a,b c b a a d d c	2. 12. 22 32. 42. 52. 62. 72. 82. 92. 102.	d a a b a c b d b b d	3. 13. 23. 33. 43. 53. 63. 73. 83. 93. 103.	d d c b d d d d a b	4. 14. 24. 34. 44. 54. 64. 74. 84. 94. 104.	d a d b b a c d d d a	5. 15. 25. 35. 45. 55. 65. 75. 85. 95. 105.	c a a c b c b d b d	6. 16. 26. 36. 46. 56. 66. 76. 86. 96. 106.	cdaddbabbd	7. 17. 27. 37. 47. 57. 67. 77. 87. 97. 107.	c b c a b a a a d a a	8. 18. 28. 38. 48. 58. 68. 78. 88. 98. 108.	a c b d b a c a c b	9. 19. 29. 39. 49. 59. 69. 79. 89. 99. 109.	a b c c d b a a b c	10. 20. 30. 40. 50. 60. 70. 80. 90. 110.	b d a,b a c b c c a c a a
1. 11. 21. 31. 41. 51. 61. 71. 81. 91. 101. 111.	a a,b c b a a d d c a	2. 12. 22 32. 42. 52. 62. 72. 82. 92. 102. 112.	d a b a c b d b b d b b d b	3. 13. 23. 33. 43. 53. 63. 73. 83. 93. 103. 113.	d d c b d c d d a b c c	4. 14. 24. 34. 44. 54. 64. 74. 84. 94. 104. 114.	d a d b b a c c d d d a d d	5. 15. 25. 35. 45. 55. 65. 75. 85. 95. 105. 115.	c a a c b c b d b d a	6. 16. 26. 36. 46. 56. 66. 76. 86. 96. 106. 116.	cdaddbbbdd	7. 17. 27. 37. 47. 57. 67. 77. 87. 97. 107. 117.	c b c a b a a a d a d a d	8. 18. 28. 38. 48. 58. 68. 78. 88. 98. 108. 118.	a c b d b a c a c b a	9. 19. 29. 39. 49. 59. 69. 79. 89. 99. 109. 1119.	a b c c d b a a b c c c	10. 20. 30. 40. 50. 60. 70. 80. 90. 110. 120.	b d a,b a c b c c a c a c a c
1. 11. 21. 31. 41. 51. 61. 71. 81. 91. 101. 111. 121.	a a,b c b a a d d c a c	2. 12. 22 32. 42. 52. 62. 72. 82. 92. 102. 112. 122.	d a b a c b d b b d b b d b c	3. 13. 23. 33. 43. 53. 63. 73. 83. 93. 103. 113. 123.	d d c b d d d a b c b	4. 14. 24. 34. 44. 54. 64. 74. 84. 94. 104. 114. 124.	d a d b a c d d d a d c c	5. 15. 25. 35. 45. 55. 65. 75. 85. 95. 105. 115. 125.	c a a c b c b d b d a b	6. 16. 26. 36. 46. 56. 66. 76. 86. 96. 106. 116. 126.	c d a d d d b b d d c	7. 17. 27. 37. 47. 57. 67. 77. 87. 97. 107. 117. 127.	c b c a b a a d a d a d a d a	8. 18. 28. 38. 48. 58. 68. 78. 88. 98. 108. 118. 128.	a c b d b a c c b a c	9. 19. 29. 39. 49. 59. 69. 79. 89. 99. 109. 119. 129.	a b c c d b a a b c c c d	10. 20. 30. 40. 50. 60. 70. 80. 90. 100. 110. 120. 130.	b d a,b a c b c c a c a c a b b
1. 11. 21. 31. 41. 51. 61. 71. 81. 91. 101. 111. 121. 131.	a a,b c b a a d d c a c a c	2. 12. 22 32. 42. 52. 62. 72. 82. 92. 102. 112. 132.	d a b a c b d b b d b c c b	3. 13. 23. 33. 43. 53. 63. 73. 83. 93. 103. 113. 123. 133.	d d c b d d d a b c c b b d	4. 14. 24. 34. 44. 54. 64. 74. 84. 94. 104. 114. 124. 134.	d a d b a c d d d a d c c c c	5. 15. 25. 35. 45. 55. 65. 75. 85. 95. 105. 115. 125. 135.	c a a c b c b d b d a b d d d d	6. 16. 26. 36. 46. 56. 66. 76. 86. 96. 106. 116. 126. 136.	c d a d d d b b d d c c	7. 17. 27. 37. 47. 57. 67. 77. 87. 97. 107. 117. 127. 137.	c b d c a b a a d a d a d a c	8. 18. 28. 38. 48. 58. 68. 78. 88. 98. 108. 118. 128. 138.	a c b d c a c c b a c c d	9. 19. 29. 39. 49. 59. 69. 79. 89. 99. 109. 119. 129. 139.	a b c c d b a a b c c c d a a	10. 20. 30. 40. 50. 60. 70. 80. 90. 100. 110. 120. 130. 140.	b d a,b a c b c c a c a c b b c
1. 11. 21. 31. 41. 51. 61. 71. 81. 91. 101. 111. 121. 131. 141.	a a,b a b c b a a d d d c a c a c	2. 12. 22 32. 42. 52. 62. 72. 82. 92. 102. 112. 122. 132. 142.	d a b a c b d b b d b b d b c c b a	3. 13. 23. 33. 43. 53. 63. 73. 83. 93. 103. 113. 123. 133. 143.	d d c b d d d a b c b b d c c	4. 14. 24. 34. 44. 54. 64. 74. 84. 94. 104. 114. 124. 134. 144.	d a b b a c d d d a d c c c a	5. 15. 25. 35. 45. 55. 65. 75. 85. 95. 105. 115. 125. 135. 145.	c a a c b c b d d a b d d c c	6. 16. 26. 36. 46. 56. 66. 76. 86. 96. 106. 116. 126. 136. 146.	c d a d d d b b d d c c c c c c c c	7. 17. 27. 37. 47. 57. 67. 77. 87. 97. 107. 117. 127. 137. 147.	c b d c a b a a d a d a c b	8. 18. 28. 38. 48. 58. 68. 78. 88. 98. 108. 118. 128. 138. 148.	a c b d b a c a c b a c d a	9. 19. 29. 39. 49. 59. 69. 79. 89. 99. 109. 119. 129. 139. 149.	a b c c d b a a b c c c d a c	10. 20. 30. 40. 50. 60. 70. 80. 90. 100. 110. 120. 130. 140. 150.	b d a,b a c b c a c a c b b c b c d

161.

b

162.

b

163.

с

164.

b

165.

d

166.

b

Solutions

Sol.11. (a.b) Let A (p,q) be the point on the X-axis which is equidistant from the point B(1,2) and C(2,3), then $AB=AC \Rightarrow AB^2 = AC^2$ $\Rightarrow (p-1)^2 + (q-2)^2 = (P-2)^2 + (q-3)^2$ $\Rightarrow p^2 + 1 - 2p + q^2 + 4 - 4q = p^2 + 4 - 4p + q^2 + 9$ -6q $\Rightarrow 2p + 2q = 8$ $\Rightarrow p + q = 4 \qquad \dots(i)$ Since, the value of p = 4 and q = 0 satisfies the Eq. (i) and on the X-axis q must be zero, then (p,q) = (4,0)a and b both options are correct. Sol.12. (a) The perpendicular distance of the point (x_1, y_1) to line ax + by + c = 0 is $p = \frac{|ax_1 + by_1 + c|}{2}$ $p = \frac{0+0-1}{\sqrt{\frac{1}{a^2} + \frac{1}{b^2}}} \Longrightarrow \frac{1}{p^2} = \frac{1}{a^2} + \frac{1}{b^2}$ Sol.13. (d) equation of line parallel to x axis is y = cequation of line 5 units below the x axis y = -5Sol.14. (a) Since both equations of lines are same that means both lines are coincident to each other 3 + 4y = 9...(i) and 6x + 8y = 18 $\Rightarrow 3x + 4y = 9$...(ii) Hence, the distance between two coincident line is zero. Sol.15. (a) Since, the line passes through the point (0,1) and making an angle with Y-axis which is equivalent to the slope of the line y=x-4. i.e., $\theta = 45^{\circ} \Longrightarrow \tan \theta = 1 = m$ \therefore Equation of line is (y-1) = m (x-0)=1 (x) \Rightarrow y = x + 1 Sol.16. (d) The perpendicular distance of the point (x_1, y_1) to line ax + by + c = 0 is $p = |ax_1 + by_1 + c|$ $\sqrt{a^2+b^2}$ So, the equation of x-axis y = 0 $\therefore \mathbf{p} = \frac{|\mathbf{y}|}{|\mathbf{y}|} = |\mathbf{y}|$ $\sqrt{(1)^2}$ **Sol.17.** (b) A(-4, 2), B(0, -1), C(3,3) by distance formulae AB = 5, BC = 5, $CA = 5\sqrt{2}$ so perimeter will be $10 + 5\sqrt{2}$ Sol.18. (c) mid point of (a + b, a - b) and (-a, b) is $\left(\frac{b}{2}, \frac{a}{2}\right)$ that is lie on the line ax + by = k so $a\left(\frac{b}{2}\right) + b\left(\frac{a}{2}\right) = k = ab$ Sol.19. (c)

slope of line 7x - 3y = 4 is 7/3 that is more than 1, so line will make angle more than 45° with x axis.

