Exercise 1.1

Q. 1 A. Use Euclid's division algorithm to find the HCF of

900 and 270

Answer : Euclid's Division is a method for finding the HCF (highest common factor) of two given integers. According to Euclid's Division Algorithm, For any two positive integers, 'a' and 'b', there exists a unique pair of integers 'q' and 'r' which satisfy the relation:

 $a = bq + r, 0 \le r \le b$

Given integers 900 and 270. Clearly 900>270.

By applying division lemma

 \Rightarrow 900 = 270×3 + 90

Since remainder \neq 0, applying division lemma on 270 and 90

 $\Rightarrow 270 = 90 \times 3 + 0$

 \therefore remainder = 0,

 \therefore the HCF of 900 and 270 is 90.

Q. 1 B. Use Euclid's division algorithm to find the HCF of

196 and 38220

Answer : Euclid's Division is a method for finding the HCF (highest common factor) of two given integers. According to Euclid's Division Algorithm, For any two positive integers, 'a' and 'b', there exists a unique pair of integers 'q' and 'r' which satisfy the relation:

 $a = bq + r, 0 \le r \le b$

Given integers 196 and 38220. Clearly 38220>196.

By applying division lemma

 $\Rightarrow 38220 = 196 \times 195 + 0$

Since remainder = 0

∴ the HCF of 196 and 38220 is 195.

Q. 1 C. Use Euclid's division algorithm to find the HCF of

1651 and 2032

Answer : Euclid's Division is a method for finding the HCF (highest common factor) of two given integers. According to Euclid's Division Algorithm, For any two positive integers, 'a' and 'b', there exists a unique pair of integers 'q' and 'r' which satisfy the relation:

 $a = bq + r, 0 \le r \le b$

Given integers 1651 and 2032. Clearly 2032>1651.

By applying division lemma

 $\Rightarrow 2032 = 1651 \times 1 + 381$

Since remainder \neq 0, applying division lemma on 1651 and 381

 $\Rightarrow 1651 = 381 \times 4 + 127$

Since remainder \neq 0, applying division lemma on 381 and 127

 $\Rightarrow 381 = 127 \times 3 + 0$

Since remainder = 0,

∴ the HCF of 1651 and 2032 is 127.

Q. 2. Use Euclid division lemma to show that any positive odd integer is of form 6q + 1, or 6q + 3 or 6q + 5, where q is some integers.

Answer : Let a be any odd positive integer and b = 6

Then using Euclid's algorithm, we get a = 6q + r here r is remainder and value of q is more than or equal to 0 and r = 0,1,2,3,4,5 because $0 \le r < b$ and the value of b is 6

So total form available will be 6q, 6q + 1, 6q + 2, 6q + 3, 6q + 4, 6q + 5, 6q + 6 is divisible by 2, so it is an even number.

6q + 1, 6 is divisible by 2 but 1 is not divisible by 2, so it is an odd number.

6q + 2, 6 is divisible by 2 but 2 is also divisible by 2, so it is an even number.

6q + 3, 6 is divisible by 2 but 3 is not divisible by 2, so it is an odd number.

6q + 4, 6 is divisible by 2 but 4 is also divisible by 2, so it is an even number.

6q + 5, 6 is divisible by 2 but 5 is not divisible by 2, so it is an odd number.

 \therefore so odd numbers will in form of 6q + 1 or 6q + 3 or 6q + 5.

Q. 3. Use Euclid's division lemma to show that the square of any positive integer is of the form 3p, 3p + 1 or 3p + 2.

Answer : Let ^a be any positive integer. Then, it is form 3q or, 3q + 1 or, 3q + 2

So, we hae the following cases:

Case I. When a = 3q

In this case, we have

 $a^{2} = (3q)^{2} = 9q^{2} = 3q(3q) = 3p$, where $p = 3q^{2}$

Case II. When a = 3q + 1

In this case, we have

$$a^{2} = (3q + 1)^{2} = 9q^{2} + 6q + 1 = 3q(3q + 2) + 1 = 3p + 1,$$

where p = q(3q + 2)

Case III. When a = 3q + 2

In this case, we have

$$a^{2} = (3q + 2)^{2} = 9q^{2} + 12q + 4 = 9q^{2} + 12q + 3 + 1$$

 $= 3(3q^2 + 4q + 1) + 1 = 3p + 1$

where $p = 3q^2 + 4^2 + 1$

Hence, a is the form of 3p or 3p + 1 or 3p + 2

Q. 4. Use Euclid's division lemma to show that the cube of any positive integer is of the form 9m, 9m + 1 or 9m + 8.

Answer : Let a be any positive integer. Then, it is of the form 3q or, 3q + 1 or, 3q + 2.

