9.3 Coordinate transformations (astronomical)

Time in astronomy

Julian day n	Julian day number ^a			Julian day number
JD = D - 32075 + 1461 * (Y + 4800 + (M - 14)/12)/4			D	day of month number
+367*(M-2-(M-14)/12*12)/12			Y	calendar year, e.g., 1963
-3*((Y+4900+(M-14)/12)/100)/4		(9.1)	M	calendar month (Jan=1)
Modified		. ,	*	integer multiply
Julian day	MJD = JD - 2400000.5	(9.2)	/ MJD	integer divide modified Julian day
number		())	MJD	number
Day of week	$W = (JD + 1) \mod 7$	(9.3)	W	day of week (0=Sunday, 1=Monday,)
			LCT	local civil time
Local civil	LCT = UTC + TZC + DSC	(9.4)	UTC	coordinated universal time
time			TZC	time zone correction
			DSC	daylight saving correction
Julian centuries	$T = \frac{JD - 2451545.5}{36525}$	(9.5)	Т	Julian centuries between 12^{h} UTC 1 Jan 2000 and 0^{h} UTC $D/M/Y$
	$GMST = 6^{h}41^{m}50^{s}.54841$			
Greenwich	$+8640184^{\circ}.812866T$		GMS	T Greenwich mean sidereal time at 0^{h} UTC $D/M/Y$
sidereal	$+0^{\circ}.093104T^{2}$			(for later times use
time				1 s = 1.002738 sidereal seconds)
	$-0^{\circ}.0000062T^{3}$	(9.6)		scondsj
Local	٨°		LST	local sidereal time
sidereal time	$LST = GMST + \frac{\lambda^{\circ}}{15^{\circ}}$	(9.7)	λ°	geographic longitude, degrees east of Greenwich

^{*a*}For the Julian day starting at noon on the calendar day in question. The routine is designed around integer arithmetic with "truncation towards zero" (so that -5/3 = -1) and is valid for dates from the onset of the Gregorian calendar, 15 October 1582. JD represents the number of days since Greenwich mean noon 1 Jan 4713 BC. For reference, noon, 1 Jan 2000 = JD2451545 and was a Saturday (W = 6).

Horizon coordinates^a

Hour angle	$H = LST - \alpha$	(9.8)	LST H	local sidereal time (local) hour angle
Equatorial to horizon	$\sin a = \sin \delta \sin \phi + \cos \delta \cos \phi \cos H$ $\tan A \equiv \frac{-\cos \delta \sin H}{\sin \delta \cos \phi - \sin \phi \cos \delta \cos H}$	(9.9) (9.10)	α δ α Α φ	right ascension declination altitude azimuth (E from N) observer's latitude
Horizon to equatorial	$\sin \delta = \sin a \sin \phi + \cos a \cos \phi \cos A$ $\tan H \equiv \frac{-\cos a \sin A}{\sin a \cos \phi - \sin \phi \cos a \cos A}$	(9.11) (9.12)		$\begin{array}{c c} + & + \\ - & & + \\ \hline - & & A, H \\ \hline - & & - \\ - & & + \end{array}$

^{*a*}Conversions between horizon or alt-azimuth coordinates, (a, A), and celestial equatorial coordinates, (δ, α) . There are a number of conventions for defining azimuth. For example, it is sometimes taken as the angle west from south rather than east from north. The quadrants for A and H can be obtained from the signs of the numerators and denominators in Equations (9.10) and (9.12) (see diagram).

Ecliptic coordinates^{*a*}

Obliquity of the ecliptic	$\varepsilon = 23^{\circ}26'21''.45 - 46''.815 T$ - 0''.0006 T ² + 0''.00181 T ³	(9.13)	 ε mean ecliptic obliquity T Julian centuries since J2000.0^b
Equatorial to ecliptic	$\sin\beta = \sin\delta\cos\varepsilon - \cos\delta\sin\varepsilon\sin\alpha$ $\tan\lambda \equiv \frac{\sin\alpha\cos\varepsilon + \tan\delta\sin\varepsilon}{\cos\alpha}$	(9.14) (9.15)	α right ascension δ declination λ ecliptic longitude β ecliptic latitude
Ecliptic to equatorial	$\sin \delta = \sin \beta \cos \varepsilon + \cos \beta \sin \varepsilon \sin \lambda$ $\tan \alpha \equiv \frac{\sin \lambda \cos \varepsilon - \tan \beta \sin \varepsilon}{\cos \lambda}$	(9.16) (9.17)	$\begin{array}{c c} \begin{array}{c c} + \\ - \\ \hline \\ - \\ - \\ \end{array} \begin{array}{c} + \\ + \\ + \\ + \\ + \\ + \\ - \\ + \end{array} \end{array}$

^{*a*}Conversions between ecliptic, (β, λ) , and celestial equatorial, (δ, α) , coordinates. β is positive above the ecliptic and λ increases eastwards. The quadrants for λ and α can be obtained from the signs of the numerators and denominators in Equations (9.15) and (9.17) (see diagram). ^{*b*}See Equation (9.5).

Galactic coordinates^a

Galactic frame	$\alpha_{g} = 192^{\circ}15'$ $\delta_{g} = 27^{\circ}24'$ $l_{g} = 33^{\circ}$	(9.18) (9.19) (9.20)	$lpha_{ m g}$ $\delta_{ m g}$	right ascension of north galactic pole declination of north galactic pole
Equatorial to galactic	$\sin b = \cos \delta \cos \delta_{g} \cos(\alpha - \alpha_{g}) + \sin \delta \sin \delta_{g}$ $\tan(l - l_{g}) \equiv \frac{\tan \delta \cos \delta_{g} - \cos(\alpha - \alpha_{g}) \sin \delta_{g}}{\sin(\alpha - \alpha_{g})}$	(9.21) (9.22)	lg	ascending node of galactic plane on equator
Galactic to	$\sin \delta = \cos b \cos \delta_{g} \sin (l - l_{g}) + \sin b \sin \delta_{g}$	(9.23)	δ	declination right ascension
equatorial	$\tan(\alpha - \alpha_g) \equiv \frac{\cos(l - l_g)}{\tan b \cos \delta_g - \sin \delta_g \sin(l - l_g)}$	(9.24)	α b	galactic latitude
	$\tan \delta s_{g} = \tan b \cos \delta_{g} - \sin \delta_{g} \sin(l - l_{g})$	(2.21)	l	galactic longitude

^{*a*}Conversions between galactic, (b,l), and celestial equatorial, (δ, α) , coordinates. The galactic frame is defined at epoch B1950.0. The quadrants of *l* and α can be obtained from the signs of the numerators and denominators in Equations (9.22) and (9.24).

Precession of equinoxes^a

In right ascension	$\alpha \simeq \alpha_0 + (3^{\mathrm{s}}.075 + 1^{\mathrm{s}}.336\sin\alpha_0\tan\delta_0)N$	(9.25)	lpha $lpha_0$ N	right ascension of date right ascension at J2000.0 number of years since J2000.0
In declination	$\delta \simeq \delta_0 + (20''.043 \cos \alpha_0)N$	(9.26)	$\delta \delta_0$	declination of date declination at J2000.0

 a Right ascension in hours, minutes, and seconds; declination in degrees, arcminutes, and arcseconds. These equations are valid for several hundred years each side of J2000.0.