according to above diagram we can say that normal makes negative angle with x axis. Sol.20. (d) We know that, if the line making an angle θ with the positive direction of x-axis with y intercept. Then, equation of the line is $y = mx + c = tan\theta$. x $:: \theta = 45^{\circ} x + 101$ unit \therefore y=tan45° x + 101 \Rightarrow y = 1. x + 101 $\Rightarrow x - y + 101 = 0$ Sol.21. (a) on y axis x = 0 $0 = \frac{\mathrm{m}(-4) + \mathrm{n}(3)}{\mathrm{m}(-4) + \mathrm{n}(3)}$ m + n0 = -4m + 3n4m = 3nm:n = 3:4Sol.22. (a) Given, $(2x+3y+4) + \lambda (6x-y+12) = 0$ $2x+6\lambda x+3y-\lambda y+4+12\lambda=0$ $2x(3\lambda+1) + y(3-\lambda) + 4 + 12\lambda = 0$ Since, line (i) is parallel to Y-axis So, the coefficient of y must be zero $\therefore 3 - \lambda = 0 \Longrightarrow \lambda = 3$ Sol.23. (c) > (4.3) by figure 3q = 4pSol.24. (d) We know that, if two parallel lines $ax + by + c_1 =$ 0 and $ax + by + c_2 = 0$, then the distance between

them is $\left| \frac{c_2 - c_1}{\sqrt{a^2 + b^2}} \right|$ For lines, 3x + 4y - 9 = 0 ...(i) and 9x + 12y + 28 = 0 $\Rightarrow 3x + 4y + \frac{28}{3} = 0$...(ii)

distance between them

 $\frac{\frac{28}{3}+9}{\sqrt{9+16}} = \left|\frac{55}{3} \times \frac{1}{5}\right| = \frac{11}{3}$ unit Sol.25. (a) The points (5,1) (1-1) and (11,4) are collinear, if $x_1(y_1 - y_3) + x_2(y_3 - y_1) + x_3(y_1 - y_2) = 0$ Here, $x_1 = 5$, $y_1 = 1$, $x_2 = 1$, $y_2 = -1$, $x_3 = 11$, $y_3 =$ From Eq. (i) 5(-1 - 4) + 1 (4 - 1) + 11 (1 + 1) = 0 $\Rightarrow 5(-5) + 1(3) + 22 = 0$ $-25 + 3 + 22 = 0 \Longrightarrow 0 = 0$ Hence, points (5, 1), (1, -1) and (11,4) satisfy he given Eq. (i) So, they are collinear. Sol.26. (a) Let A (1,0) and B (0, -2) are two given points and P(h, k) be any variable point. According to the question, PA = PB $\Rightarrow PA^2 = PB^2$ \Rightarrow (h-1)² + (k-0)² = (h-0)² + (k+2)² $\Rightarrow h^2 + 1 - 2h + k^2 = h^2 + k^2 + 4 + 4k$ $\Rightarrow 4k + 2h + 3 = 0$ \Rightarrow 2h + 4k + 3 = 0 Hence, locus of point P (h, k) is 2x + 4y + 3 = 0Sol.27. (d) Let the three points A(3,1), B(12,-2) and C(0,2) are collinear and the point P(h,k) are equivalent from these points A, B and C. Now, $PA^2 = PB^2 = PC^2$ $\Rightarrow (1-3)^2 + (k-1)^2 = (h-12)^2 = (h-10)^2 + (k-2)^2$ $\Rightarrow h^2 + k^2 = 6h - 2k + 10$ $=h^{2} + k^{2} - 24h + 4k + 148 = h^{2} + k^{2} - 4k + 4$ Taking first and third, we get 3h - k = -3...(i) Taking second and third, we get 3h - k = 18...(ii) Since, Eqs. (i) and (ii) are two parallel lines. Hence, the locus will be a null set. **Sol.28.** (b) distance of q(3,4) from origin is $\sqrt{3^2 + 4^2} = 5$, that is whole number. Sol.29. (b) If A(2,4), B(2,6), C(2 + $\sqrt{3}$, k) are vertices of an equilateral triangle than AB = BC $\sqrt{(0)^2 + (2)^2} = \sqrt{(\sqrt{3})^2 + (k-6)^2}$ $4 = 3 + k^2 - 12k + 36$ $k^2 - 12k + 35 = 0$ k = 5, 7Sol.30. (a,b) The equation of line in intercept form is $\frac{x}{a} + \frac{y}{b} = 1$...(i) Where a and b are length of intercepts of the line with X and Y-axis, respectively. Now, by given condition Sum of x and y intercepts = 4 $\Rightarrow a + b = 14$...(ii) Since, the line (i) passes through the point (3, 4), then $\frac{3}{a} + \frac{4}{b} = 1$ $\Rightarrow \frac{3}{a} + \frac{4}{(14-a)} = 1$

[from Eq. (ii)] $\Rightarrow 3(14-a) + 4a = a(14-a)$ \Rightarrow 42-3a+4a = 14a - a² $\Rightarrow a^2 - 13a + 42 = 0$ $\Rightarrow a^2 - 6a - 7a + 42 = 0 \Rightarrow a(a - 6) - 7(a - 6) = 0$ \Rightarrow (a-6) (a-7) = 0 \Rightarrow a = 6, 7 ∴b = 8, 7 Hence, required equation of straight line. $\frac{x}{6} + \frac{y}{8} = 1$ [when, a = 6 and b = 8] $\Rightarrow 8x + 6y - 48 = 0$ $\Rightarrow 4x + 3y - 24 = 0$ and $\frac{x}{7} + \frac{y}{7} = 1$ (when, a = b = 7) $\Rightarrow x + y = 7$ a and b both are correct. Sol.31. (b) A line which passes through the points (5,0) and (0,3) is $(y-0) = \frac{3-0}{0-5} (x-5)$ $\Rightarrow -5y = 3x - 15$ $\Rightarrow 3x + 5y - 15 = 0$...(i) Now, length of the perpendicular from the point (4, 4) on the line (i) is $=\frac{|(4)+5(4)-15|}{\sqrt{(3)^2+(5)^2}}=\frac{|12+20-15|}{\sqrt{9+25}}=\frac{17}{\sqrt{34}}=\sqrt{\frac{17}{2}}$ Sol.32. (b) Given equation of line, $\sqrt{3x - y} - 1 = 0$ On comparing with y = mx + c, we get $m = \sqrt{3}$ $(:: m = tan\theta)$ $\Rightarrow \tan \theta = \sqrt{3} = \tan 60^\circ \Rightarrow \theta = 60^\circ$ So, the inclination of the given line is 60° . Sol.33. (b) Given equation of straight lines, 2x - y - 2 = 0...(i) and -4x + 2y - 6 = 0...(ii) On comparing with ax + by + c = 0, we get $a_1 = 2, b_1 = -1$ and $c_1 = -2$ and $a_2 = -4$, $b_2 = 2$ and $c_2 = -6$ Now, $\frac{a_1}{a_2} = \frac{-1}{2}, \frac{b_1}{b_2} = \frac{-1}{2} \text{ and } \frac{c_1}{c_2} = \frac{1}{3}$ Since, $\frac{a_1}{a_2} = \frac{b_1}{b_2} \neq \frac{c_1}{c_2}$ Hence, both straight lines are parallel i.e., they never cross each other. Sol.34. (b) a point P whose abscissa = ordinate is P(h,h) A(-1, 0) and B(0, 5) given that PA = PB $\sqrt{(h+1)^2 + (h)^2} = \sqrt{(h)^2 + (h-5)^2}$ 2h + 1 = -10h + 25h = 2so point is (2,2) Sol.35. (a) Area of triangle with vertices (3,0), (0,4), (3,4) is 3 0 1 $\frac{1}{2} \begin{vmatrix} 0 & 4 & 1 \\ 3 & 4 & 1 \end{vmatrix} = 6$ Sol.36. (d) Given equation of lines is $x + y = 1 \implies y = -x + 1$...(i)