We know that according to Euclid's division lemma:

a = bq + rSo, we have the following cases:

Case I When a = 3q

In this case, we have

 $a^3 = (3q)^3 = 27q^3 = 9(3q^3) = 9m$, where $m = 3q^3$

<u>Case II When a = 3q + 1</u>

In this case, we have

$$a^{3} = (3q + 1)^{3}$$

⇒ 27q³ + 27q² + 9q + 1
⇒9q(3q² + 3q + 1) + 1

 \Rightarrow a³ = 9m + 1, where m = q(3q² + 3q + 1)

Case III When a = 3q + 2

In this case, we have

$$a^3 = (3q + 1)^3$$

$$\Rightarrow 27q^3 + 54q^2 + 36q + 8$$

$$\Rightarrow 9q(3q^2 + 6q + 4) + 8$$

$$\Rightarrow$$
 a³ = 9m + 8, where m = q(3q² + 6q + 4)

Hence, a³ is the form of 9m or, 9m + 1 or, 9m + 8.

Q. 5. Show that one and only one out of n, n + 2 or n + 4 is divisible by 3, where n is any positive integer.

Answer : We know that any positive integer is of the form 3q or, 3q + 1 or,

3q + 2 for some integer q and one and only one of these possibilities can occur.

So, we have following cases:

Case I When n = 3q

In this case, we have

n = 3q, which is divisible by 3

Now, n = 3q

 \Rightarrow n + 2 = 3q + 2,

 \Rightarrow n + 2 leaves remainder 2 when divided by 3

 \Rightarrow n + 2 is not divisible by 3

Again, n = 3q

 \Rightarrow n + 4 = 3q + 4 = 3(q + 1) + 1

 \Rightarrow n + 4 leaves remainder 1 when divided by 3

 \Rightarrow n + 4 is not divisible by 3

Thus, n is divisible by 3 but n + 2 and n + 4 are not divisible by 3.

Case II When n = 3q + 1

In this case, we have

n = 3q + 1

 \Rightarrow n leaves remainder 1 when divided by 3

 \Rightarrow n is not divisible by 3

Now, n = 3q + 1

 $\Rightarrow n + 2 = (3q + 1) + 2 = 3(q + 1),$ $\Rightarrow n + 2 \text{ is divisible by 3}$ Again, n = 3q + 1 $\Rightarrow n + 4 = (3q + 1) + 4 = 3q + 5 = 3(q + 1) + 2$ $\Rightarrow n + 4 \text{ leaves remainder 2 when divided by 3}$ $\Rightarrow n + 4 \text{ is not divisible by 3}$

Thus, n + 2 is divisible by 3 but n and n + 4 are not divisible by 3.

Case III When n = 3q + 2

In this case, we have

n = 3q + 2

 \Rightarrow n leaves remainder 2 when divided by 3

 \Rightarrow n is not divisible by 3

Now, n = 3q + 2

 \Rightarrow n + 2 = 3q + 2 + 2 = 3(q + 1) + 1,

 \Rightarrow n + 2 leaves remainder 1 when divided by 3

 \Rightarrow n + 2 is not divisible by 3

Again, n = 3q + 2

 \Rightarrow n + 4 = 3q + 2 + 4 = 3(q + 2)

 \Rightarrow n + 4 is divisible by 3

Thus, n + 4 is divisible by 3 but n and n + 2 are not divisible by 3.

Exercise 1.2

Q. 1. Express each of the following number as a product of its prime factors.

(i) 140 (ii) 156 (iii) 3825

- (iv) 5005
- (v) 7429

Answer : I. $140 = 2 \times 2 \times 5 \times 7 = 2^2 \times 5 \times 7$

II. $156 = 2 \times 2 \times 3 \times 13 = 2^2 \times 3 \times 13$

- **III.** $3825 = 3 \times 3 \times 5 \times 5 \times 17 = 3^2 \times 5^2 \times 17$
- **IV.** 5005 = 5×7×11×13