and $x-y = 1 \implies y = -1$...(ii) \therefore Slope of line (i) is $m_1 = -1$ and Slope of line (ii) is $m_2 = 1$ $:: m_1 : m_2 = (-1) (1) = -1$ Thus, the angle between both lines is $\pi/2$. Sol.37. (c) Equation of straight line which passes through the points (5, -2) and (-4, 7) is: $(y-y_1) = \frac{y_2 - y_1}{x_2 - x_1} (x - x_1)$ $\Rightarrow (y+2) = \frac{7+2}{-4-5} (x-5)$ $\Rightarrow y + 2 = \frac{9}{-9} (x - 5) \Rightarrow y + 2 = -x + 5$ $\therefore x + y = 3$ Sol.38. (b) We know that, the equation of straight line in intercept from is $\frac{x}{a} + \frac{y}{b} = 1$...(i) By given condition, $a = \frac{1}{m}$ and $b = \frac{1}{n}$. On putting the values of a + b in Eq. (i) we get $\frac{x}{\left(1/m\right)} + \frac{y}{\left(1/n\right)} = 1$ \Rightarrow mx + ny = 1 Which is the required equation of straight line. Sol.39. (c) A point which is equidistant from the axes means a line which is equally inclined with the axes and passes through the origin. i.e., $m = 45^{\circ}$ and 135° .: Required equation is $y = tan 45^{\circ} x and y = tan 135^{\circ} x$ y = x and y = -xSo, the combined equation is $y = \pm x$. Sol.40. (a) Let the coordinates of point P is (h,k) Now, by given condition, Distance between (h, k) and (1,2) Distance between (h, k) and (-2,3) $\Rightarrow \sqrt{\left(h-1\right)^2 + \left(k-2\right)^2} = \sqrt{\left(h+2\right)^2 + \left(k-3\right)^2}$ $\Rightarrow h^2 + 1 - 2h + k^2 + 4 - 4k = h^2 + 4 + 4h + k^2 + 9$ - 6k $\Rightarrow -2h - 4k + 5 = 4h - 6k + 13$ $\Rightarrow 6h - 2k + 8 = 0 \Rightarrow 3h - k + 4 = 0$ So, the locus of P is 3x - y + 4 = 0, which represent a straight line. Sol.41. (c) :: Slope of OA (m₁) = $\frac{2-0}{5-0} = \frac{2}{5}$ (5,2) (0.0) $\mathbf{B}(6,-15)$ and slope of OB(m₂) = $\frac{2}{5} \times \frac{-5}{2} = -1$ i.e., angle between OA and OB is $\pi/2$.

Hence, the line segment AB subtend right angle at origin O. Sol.42. (a) Since, the required line is perpendicular to the line 3x + 4y + 5 = 0So, the slope of required line is: $\left\lceil \frac{1}{(-3/4)} \right\rceil = \frac{4}{3}$ Also, required line passing through the point (4, -5). Then, its equation $(y+5) = \frac{4}{3}(x-4)$ $\Rightarrow 3y + 15 = 4x - 16 \Rightarrow 4x - 3y = 31$ Sol.43. (d) Perpendicular distance of the line 3x + 4y - 1 = 0from the point (1,1) = perpendicular distance of the line 4x + 3y + 2k = 0 from the point (1,1) $\Rightarrow \frac{|3 \times 1 + 4 \times 1 - 1|}{|4 \times 1 + 3 \times 1 + 2k|} = \frac{|4 \times 1 + 3 \times 1 + 2k|}{|4 \times 1 + 3 \times 1 + 2k|}$ $\sqrt{9+16}$ – $\sqrt{16+9}$ $\Rightarrow \frac{|3+4-1|}{5} = \frac{|4+3-2k|}{5}$ $\Rightarrow 6 = 7 + 2k \Rightarrow 2k = -1$ $\therefore k = -1/2$ Sol.44. (b) We know that, in parallelogram, diagonals bisect each other. D(x, y)C(2, b) A(1, a) B(3, a) \therefore mid-point of BD = mid-point of AC $\Rightarrow \left(\frac{x+3}{2} + \frac{y+a}{2}\right) = \left(\frac{3}{2}, \frac{a+b}{2}\right)$ $\Rightarrow \frac{x+3}{2} = \frac{3}{2} \Rightarrow x = 0$ and $\frac{y+a}{2} = \frac{a+b}{2} \implies y = b$ So, the coordinates of point D is (0,b) Sol.45. (c) if 2x + 3y + a = 0 and 5x + ky + a = 0 are parallel than $\frac{2}{5} = \frac{3}{k}$ so k = 7.5 Sol.46. (d) centroid = $\left(\frac{x_1 + x_2 + x_3}{3}, \frac{y_1 + y_2 + y_3}{3}\right)$ $=\left(\frac{2-2+3}{3},\frac{3-2+5}{3}\right)=(1,2)$ Sol.47. (a) Let he required equation in intercept form $\frac{x}{2} + \frac{y}{4} = 1$...(i) Given that, the straight line (i) makes equal intercepts on the coordinate axes. $\therefore a = b$ From Eq. (i), $\frac{x}{a} + \frac{y}{a} = 1$ $\Rightarrow x + y = a$...(ii)

Also, the straight line passes through the point (4, 3). $\therefore 4 + 3 = a$ ⇒a = 7 Now, put the value of a in Eq. (ii), we get x + y = 7Which is the required equation. Sol.48. (d) The given equation of lines are, 3x+4y+12=0...(i) and 3x - 4y = 6or 3x - 4y - 6 = 0...(ii) On comparing with ax + bx + c = 0, we get $a_1 = a_2 = 3, b_1 = b_2 = -4$ and $c_1 = 12$, $c_2 = -6$ So, the equation of line mid way between the given lines is $3x - 4y + \frac{(12-6)}{2} = 0 \Rightarrow 3x - 4y + 3 = 0$ Which is the required equation. Sol.49. (c) Given, equation of line 3x + y = 5 $\Rightarrow \frac{x}{\left(\frac{5}{3}\right)} + \frac{y}{\left(5\right)} = 1$...(i) Let S = 3x + y - 5 = 0...(ii) **I.** At point (0,5) $S_{(0,5)} \equiv 3(0) + 5 - 5$ =0+0=0So, the point (0,5) lies on the given line. and distance between (0,5) and (1,2) $=\sqrt{(1-0)^2+(2-5)^2}$ $\sqrt{1+9} = \sqrt{10}$ [: by distance formula] $d = \sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2}$ **II.** At point (2, -1) $S_{(2,-1)} \equiv 3(2) + (-1) - 5 = 6 - 1 = 6 - 6 = 0$ So, the point (2, -1) also lie on the given line and distance between (2,-1) and (1,2) $=\sqrt{(1-2)^2+(2+1)^2}$ $=\sqrt{(-1)^{2}+(3)^{2}}=\sqrt{1+9}=\sqrt{10}$ **III.** At point (3,–4) $S_{(3,-4)} = 3(3) + (-4) - 5 = 9 - 4 - 5 = 9 - 9 = 0$ So, the point (3, -4) also lie on the given line and distance between (3, -4) and (1,2) $=\sqrt{(1-3)^2+(2+4)^2}$ $=\sqrt{\left(-2\right)^2+\left(6\right)}=\sqrt{4+36}=\sqrt{40}=2\sqrt{10}$ Hence, points (0,5) and (2, -1) lie on the line 3x+ y = 5 and at a distance $\sqrt{10}$ from (1,2) Sol.50. (b) let a line cuts x axis at P(a, 0) and y axis at Q(0,b) mid point of PQ is given (1,2) so $=\left(\frac{a+0}{2}, \frac{0+b}{2}\right) = (1,2)$ so a = 2 and b = 4equation of line passing through (2, 0) and (0, 4) is 2x + y - 4 = 0Sol.51. (b) We have, equation of line as $\frac{x-1}{2} = \frac{y-2}{3}$

 \Rightarrow 3x - 3 = 2y - 4 \Rightarrow 3x - 2y + 1 = 0 and equation of second line is 2x+3y = 5 \therefore slope of first line, m₁ =3/2 and slope of second line, $m_2 = -2/3$ $\therefore m_1 m_2 = -1$ Hence, two lines are perpendicular to each other. Sol.52. (c) We have, A(3,4) and B(5,-2) Let P(x,v)Given that, PA = PB $\Rightarrow PA^2 = PB^2$ \Rightarrow (x-3)² + (y-4)² = (x-5)² + (y+2)² $\Rightarrow x^2 - 6x + 9 + y^2 - 8y + 16$ $=x^{2}-10x+25+y^{2}+4y+4$ $\Rightarrow 4x - 12y = 4$ $\Rightarrow x - 3y = 1$...(i) \therefore Area of $\triangle PAB = 10$ $\begin{vmatrix} x & y & 1 \\ 3 & 4 & 1 \end{vmatrix} = \pm 10$ *.*.. 5 -2 1 $\Rightarrow x(x+2) - y(3-5) + 1(-6-200) = \pm 20$ $\Rightarrow 6x + 2y - 26 = \pm 20$ Or 6x + 2y - 26 = -20 $\Rightarrow 6x + 2y = 46$...(ii) Or 6x + 2y = 6...(iii) On solving Eqs. (i) and (ii), we get x = 7, y = 2Similarly, solving Eqs. (i) and (iii), we get x = 1, y = 0Hence, coordinates of P are(7,2) or (1,0) Sol.53. (b) We have, equation of line as Bx $\cos \alpha + ay \sin \alpha = ab$ Perpendicular distance from point $(\sqrt{a^2 - b^2}, 0)$ is $d_1 = b\cos\alpha\sqrt{\alpha^2 - b^2 + 0} - ab$ $\sqrt{b^2 \cos^2 \alpha + a^2 \sin^2 \alpha}$ $(:: distance from (x_1, y_1) to ax + by + c = 0 is)$ $ax_{1} + by_{1} + c$ $\sqrt{a^2+b^2}$ Similarly, perpendicular distance from point. $(-\sqrt{a^2-b^2}, 0)$ is $d_2 =$ $-b\cos\alpha\sqrt{a^2-b^2}+0-ab$ $\sqrt{b^2 \cos^2 \alpha + a^2 \sin^2 \alpha}$ Now, $d_1 \times d_2$ $(b\cos\alpha\sqrt{a^2-b^2}-ab)(b\cos\alpha\sqrt{a^2-b^2}+ab)$ $\left(\sqrt{b^2}\cos^2\alpha + a^2\sin^2\alpha\right)\left(\sqrt{b^2\cos^2\alpha + a^2\sin^2\alpha}\right)$ $b^{2}\cos^{2}\alpha(a^{2}-b^{2})-a^{2}b^{2}$ $b^2 \cos^2 \alpha + a^2 \sin^2 \alpha$ $= a^2b^2\cos^2\alpha - b^4\cos^2\alpha - a^2b^2$ $b^2 \cos^2 \alpha + a^2 \sin^2 \alpha$ $=\frac{a^2b^2(\cos^2\alpha-1)-b^4\cos^2\alpha}{2}$ $b^2 \cos^2 \alpha + a^2 \sin^2 \alpha$ $= \frac{-b^2 \left[a^2 \sin^2 \alpha + b^4 \cos^2 \alpha\right]}{a^2 + b^4 \cos^2 \alpha}$ $b^2 \cos^2 \alpha + a^2 \sin^2 \alpha$ $-b^2 = b^2$ (since, distance is positive) Sol.54. (a) Let P(x, y) is the Circum-centre of the $\triangle ABC$. We know, $AP^2 = PB^2$

 $\Rightarrow (x+2)^2 + (y-3)^2 = (x-2)^2 + (y-1)^2$ $\Rightarrow x^2 + 4 + 4x + y^2 + 9 - 6y = x^2 + 4 - 4x + y^2 + 1$ $y-2 = \frac{1}{3}(x-2)$ -2y $\Rightarrow 4x - 6y + 13 = 4 - 4x + 1 - 2y$ $\Rightarrow 8x - 4y + 2 = 0$ $\Rightarrow 2x - y + 2 = 0$...(i) Also, $AP^2 = PC^2$ $\Rightarrow (x + y)^2 + (y - 3)^2 = (x - 1)^2 + (y - 2)^2$ $\Rightarrow x^2 + 4 + 4x + y^2 + 9 - 6y = x^2 + 1 - 2x + y^2 + 4$ - 4y \Rightarrow 4x - 6y + 13 = -2x - 4y + 5 $\Rightarrow 6x - 2y + 8 = 0$ $\Rightarrow 3x - y + 4 = 0$...(ii) On subtracting Eq. (ii) from Eq. (i), we get -x - 2 = 0 $\Rightarrow x = -2$ \therefore Hence, the required Circumcentre is (-2, -2). Sol.55. (b) Given, vertices of a triangle are A(-2,3), B(2,1)and C(1,2) Then, centroid of AABC $\left(\frac{x_1 + x_2 + x_3}{3}, \frac{y_1 + y_2 + y_3}{3}\right)$ Centroid of the $\triangle ABC$ $\left(\frac{-2+2+1}{3},\frac{3+1+2}{3}\right) = \left(\frac{1}{3},2\right)$ Sol.56. (d) Let D be the foot of altitude from A in $\triangle ABC$ and $D \equiv (x,y)$ Slope of BC = $\frac{1-2}{2-1} = -1$ ∴ m= -1 Also, slope of AD is $\left(\frac{x_1 - 3}{x_1 + 2}\right)$ (1.2)D(x,y) (-2.3) $\operatorname{But} \frac{y_1 - 3}{2} - 1 = -1 [\because \operatorname{AD} \bot \operatorname{BC}]$ $x_1 + 2$ \Rightarrow y₁ - 3 = x₁ + 2 \Rightarrow - x₁ - x₁ = 5 From the given points, only (-1,4) satisfies this equation. Here, the required foot of altitude is (-1,4)Sol.57. (b) We have, 6x+8y+15 = 0 and 6x+8y+18 = 0... Perpendicular distance between them is $\left|\frac{18-15}{\sqrt{26+64}}\right| = \frac{3}{10}$ unit Sol.58. (b) y=3-3x (given) $\Rightarrow m = -3$: Slope of the line perpendicular to the line Y = 3 - 3x, is $m' = \frac{-1}{-3} = \frac{1}{3}$ ∴ required equation of the line is

 \Rightarrow 3y - 6 = x - 2 \Rightarrow 3y - x = 4 $\Rightarrow \frac{x}{-4} + \frac{y}{4} = 1$ So, y intercept is 4/3 Sol.59. (d) The point of intersection of x = a and y = 5 is (a.5) : Area of triangle = $\frac{1}{2} \begin{vmatrix} 5 & 2 & 1 \\ 3 & 4 & 1 \end{vmatrix} = 3$ $\Rightarrow \frac{1}{2} \left[5(4-5) - 2(3-a) + 1 (15-4a) \right] = 3$ $\Rightarrow 1/2 [-5-2(3-a) + (15-4a)] = 3$ $\Rightarrow 1/2 [-5-6+2a+15-4a] = 3$ $\Rightarrow 2-a = \pm 3$ $\Rightarrow a = 5 \text{ or } -1$ ∴ a = 5 Hence, required value of a = 5. **Sol.60.** (b) Let the required line intercept x-axis at a. Slope of the line is m= tan 120° = - $\sqrt{3}$ Also, $\sin 60^\circ = \frac{5}{a} \Longrightarrow \frac{\sqrt{3}}{2} = \frac{5}{a}$ $\therefore a = 10$ $\sqrt{3}$: Equation of line passing through (a,0) and having slope $-\sqrt{3}$ is $y-y=m(x-x_1)$ \Rightarrow y-0 = $-\sqrt{3}\left(x-\frac{10}{\sqrt{3}}\right)$ \Rightarrow y = $-\sqrt{3}x + 10$ $\Rightarrow \sqrt{3} \cdot x + y = 10$ Sol.61. (a) We have. $\frac{x}{a} + \frac{y}{b} = 1$...(i) and $\frac{x}{b} + \frac{y}{a} = 1$...(ii) \Rightarrow bx+ay = ab and ax+by = ab \therefore bx+ay = ax + by $\Rightarrow x(b-a) = y(b-a)$ $\Rightarrow \frac{x}{x} = 1$ У $\Rightarrow x = y$ \therefore Equation of the line is x - y = 0Now, from Eq. (i), we get

 $\therefore \frac{y}{a} + \frac{y}{b} = 1 \Longrightarrow y = \frac{ab}{a+b}$ and $x = _ab$ a + b \therefore Equation of line joining origin (0,0) and point $\left(\underline{ab}, \underline{ab} \right)$ is (a+b'a+b) \Rightarrow y - 0 = 1 (x - 0) $\Rightarrow y = x \Rightarrow x - y = 0$ Sol.62. (b) Three lines are 4x + 4y = 1, 8x - 3y = 2, y = 04 4 1 Now, $\begin{vmatrix} 8 & -3 & 2 \end{vmatrix} = 4(0) - 4(0) + (0) = 0$ 0 0 0 ∴ The lines are concurrent. Sol.63. (c) The line 3x + 4y - 24 = 0 $Or \ \frac{x}{8} + \frac{y}{6} = 1$: A = (8,0) and B = (0,6)We know that the Circum-centre of a right angled triangle is the mid-point of its hypotenuse. $\therefore C \equiv \left(\frac{8+0}{2}, \frac{0+6}{2}\right)$ or C≡(4,3) Sol.64. (c) Let measurement of perpendicular from (-4,0) =p1 and measurement of perpendicular from $(4.0)=P_2$: length of the perpendicular is given as $P = \left(\frac{ax_1 + by_1 + c}{\sqrt{a^2 + b^2}}\right)$ $\therefore \mathbf{P}_1 \times \mathbf{P}_2 = \frac{3 \times 4\cos\phi + 5 \times 0}{\sin\phi - 15}$ $\sqrt{9\cos^2\phi+25\sin^2\phi}$ $\times -4 \times 3\cos\phi + 5 \times 0\sin\phi - 15$ $\sqrt{9\cos^2\phi+25\sin^2\phi}$ $= -(12\cos\phi - 15)(12\cos\phi + 15)$ $\left(\sqrt{9\cos^2\phi + 25\sin^2\phi}\right)^2$ $=\frac{-9[4\cos\phi-5][4\cos\phi+5]}{(\sqrt{9\cos^{2}\phi+25-25\cos^{2}\phi})^{2}}$ $=\frac{-9[16\cos^2\phi - 25]}{\left(\sqrt{25 - 16\cos^2\phi}\right)^2} = \frac{+9[25 - 16\cos^2\phi]}{\left(25 - 16\cos^2\phi\right)^2} = 9$ Sol.65. (c) The equation of the line PQ passing through the point (3,2) perpendicular to the given line. 2y - x - 3 = 0 is 2(x-3) + (y-2) = 02x - 6 + y - 2 = 02x + y - 8 = 0Sol.66. ax + by + c = 0, ax - by + c = 0, ax + by - c = 0and ax - by - c = 0line 1 and line 3 are parallel to each other line 2 and line 4 are also parallel. and distance between parallel lines are equal so quadrilateral is a rhombus.