V. 7429 = 17×19×23

Q. 2. Find the LCM and HCF of the following integers by the prime factorization method.

(i) 12, 15 and 21 (ii) 17, 23 and 29 (iii) 8, 9 and 25 (iv) 72 and 108 (v) 306 and 657 Answer : I. 12,15 and 21 $12 = 2^2 \times 3$ $15 = 3 \times 5$ $21 = 3 \times 7$ $LCM = 2^2 \times 3 \times 5 \times 7 = 420$ HCF = 3**II.** 17,23 and 29 $17 = 1 \times 17$ $23 = 1 \times 23$ $29 = 1 \times 29$ $LCM = 1 \times 17 \times 23 \times 29 = 11339$ HCF = 1

III. 8, 9 and 5
$8 = 2^3$
$9 = 3^2$
5 = 1×5
$LCM = 2^{3} \times 3^{2} \times 5 = 360$
HCF = 1
IV. 72 and 108
$72 = 2^3 \times 3^2$
$108 = 2^2 \times 3^3$
$LCM = 2^5 \times 3^5 = 7776$
$HCF = 2^2 \times 3^2 = 4 \times 9 = 36$
V. 306 and 657
$306 = 2 \times 3^2 \times 17$
$657 = 3^2 \times 73$
$LCM = 2 \times 3^2 \times 17 \times 73 = 22338$
$HCF = 3^2 = 9$

Q. 3. Check whether 6ⁿ can end with the digit 0 for any natural number n.

Answer : If any number end with digit 0, it should be divisible by 10 or in other words, it will also be divisible by 2 and 5 as $10 = 2 \times 5$

Prime factorization of $6^n = (2 \times 3)^n$

It can be observed that 5 is not in the prime factorization of 6^{n} .

Hence, for an value of n, 6^n will not visible by 5.

 \therefore 6ⁿ cannot end with the digit 0 for any natural number n.

Q. 4. Explain why 7 x 11 x 13 + 13 and 7 x 6 x 5 x 4 x 3 x 2 x 1 + 5 are composite numbers.

Answer : Numbers are of two types – composite and prime. Prime numbers can be divided by 1 and only itself, whereas composite numbers have factors other than 1 and itself.

It can be observed that

 $7 \times 11 \times 13 + 13 = 13 \times (7 \times 11 + 1) = 13 \times (77 + 1) = 13 \times 78$

= 13×13×6

The given expression has 6 and 13 as its factors.

 \therefore , it is a composite factor.

 $7 \times 6 \times 5 \times 4 \times 3 \times 2 \times 1 + 5 = 5 \times (7 \times 6 \times 4 \times 3 \times 2 \times 1 + 1)$

 $= 5 \times (1008 + 1) = 5 \times 1009$

1009 cannot be factorized further. Therefore, the given expression has 5 and 1009 as its factors. Hence, it is a composite number.

Q. 5. How will you show that $(17 \times 11 \times 2) + (17 \times 11 \times 5)$ is a composite number? Explain.

Answer : Numbers are of two types – composite and prime. Prime numbers can be divided by 1 and only itself, whereas composite numbers have factors other than 1 and itself.

It can be observed that

 $(17 \times 11 \times 2) + (17 \times 11 \times 5) = 17\{(11 \times 2) + (11 \times 5)\}$

 $= 17 \times \{11 \times \{(2) + (5)\}\} = 17 \times 11 \times 7$

The given expression has 17, 11 and 7 as its factors.

 \therefore it is a composite factor.

Q. 6. What is the last digit of 6^{100} .

Answer : This is related to concept of numbers in the unit digits place of the powers of natural number. The power of 6 any index repet ition 6 i.e. $(6)^n$ the last digit is 6 only.

Example:

i: 6¹ = 6

ii: 6² = 36

iii: 6³ = 216

The last digit in the expansion of 6^{100} is 6.

Exercise 1.3

Q. 1 A. Write the following rational numbers in their decimal form and also state which are terminating and which have non-terminating, repeating decimal.

 $\frac{3}{8}$

Answer :

 $\frac{3}{8} = \frac{3}{2 \times 2 \times 2}$ $= \frac{3}{2^3}$ $= \frac{3 \times 5^3}{2^3 \times 5^3}$ $= \frac{3 \times 125}{(2 \times 5)^3}$ $= \frac{375}{(10)^3}$ = 0.375

Since, this decimal has finite number of digits

∴ it is terminating

Q. 1 B. Write the following rational numbers in their decimal form and also state which are terminating and which have non-terminating, repeating decimal.