 $\left(0,-\frac{c}{b}\right)$ $\left(\frac{c}{a},0\right)$ $\left(-\frac{c}{a},0\right)$ 0,area of rhombus is half of products of diagonals. area = $\frac{1}{2} \left(\frac{2c}{a} \right) \left(\frac{2c}{b} \right) = \frac{2c^2}{ab}$ Sol.67. line perpendicular to 5x - y = 0 is x + 5y + k = 0this line cuts the x axis at A(-Sol.68. (a) y = 3x...(i) y = 6x...(ii) y = 9 ...(iii) On solving equation (i) and (ii) 3x = 6x $-3x = 0 \Longrightarrow x = 0$ \Rightarrow y = 0 \therefore A =(0,0) On solving equations (ii) and (iii) $6x = 9 \Rightarrow x = \frac{3}{2}$ \Rightarrow y=9 \therefore B=(3,9) Now, area of $\triangle ABC$ $=\frac{1}{2}\left[x_{1}(y_{2}-y_{3})+x_{2}(y_{3}-y_{1})+x_{3}(y_{1}-y_{2})\right]$ $=\frac{1}{2}\left[0(9-9)+\frac{3}{2}(9-0)+3(0-9)\right]$ $=\frac{1}{2}\left[\frac{27}{2}-27\right]=\frac{1}{2}\left[-\frac{27}{2}\right]=-\frac{27}{4}$ Area of \triangle ABC = 27/4 square units **Sol.69.** (b) Centroid of **ABC** $=\left(\frac{x_1+x_2+x_3}{3}, \frac{y_1+y_2+y_3}{3}\right)$ $= \left(\frac{0\frac{3}{2}+3}{3}, \frac{0+9+9}{3}\right) = \left(\frac{3}{2}, 9\right)$ **Sol.70.** (c) A(1,2) D(3,5) B(4,y) C(x,6) Mid-point of diagonal AC = $\left(\frac{1+x}{2},\frac{2+6}{2}\right) = \left(\frac{1+x}{2},4\right)$ Mid-point of diagonal BD = $\left(\frac{4+3}{2}, \frac{y+5}{2}\right) = \left(\frac{7}{2}, \frac{y+5}{2}\right)$

Since, the diagonals of parallelogram intersect each other at mid points then we get $\left(\frac{1+x}{2},4\right) = \left(\frac{7}{2},\frac{y+5}{2}\right)$ $\Rightarrow \frac{1+x}{2} = \frac{7}{2} \text{ and } \frac{y+5}{2} = 4$ or x = 7 - 1 and y + 5 = 8or x = 6 and y = 3Now, C(x,6) = C (6,6) B(4,y) = B(4,3) $:: AC^{2} - BD^{2} = \left[\sqrt{(1-6)^{2} + (2-6)^{2}} \right]$ $\left| \sqrt{(4-3)^2 + (3-5)^2} \right|^2$ =(25+16)-(1+4)=25 + 16 - 5 = 36Sol.71. (a) Intersection point of diagonals $=O\left(\frac{7}{2},4\right)$ Sol.72. (d) Area of $\triangle ABCD = Area of \triangle ABC + Area of \triangle$ ACD = $\frac{7}{2} + \frac{7}{2} = 7$ sq. units Sol.73. (d) Mid-point of PQ = M(3,5)Let P(a,0) and Q(0,b) Then $\left(\frac{a+0}{2}, \frac{0+b}{2}\right) = (3,5)$ $\left(\frac{a}{2},\frac{b}{2}\right) = (3,5)$ Q(0,10) M(3,5) P(6,0) On comparing both sides $\frac{a}{2} = 3$ ⇒a = 6 $\frac{b}{2} = 5$ $\Rightarrow b = 10$ We get P(6,0) and Q(0,10) \Rightarrow OP = 6 and OQ = 10 Now Area of ∆OPQ $=\frac{1}{2} \times OP \times OQ = \frac{1}{2} \times 6 \times 10 = 30$ square units. Sol.74. (d) The given lines are x + y + 1 = 0...(i) 3x + 2y + 1 = 0...(ii) On solving the above equations of line we get the intersection points of the lines i.e., (1,-2) = (a,b)Here a = 1, b = -2Now, the equation of the line parallel to x-axis, passing through the point (a, b) is $y=b \Longrightarrow y=-2 \Longrightarrow y+2=0$ Sol.75. (b)

Equation of line parallel to y-axis and passing through the point (a,b) is: $\mathbf{x} = \mathbf{a}$ $\Rightarrow x=1 \Rightarrow x-1=0$ Sol.76. (a) The mid point $\left(\frac{10+k}{2}, \frac{-6+4}{2}\right) = (a, 2b)$ $\left(\frac{10+k}{2},-1\right) = (a,2b)$ $a = \frac{10+k}{2}$ and 2b = -1 ...(i) Since a - 2b = 7Or $\frac{10+k}{2} - (-1) = 7$ [from (i)] Or $\frac{10+k}{2} = 7-1$ Or 10 + k = 12k = 2 Sol.77. (a) $y - \sqrt{3}x - 5 = 0$ \Rightarrow y = $\sqrt{3}x + 5$ $\Rightarrow m_1 = \sqrt{3}$ $\sqrt{3}y - x + 6 = 0$ \Rightarrow y= $\frac{x}{\sqrt{3}} + \frac{6}{\sqrt{3}}$ $\Rightarrow m_2 = \frac{1}{\sqrt{3}}$ $\frac{\text{So}_{3}\tan\theta}{1+\text{m}_{1}\text{m}_{2}} = \frac{\sqrt{3} - \frac{1}{\sqrt{3}}}{1+\sqrt{3} \cdot \frac{1}{\sqrt{2}}} = \frac{3-1}{\frac{\sqrt{3}}{2}} = \frac{2}{2\sqrt{3}}$ Or $\tan\theta = \frac{1}{\sqrt{3}}$ or $\tan\theta = \tan 30^{\circ}$ Or $\theta = 30^{\circ}$ Sol.78. (c) Two given vertices are (0,0) and $(3,\sqrt{3})$. Third vertex is $\left(\frac{(x_1+x_2)\pm\sqrt{3}(y_1-y_2)}{2},\frac{(y_1+y_2)\pm\sqrt{3}(x_1-x_2)}{2}\right)$ $\left(\frac{(0+3)\pm\sqrt{3}(0-\sqrt{3})}{2},\frac{(0+\sqrt{3})\pm\sqrt{3}(0-3)}{2}\right)$ $\left(\frac{3\pm3}{2},\frac{\sqrt{3}\pm3\sqrt{3}}{2}\right)$ $(0, 2\sqrt{3})$ and $(3, -\sqrt{3})$ Sol.79. (a) Sol. 79. (a) Mid-point of (1,1) and (2,3) is $\left(\frac{3}{2},2\right)$ Slope of line joining the point A(1,1)& B(2,3) is 2 slope of line perpendicular to it will be -1/2so equation of right bisector is y - 2 = (-1/2) (x - 3/2)4y - 8 = -2x + 32x + 4y - 11 = 0Sol.80. (c) for x + y = 2if (a,a) lie towards origin then a + a < 2a < 1(i)

for x + y = -2a + a > -2a > -1....(ii) by (i) and (ii) |a| < 1Sol.81. (d) line perpendicular to the line 3x + 4y = 10 will be of 4x - 3y + k = 0 type and intersection point of x + 2y = 5 and 3x + 7y= 17 is (1,2)this point will satisfy equation of line $4(1)^{-3}(2) + k = 0$ k = 2 so 4x - 3y + 2 = 0Sol.82. (b) $\left| 8a + 6b + 1 \right| = 1$ $\sqrt{8^2+6^2}$ $\frac{8a+6b+1}{=\pm 1}$ 10 8a + 6b - 9 = 0 and 8a + 6b + 11 = 0Sol.83. (d) line cuts intercept of 2 units on x axis it means line passing through A(2,0) and passing through B(-3, 5) so equation of line AB is $y - 0 = \frac{5 - 0}{-3 - 2}(x - 2)$ x + y - 2 = 0.....(i) line perpendicular to above line is x - y + k = 0passing through (3,3) so 3-3+k=0 $\mathbf{k} = \mathbf{0}$ equation of perpendicular line is x - y = 0(ii) by solving (i) and (ii) intersection point is (1,1) Sol.84. (d) Co-ordinates of B are $X=(-1) \times 2 - 1 = -3$ $Y = 2 \times 2 - 1 = 3$ A(1.1) (-1,2)(3,2)B(-3.3)C(5.3) Similarly co-ordinates of C are x = 5 and y = 3 \therefore Centroid of $\triangle ABC =$ $\left(\frac{1+(-3)+5}{3},\frac{1+3+3}{3}\right) = \left(1,\frac{7}{3}\right)$ Sol.85. (d) In AABC. $a = BC = \sqrt{(2-0)^2 (0-0)^2} = 2$ $b = CA = \sqrt{(2-1)^2 + (0-\sqrt{3})^2} = 3$ $c = AB = \sqrt{(1-0)^2 + (\sqrt{3}-0)^2} = 2$ \therefore Co-ordinates of in centre of \triangle ABC are $=\left(\frac{\mathbf{a}\mathbf{x}_1+\mathbf{b}\mathbf{x}_2+\mathbf{c}\mathbf{x}_3}{\mathbf{a}+\mathbf{b}+\mathbf{c}},\frac{\mathbf{a}\mathbf{y}_1+\mathbf{b}\mathbf{y}_2+\mathbf{c}\mathbf{y}_3}{\mathbf{a}+\mathbf{b}+\mathbf{c}}\right)$ $\left(\frac{2 \times 1 + 0 + 2 \times 2}{2 + 2 + 2}, \frac{2 \times \sqrt{3} + 0 + 0}{2 + 2 + 2}\right) = \left(\frac{6}{6}, \frac{2\sqrt{3}}{6}\right) = \left(1, \frac{1}{\sqrt{3}}\right)$

Alternate method: Clearly, $\triangle ABC$ is an equilateral triangle. ... The coordinates of its in centre and centroid are same. ⇒Required co-ordinates are $=\left(\frac{1+0+2}{3},\frac{\sqrt{3}+0+0}{3}\right)=\left(1,\frac{1}{\sqrt{3}}\right)$ Sol.86. (b) Let the required ratio be m:1, then co-ordinates of C are: $\frac{2m + (-2)}{m + 1} = \frac{-2}{7}$ $\Rightarrow 7m-7 = -m - 1$ $\Rightarrow m = 3/4$ Sol.87. (a) Education of the straight line that is parallel to 2x+3y+1=0 is given as 2x + 3y + c = 0...(i) $\Rightarrow c = -4$ Putting this value in equation (i), we get 2x + 3y-4 = 0.Sol.88. (a) Equations of the lines are: $y=-\frac{\sqrt{2}}{\sqrt{3}}x+\frac{1}{\sqrt{3}}\Rightarrow m_1=-\frac{\sqrt{2}}{\sqrt{3}}$ and $y = -\frac{\sqrt{3}}{\sqrt{2}}x + \frac{2}{\sqrt{2}} \Rightarrow m_2 = -\frac{\sqrt{3}}{\sqrt{2}}$: Angle between them (θ) = tan⁻¹ $\left| \frac{m_1 - m_2}{1 + m_1 + m_2} \right|$ $=\tan^{-1}\left|\frac{-\frac{\sqrt{2}}{\sqrt{3}}+\frac{\sqrt{3}}{\sqrt{2}}}{1+\left(-\frac{\sqrt{2}}{\sqrt{3}}\right)\left(-\frac{\sqrt{3}}{\sqrt{2}}\right)}\right|=\tan^{-1}\left(\frac{1}{2\sqrt{6}}\right)$ Sol.89. (a) By the given condition, $\frac{7+y+9}{3} = 6 \Longrightarrow y = 2$ $\frac{x-6+10}{3} = 3 \Longrightarrow x = 5$ Sol.90. (a) P(-2, -1), Q(1,0), R(4, 3) and S(x, y) are vertices of parallelogram than mid point of diagonal PR and QS will coincide $\frac{-2+4}{2} = \frac{1+x}{2} \Rightarrow x = 1$ and $\frac{-1+3}{2} = \frac{0+y}{2} \Rightarrow y = 2$ froth vertex is (1,2) Sol.91. (d) From the figure (0,0), (a,b) and (-a, -b) are collinear. (0, b) **└→**(a, b) (0, 0) (a, 0) (-a, 0)••••• (0 –b) (-a, -b)

Sol.92. (b) Solving above equations, we get the point of Angle between lines x+y-3 = 0 and x-y+3=0 is intersection as $\left(-\frac{34}{29}, \frac{45}{29}\right)$ Tan $\alpha = \left| \frac{-1 - (1)}{1 + (-1)(1)} \right| = \left| \frac{-2}{0} \right| \Rightarrow \alpha = \frac{\pi}{2}$... The required equation of line that passes through (2,3) and $\left(-\frac{34}{29}, \frac{45}{29}\right)$ is given as: Angle between lines $x - \sqrt{3}y + 2\sqrt{3} = 0$ And $\sqrt{3}x - y + 1 = 0$ is $\left(y - \frac{45}{29}\right) = \frac{3 - \frac{45}{29}}{2 + \frac{34}{29}} \cdot \left(x + \frac{34}{29}\right)$ tanβ $\frac{\sqrt{3}}{\sqrt{3}} = \left| \frac{1-3}{\sqrt{3}(2)} \right| = \left| -\frac{1}{\sqrt{3}} \right| = \frac{1}{\sqrt{3}}$ $\frac{\frac{1}{\sqrt{3}}}{1+\frac{1}{\sqrt{2}}}$ $\Rightarrow 29y-45 = \frac{42}{92} (29x+34)$ $\Rightarrow (29y - 45) \times 46 = 21 (29x + 34)$ $\Rightarrow \beta = \frac{\pi}{2}$ $\Rightarrow 21 \times 29x - 29 \times 46y + 21 \times 34 + 45 \times 46 = 0$ 6 $\Rightarrow 21x - 46y + 96 = 0$ Sol.93. (a) Sol.96. (b) Distance = $\frac{\left|9 - \frac{15}{2}\right|}{5} = \frac{3}{10}$ Sol.97. (d) 120 (0,b) (0,-5) b а The equation of the lines is: $y = mx + c \Longrightarrow y = (tan120^{\circ}) x + (-5)$ \Rightarrow y = $-\sqrt{3}x - 5 \Rightarrow$ y + $\sqrt{3}x + 5 = 0$ **Sol.94.** (d) The equation of the line passing through P and A Now $\frac{2a}{5} = 2 \implies a = 5$ and parallel to line. $\frac{3b}{5} = 3 \Longrightarrow b = 5$ Equation of line is x + y = 5P(1,3) 2x+3y=6 (x,y)(0,b) h=h'+xh [4x+y=4 is given as $y-y_1 = m(x-x_1)$ \Rightarrow y-3 = -4 (x-1) $\{:: m = -4\}$ $\frac{3a}{5} = 2 \Longrightarrow a = \frac{10}{3}$ \Rightarrow y-3 = -4x + 4 $\Rightarrow 4x + y = 7$...(i) $\frac{2b}{5} = 3 \Longrightarrow b = \frac{15}{2}$ Since 4x+y = 7 and 2x+3y = 6Intersect at A Equation of line is \therefore Solving the above equation, we get A(x,y) = $\frac{3x}{10} + \frac{2y}{15} = 1$ $\left(\frac{3}{2},1\right)$ $\Rightarrow 9x + 4y = 30$ $\therefore AP = \sqrt{\left(\frac{3}{2}-1\right)^2 + \left(1-3\right)^2} = \sqrt{\frac{1}{4}+4} = \frac{\sqrt{17}}{2}$ unit Sol.98. (c) Let $\left(\frac{5}{2}, 0\right)$ be a point on 2x + 11y = 5Sol.95. (b) 2x - 3y + 7 = 0Now, perpendicular from $\left(\frac{5}{2}, 0\right)$ to 24x + 7y7x + 4y + 2 = 0= 20 is 8/5

(2,3)

(2,3)

(a.0)

(a,0)

Using distance between two parallel lines formula. Sol.109. (c) $\tan^{-1}(\theta) = \tan^{-1} \left| \frac{\operatorname{lm}' - 1'm}{\operatorname{ll}' + \operatorname{mm}'} \right| \Longrightarrow \theta = \left| \frac{1'm - 1'm}{\operatorname{ll}' + \operatorname{mm}'} \right|$ Sol.110. (a) $(x^2 - 2x + 1) + (4y^2 - 4y + 1) = 0$ $\Rightarrow (x-1)^2 + (2y-1)^2 = 0$ \Rightarrow x = 1, y = 1/2 It is a point Sol.111. (a) First line x + y - 4 = 0(i) Second line 3x + y - 4 = 0(ii) third line x + 3y - 4 = 0(iii) Intersection point of (i) and (ii) is P(0,4)Intersection point of (ii) and (iii) is Q(1,1) Intersection point of (i) and (iii) is R(4,0) Now by distance formula $PQ = \sqrt{10}, \quad QR = \sqrt{10}, \quad PR = 4\sqrt{2}$ Triangle is isosceles. Sol.112. (b) Equation of line perpendicular to the line y = xis $\mathbf{x} + \mathbf{y} + \mathbf{k} = \mathbf{0}$ this line passing through the point (3,2) so $3 + 2 + k = 0 \Rightarrow k = -5$ required line is x + y = 5Sol.113. (c) if lines 3y + 4x = 1, y = x + 5, 5y + bx = 3 are concurrent then 4 3 -1 $\begin{vmatrix} 1 & -1 & 5 \end{vmatrix} = 0$ b 5 –3 4(3-25) - 3(-3-5b) - 1(5+b) = 0b = 6Sol.114. (d) Mid-point of given diagonal A(1,3) and B(5,1) is (3.2)this mid-point is also mid-point of second diagonal. so this point will satisfy the equation of second diagonal. y = 2x + c $2 = 2(3) + c \Rightarrow c = -4$ Sol.115. (d) Perpendicular distance of a point (x_1, y_1) from line ax + by + c = 0 is $\frac{ax_1 + by_1 + c}{\sqrt{a^2 + b^2}}$ Sol.116. (d) If x = 0 then y = k is a equation of line parallel to x axis. If y = 0 then x = k is a equation of line parallel to y axis. so ax + by + c = 0, represents a straight line only when at least one of a and b is non-zero. Sol.117. (d) Slope of line $x\cos\alpha + y\sin\alpha = a$ is m_1 $= -\cot \alpha$ Slope of line $xsin\beta - ysin\beta = a$ is m_2 $= tan\beta$ $m_1 - m_2$ $tan\theta =$ $1 + m_1 m_2$ $\tan \theta = \left| \frac{-\cot \alpha - \tan \beta}{1 + (-\cot \alpha) \tan \beta} \right| = \left| \frac{-\frac{1}{\tan \alpha} - \tan \beta}{1 + (-\frac{1}{-1}) \tan \beta} \right|$ $\tan\theta = \left| \frac{\tan \alpha \tan \beta + 1}{\tan \alpha - \tan \beta} \right| = \left| \frac{1}{\tan(\alpha - \beta)} \right|$