 $\frac{229}{400}$

Answer :

 $\frac{229}{400} = \frac{229}{2^2 \times 5^2 \times 2^2} = \frac{229}{2^4 \times 5^2} = \frac{229 \times 5^2}{2^4 \times 5^2 \times 5^2} = \frac{229 \times 5^2}{2^4 \times 5^2 \times 5^2} = \frac{229 \times 25}{2^4 \times 5^4} = \frac{5725}{(2 \times 5)^4} = \frac{5725}{10^4} = \frac{5725}{10^4} = 0.5725$

Since, this decimal has finite number of digits

 \therefore it is terminating.

Q. 1 C. Write the following rational numbers in their decimal form and also state which are terminating and which have non-terminating, repeating decimal.

 $4\frac{1}{5}$

Answer :

5	-
=	$\frac{21 \times 2}{5 \times 2}$
=	$\frac{42}{10}$
=	4.2

21

Since, this decimal has finite number of digits

 \therefore it is terminating.

Q. 1 D. Write the following rational numbers in their decimal form and also state which are terminating and which have non-terminating, repeating decimal.

 $\frac{2}{11}$

Answer :

2 11

 $= 0.\overline{18}$

Since the decimal continues endlessly, it is non-terminating and repeating.

 \therefore it is non-terminating and repeating.

Q. 1 E. Write the following rational numbers in their decimal form and also state which are terminating and which have non-terminating, repeating decimal.

 $\frac{8}{125}$

Answer :

8 125

$$= \frac{2^{3}}{5^{3}}$$
$$= \frac{(2^{3} \times 2^{3})}{5^{3} \times 2^{3}}$$
$$= \frac{64}{(5 \times 2)^{3}}$$
$$= \frac{64}{10^{3}}$$

= 0.064

Since, this decimal has finite number of digits

 \therefore it is terminating.

Q. 2 A. Without performing division, state whether the following rational numbers will have a terminating decimal form or non-terminating, repeating decimal form.

 $\frac{13}{3125}$

Answer :

13 3125

 \Rightarrow 13 and 3125 are co-prime.

Now, We have to write the denominator 3125 in the form of 2ⁿ5^m

where, n and m are the non-negative numbers.

5	3125
5	625
5	125
5	25
5	5
-	1

 $3125 = 5 \times 5 \times 5 \times 5 \times 5 = 5^5$

 $3125 \Rightarrow 1325 = 1 \times 5^5 = 2^0 \times 5^5$

: denominator is of the form $2^{n}5^{m}$ where, n = 0 and m = 5

13 Thus, 3125 is a Terminating decimal

Q. 2 B. Without performing division, state whether the following rational numbers will have a terminating decimal form or non-terminating, repeating decimal form.

11 12

Answer:

11 12

 \Rightarrow 11 and 12 are co-prime.

Now, We have to write the denominator 12 in the form of 2ⁿ5^m where, n and m are the non-negative numbers.

 $12 = 2 \times 2 \times 3$

 $12 = 2^2 \times 3$

: denominator is not of the form $2^{n}5^{m}$ where, n = 2 and m = 0

11Thus, 12 is Non-terminating and repeating decimal

Q. 2 C. Without performing division, state whether the following rational numbers will have a terminating decimal form or non-terminating, repeating decimal form.

 $\frac{64}{455}$

Answer :

64

455

 \Rightarrow 64 and 455 are co-prime.

Now, We have to write the denominator 455 in the form of $2^{n}5^{m}$ where, n and m are the non-negative numbers.

 $455 = 5 \times 7 \times 13$

: denominator is not of the form $2^{n}5^{m}$ where, n = 0 and m = 1

Thus, $\frac{64}{455}$ is Non-terminating and repeating decimal

Q. 2 D. Without performing division, state whether the following rational numbers will have a terminating decimal form or non-terminating, repeating decimal form.

 $\frac{15}{1600}$ Answer: $\frac{15}{1600}$ $\frac{15}{1600} = \frac{3}{320}$

 \Rightarrow 3 and 320 are co-prime.

Now, We have to write the denominator 320 in the form of 2ⁿ5^m where, n and m are the non-negative numbers.