 $\tan\theta = \cot(\alpha - \beta) = \tan\left(\frac{\pi}{2} - (\alpha - \beta)\right)$ $\theta = \left(\frac{\pi}{2} - (\alpha - \beta)\right) \text{ or } \pi - \left(\frac{\pi}{2} - (\alpha - \beta)\right)$ $\theta = \left(\frac{\pi - 2\alpha + 2\beta}{2}\right) \text{ or } \left(\frac{\pi - 2\beta + 2\alpha}{2}\right)$ Sol.118. Distance formula $=\sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2}$ $\sqrt{(m\cos 2\beta - m\cos 2\alpha)^2 + (m\sin 2\beta - m\sin 2\alpha)^2}$ $= m\sqrt{(\cos 2\beta - \cos 2\alpha)^2 + (\sin 2\beta - \sin 2\alpha)^2}$ $= m\sqrt{(2\sin(\alpha+\beta)\sin(\alpha-\beta))^{2} + (2\cos(\alpha+\beta)\sin(\alpha-\beta))^{2}}$ $= 2m\sin(\alpha - \beta)\sqrt{\sin^2(\alpha + \beta) + \cos^2(\alpha + \beta)}$ $= |2m\sin(\alpha - \beta)|$ Sol.119. (c) Third vertex of equilateral triangle $\frac{(x_1 + x_2) \pm \sqrt{3}(y_1 - y_2)}{2}, \frac{(y_1 + y_2) \pm \sqrt{3}(x_1 - x_2)}{2}$ $\left(\frac{(-1-\sqrt{3})\pm\sqrt{3}(-1-\sqrt{3})}{2},\frac{(-1+\sqrt{3})\pm\sqrt{3}(-1+\sqrt{3})}{2}\right)$ by solving this third vertex is (1,1) Sol.120. (c) All diagonals of a square are perpendicular to each other given diagonal is 3x + 2y = 5then other diagonal will be 2x - 3y = k, it will pass through the point (1,-1), because this vertex is not satisfying to the given first diagonal. 2(1) - 3(-1) = kk = 5equation of diagonal will be 2x - 3y = 5Sol.121. (c) x + 2 = 0, and y + 2 = 0 lines are perpendicular. so kx + y + 2 = 0 line is hypotenuse of right triangle. and circum-centre is always lie on mid-point of hypotenuse so (-1,-1) will satisfy the equation of hypotenuse k(-1) + (-1) + 2 = 0 $\mathbf{k}=\mathbf{1}$ Sol.122. (c) If A(a,b), B(c,d), C(a-c, b-d) collinear then slope of AB = Slope of line BC $a \qquad b \qquad 1 \Big|_{=0}$ d с a-c b-d 1 a(d-b+d)-b(c-a+c)+1(cb-cd-ad+ cd) = 0ad - ab + ad - bc + ba - bc + cb - cd - ad+ cd = 0ad = bcSol.123. (b) \triangle ABC and \triangle ADE are similar so BC = 2 DE (D, E are mid points) $DE = \sqrt{(5-2)^2 + (9-5)^2} = 5$ units so BC = 10 units Sol.124. (c) slope of line 3x-4y-5 = 0 is 3/4

slope of Line joining the points A(0,k) and P(3,1) A(4,2) and O(0,0) equation of AO is 1-k $\overline{3-0}$ both lines are perpendicular m_1m_2 =-1 $\frac{1-k}{2} \times \frac{3}{2} = -1$ 3 4 k = 5 Sol.125. (b) $m_1 = 2 - \sqrt{3}, m_2 = 2 + \sqrt{3}$ $\tan \theta = \left| \frac{(2 - \sqrt{3}) - (2 + \sqrt{3})}{1 + (2 - \sqrt{3})(2 + \sqrt{3})} \right|$ $\tan\theta = \sqrt{3}$ Acute angle is 60° then obtuse angle will be 120° Sol.126. (c) side of square = distance between parallel lines $= \left| 15+5 \right|_{=4}$ units $\sqrt{3^2 + 4^2}$ area of square = 16 sq units. Sol.127. (a) three consecutive vertices A(-3,4),B(0, -4) and C(5,2). and let D(x,y)mid-point of diagonals AC and BD is same for parallelogram -3 + 5 = 0 + x $\mathbf{x} = 2$ 4 + 2 = -4 + yy = 10coordinates of D is (2,10) Sol.128. (c) slope of line y + px = 1 is -pslope of line y - qx = 2 is q both are perpendicular then m1m2 = -1(-p)(q) = -1pq = 1Sol.129. (d) A, B and C are in AP the 2B = A + CC = 2B - Agiven line is Ax + 2By + C = 0Ax + 2By + (2B - A) = 0A(x-1) + 2B(y+1) = 0x - 1 = 0 $\mathbf{x} = 1$ and y + 1 = 0 then y = -1Sol.130. (b) mid-point of A(-4,2) and B(4, -2) is (0,0) so line will pass through origin slope of line AB is $\frac{-2-2}{4+4} = -\frac{1}{2}$ 2 then slope of mirror line will be 2 Equation of mirror line will be y = 2x. Sol.131. (a) $p \quad p-3 \quad 1$ q+3q6 3 $C_1 \leftrightarrow C_1 - C_2$ 3 p-3 1= 03 1 q3 3 1 So these points are collinear. These points can lie in any quadrant, it depends upon values of p and q. Sol.132. (b) Line x - 2 = 0 is perpendicular to x axis and line $\sqrt{3}x - y - 2 = 0$ makes 60° with x axis .so angle between lines will be 30° Sol.133. (d)

y = (2/4)(x)x-2y=0Sol.134. (c) If two vertices are rational number then third vertex must be irrational number and area of equilateral triangle is $\frac{\sqrt{3}}{4}a^2$ i.e. irrational. So both statements are correct. Sol.135. (d) Two given vertex (0, 0) and (2, 2)Third vertex $\left(\frac{x_1 + x_2 \pm \sqrt{3}(y_1 - y_2)}{2}\right), \left(\frac{y_1 + y_2 \pm \sqrt{3}(x_1 - x_2)}{2}\right)$ $\left(\frac{2\pm\sqrt{3}(2)}{2},\frac{2\pm\sqrt{3}(2)}{2}\right)$ $(1 \pm \sqrt{3}, 1 \pm \sqrt{3})$ So coordinates are $(1 + \sqrt{3}, 1 - \sqrt{3} \text{ and } (1 - \sqrt{3}))$ $\sqrt{3}$, 1 + $\sqrt{3}$) Difference = $(1+\sqrt{3}) - (1-\sqrt{3}) = 2\sqrt{3}$ Sol.136. (c) A(1,3), B(-1,2), C(3,5), D(x,y) -1 + x = 1 + 3x = 5 2 + y = 3 + 5y=6 coordinates of D (5, 6) equation of BD $y-2 = \frac{6-2}{5+1}(x+1)$ 6y - 12 = 4x + 44x - 6y + 16 = 02x - 3y + 8 = 0Sol.137. (c) Area of parallelogram= $2 \times \text{area of } \Delta \text{ ABD}$ $\begin{vmatrix} 1 & 3 & 1 \end{vmatrix} = 2$ square units $=2\times\frac{1}{2}$ -1 2 1 5 6 1 Sol.138. (d) Equation of AB x - 2 = 0Equation of BC y + 1 = 0Equation of CA x + 2y - 4 = 0(2, Sol.139. (a) Circum-centre of mid-point of hypoteneous $\left(\frac{2+6}{2},\frac{1-1}{2}\right) \Rightarrow (4,0)$ Sol.140. (c) (-5,0), (5p², 10p), (5q² 10q) are collinear $\frac{10p-0}{2} - \frac{10q-0}{2}$ $5p^2 + 5 \overline{} 5q^2 + 5$ 10q 10p $\frac{10p}{5(p^2+1)} = \frac{10q}{5(q^2+1)}$ $pq^2 + p = p^2q + q$ $pq^2 - p^2q + p - q = 0$ pq(q-p)-1(q-p)=20

(q-p) (pq-1)=0 p=q or pq = 1But $p \neq q$ given So, pq = 1Sol.141. (c) eqⁿ of line $\frac{x}{-} + \frac{y}{-} = 1$ a a $\frac{1}{-+-2} = 1$ a a a = -1 $\Rightarrow x + y + 1 = 0$ Sol.142. (a) x+2y+2=02x - 3y - 3 = 0By solving above equations (0,-1) lie on both lines line cuts equal intercept $\frac{x}{a} + \frac{y}{a} = 1$ $\frac{0}{a} + \frac{-1}{a} = 1$ a = -1x + y + 1 = 0x intercept =1 unit y intercept = 1 unit sum of absolute values = 2Sol.143. (c) ax + by + c = 0 is parallel to bx + ay + c = 0 $\Rightarrow \frac{a}{b} = \frac{b}{a}$ $a^{2} = b^{2}$ $a^2 - b^2 = 0$ Sol.144. (a) x + y = pabove line cuts the x axis at A(p, 0) and y axis at B(0,p) let mid point of AB is (b,k) $\Rightarrow \frac{p+0}{h} = h$ 2 $\Rightarrow \frac{0+p}{k} = k$ 2 $\Rightarrow p = 2h = 2k$ \Rightarrow h=k $\Rightarrow x = y$ Sol.145. (c) P(x, y) $A(2a, \theta)$ B(0.3a) $\mathbf{PA} = \mathbf{PB}$ $\sqrt{(x-2a)^2 + y^2} = \sqrt{x^2 + (y-3a)^2}$ $x^{2} + 4a^{2} - 4ax + y^{2}$ $=x^2 + y^2 - 6ay + 9a^2$ \Rightarrow 4ax - 6ay + 5a² = 0 $\Rightarrow 4x - 6y + 5a = 0$ Sol.146. (c) equation of line passing through origin and angle with x axis 75° is $y = tan75^{\circ}x$ $\mathbf{y} = (2 + \sqrt{3})\mathbf{x}$ point given in 1st statement satisfies above equation so statement 1 is correct. line is passing through origin and its slope is positive so line is exists only in 1st and 3rd quadrant. both statements are correct. Sol.147. (b) let line cuts x axis at A(a, 0) and y axis at B(0,b) mid point of AB is (3, 4) $\frac{a+0}{a} = 3 \Longrightarrow a = 6$ 2

 $4p^2x^2 + 4q^2y^2 + 8pqxy - 4r^2 = 0$ now compare both equations $4x^2 = 16$ x = 2 or - 2 $4y^2 = 49$ y = 7/2 or - 7/28xy = -56xy = -7so x and y will be of opposite sign. i.e. points are (2, -7/2) and (-2, 7/2) Sol.153. (b) line $(k-3)x - (5-k^2)y + k^2 - 7k + 6 = 0$ parallel to the line x + y = 1so $\frac{k-3}{k-3} = \frac{-(5-k^2)}{k-3}$ 1 $k - 3 = -(5 - k^2)$ $k^2 - k - 2 = 0$ k = 2, -1Sol.154. (b) let R cuts the line PQ in ratio m : n then by section formula $R\left(\frac{5m-n}{m+n},\frac{7m+n}{m+n}\right)$ this R point lie on line x + y = 4 $\frac{5m-n}{m+n} + \frac{7m+n}{m+n} = 4$ \Rightarrow 5m - n + 7m + n = 4m + 4n $\Rightarrow 2m = n$, so m : n = 1 : 2 Sol.155. (c) equation of line in Normal form is $x\cos\alpha + y\sin\alpha = p$ so line is $x\cos 15 + y\sin 15 = 4$ intercept on x axis = 4cos15 intercept on y axis = 4sin15 sum of intercepts = $4\left(\frac{1}{\cos 15} + \frac{1}{\sin 15}\right)$ $=4\left(\frac{2\sqrt{2}}{\sqrt{3}+1}+\frac{2\sqrt{2}}{\sqrt{3}-1}\right)=8\sqrt{2}\left(\sqrt{3}\right)=8\sqrt{6}$ Sol.156. (d) x = 5 is the equation of line parallel to y axis, and there are infinite points on a line. Sol.157. (b) Sol.157. (b) let A(a,0) and B(0,b), mid point of AB is $\left(\frac{a}{2}, \frac{b}{2}\right)$, let locus of this mid point is (h,k) i.e. $h = \frac{a}{2}, k = \frac{b}{2}$ intersection point of x + 2y - 1 = 0 and 2x - y -1 = 0, is $(3 \ 1)$ $(\frac{1}{5}, \frac{1}{5})$ equation of line in intercept form is $\frac{x}{a} + \frac{y}{b} = 1$ line is passing through $\left(\frac{3}{5},\frac{1}{5}\right)$ and a=2h, b=2k $\frac{3/5}{2h} + \frac{1/5}{2k} = 1$ h + 3k = 10hkso required locus is x + 3y = 10xySol.158. (b) line perpendicular to $x\cos\theta + y\sin\theta = 9$ will be $xsin\theta - ycos\theta + k = 0$ line passing through the point $(-\sin\theta, \cos\theta)$ so given point will satisfy the equation $(-\sin\theta)\sin\theta - (\cos\theta)\cos\theta + k = 0$

k = 1equation of required line $x\sin\theta - y\cos\theta + 1 = 0$ Sol.159. (a) let 2 points P and Q on line y = 2x + 3 are (x_1, y_1) and (x_2, y_2) or $(x_1, 2x_1 + 3)$ and $(x_2, 2x_2 + 3)$ distance of P and Q from R(1,5) is 2 $\mathbf{PR} = \sqrt{(x_1 - 1)^2 + (2x_1 - 2)^2} = 2$ $\sqrt{(x_1-1)^2+4(x_1-1)^2}=2$ $\sqrt{5(x_1-1)^2} = 2$ $5(x_1-1)^2 = 4$ $(x_1 - 1) = \pm \frac{2}{\sqrt{2}}$ $x_1 = 1 + \frac{2}{\sqrt{5}}, x_2 = 1 - \frac{2}{\sqrt{5}},$ than $y_1 = 5 + \frac{4}{\sqrt{5}}, y_2 = 5 - \frac{4}{\sqrt{5}}$ both points are $\left(1+\frac{2}{\sqrt{5}},5+\frac{4}{\sqrt{5}}\right),\left(1-\frac{2}{\sqrt{5}},5-\frac{4}{\sqrt{5}}\right)$ **Sol.160.** (a) 2x + y - 3 = 0 and 4x + 2y + 5 = 0 are parallel lines 4x + 2y - 6 = 0.....(i) 4x + 2y + 5 = 0.....(ii) side of square = distance between above parallel lines = 5+6 = 11 $\sqrt{16+4} - \sqrt{20}$ so area of square = $(side)^2 = 121/20 = 6.05$ Sol.161. (b) A(3,5) D(-1,2) E(6,4) D is mid point of AB and E is mid point of AC so by mid point formulae coordinates of B = (-5, -5)-1) and C (9.3) centroid of **ABC** $=\left(\frac{x_1+x_2+x_3}{3},\frac{y_1+y_2+y_3}{3}\right)$ $=\left(\frac{3-5+9}{3},\frac{5-1+3}{3}\right)$ $=\left(\frac{7}{3},\frac{7}{3}\right)$

Sol.162. (b) equation of line AB is 7x - y - 3 = 0, its slope $m_1 = 7$ equation of line BC is x + y - 5 = 0, its slope $m_2 = -1$

 $2tan^2\theta-4tan\theta+tan\theta-2=0$

 $2\tan\theta(\tan\theta - 2) + 1(\tan\theta - 2) = 0$ $2\tan\theta(\tan\theta - 2) + 1(\tan\theta - 2) = 0$ $\tan\theta = -\frac{1}{2} \text{ and } 2, \text{ triangle is acute angle so } \tan\theta$ $y - 3 = \frac{-2}{-3}(x-4)$ = 2 than $\cot\theta = 1/2$ Sol.163. (c) A(2, 3), B(4, 3), C(5, 1), D(x, y) are vertices of isosceles trapezium than by diagram

coordinates of D(1,1) Sol.164. (a) equation of diagonal AC $y-1 = \frac{2}{-3}(x-5)$ 2x + 3y - 13 = 0(i) equation of diagonal BD

2x - 3y + 1 = 0.....(ii) by solving (i) and (ii) intersection point is (3, 7/2) Sol.165. (d) diagonals of quadrilateral ABCD are along the lines x - 2y = 1 and 4x + 2y = 3. slope of x - 2y = 1 is 1/2slope of 4x + 2y = 3 is -2 $m_1m_2 = -1$, so line are perpendicular. if diagonals are perpendicular than quadrilateral will be rhombus.

Sol.166. (b) P(2, 4), Q(8,12), R(10, 14) and S(x, y) are vertices of parallelogram than mid point of diagonal PR and QS will coincide 2 10

$$\frac{2+10}{2} = \frac{8+x}{2} \Rightarrow x = 4$$

and
$$\frac{4+14}{2} = \frac{12+y}{2} \Rightarrow y = 6$$
$$x + y = 10$$