2	320
2	160
2	80
2	40
2	20
2	10
5	5
	1

- $320 = 2 \times 2 \times 2 \times 2 \times 2 \times 2 \times 5 = 2^{6} \times 5$
- \therefore denominator is in the form $2^{n}5^{m}$ where, n = 6 and m = 1

15

Thus, 1600 is terminating decimal.

Q. 2 E. Without performing division, state whether the following rational numbers will have a terminating decimal form or non-terminating, repeating decimal form.

 $\frac{29}{343}$

Answer :

29 343

 \Rightarrow 29 and 343 are co-prime.

Now, We have to write the denominator 343 in the form of $2^{n}5^{m}$ where, n and m are the non-negative numbers.

 $343 = 7 \times 7 \times 7 = 7^3$

: denominator is not of the form $2^{n}5^{m}$ where, n = 0 and m = 0

29

Thus, 343 is Non-terminating and repeating decimal

29

Thus, 343 is Non-terminating decimal.

Q. 2 F. Without performing division, state whether the following rational numbers will have a terminating decimal form or non-terminating, repeating decimal form.

$$\frac{23}{2^3 \cdot 5^2}$$

Answer :

23 2³5² \Rightarrow 23 and 2³ 5² are co-prime.

Now, we have to write the denominator $2^2 5^7 7^5$ in the form of $2^{n}5^{m}$ where, n and m are the non-negative numbers.

2³ 5²

: denominator is in the form $2^{n}5^{m}$ where, n = 3 and m = 2

Thus,2²⁵² is terminating decimal

Q. 2 G. Without performing division, state whether the following rational numbers will have a terminating decimal form or non-terminating, repeating decimal form.

$$\frac{129}{2^2\cdot 5^7\cdot 7^5}$$

Answer :

129 2²5⁷7⁵

 \Rightarrow 23 and 2² 5⁷ 7⁵ are co-prime.

Now, we have to write the denominator $2^2 5^7 7^5$ in the form of $2^{n}5^{m}$ where, n and m are the non-negative numbers.

2³ 5²

 $2^{2} \times 5^{7} \times 7^{5}$

: denominator is not of the form $2^{n}5^{m}$ where, n = 2 and m = 7. Due to one more factor it is not in the form

Thus, $\frac{129}{2^25^{77^5}}$ is Non-terminating decimal.

Q. 2 H. Without performing division, state whether the following rational numbers will have a terminating decimal form or non-terminating, repeating decimal form.

9

15

Answer :

$$\frac{6}{15} = \frac{2}{5}$$

 \Rightarrow 2 and 5 are co-prime.

Now, we have to write the denominator 5 in the form of $2^{n}5^{m}$ where, n and m are the non-negative numbers.

2⁰ 5

 \therefore denominator is in the form $2^{n}5^{m}$ where, n = 0 and m = 1

 $\frac{6}{15}$ Thus, 15 is Terminating decimal.

Q. 2 I. Without performing division, state whether the following rational numbers will have a terminating decimal form or non-terminating, repeating decimal form.

 $\frac{36}{100}$

Answer :

 $\frac{35}{50} = \frac{7}{10}$

 \Rightarrow 7 and 10 are co-prime.

Now, we have to write the denominator 10 in the form of $2^{n}5^{m}$ where, n and m are the non-negative numbers.

 $10 = 2 \times 5$

 \therefore denominator is in the form $2^{n}5^{m}$ where, n = 1 and m = 1

35 Thus,50 is terminating decimal. Q. 2 J. Without performing division, state whether the following rational numbers will have a terminating decimal form or non-terminating, repeating decimal form.

 $\frac{77}{210}$

Answer :

 $\frac{77}{210} = \frac{11}{30}$

 \Rightarrow 11 and 30 are co-prime.

Now, We have to write the denominator 30 in the form of $2^{n}5^{m}$ where, n and m are the non-negative numbers.

2	30
3	15
5	5
	1

 $30 = 2 \times 3 \times 5$

: denominator is not of the form $2^{n}5^{m}$ where, n = 1 and m = 1. Due to one more factor it is not in the form

77

Thus, $\overline{210}$ is Non-terminating and repeating decimal.

Q. 3. Write the following rationales in decimal form using Theorem 1.1.

(i)
$$\frac{13}{25}$$

(ii) $\frac{15}{16}$
(iii) $\frac{23}{2^3 \cdot 5^2}$
(iv) $\frac{7218}{3^2 \cdot 5^2}$
(v) $\frac{143}{110}$

Answer : According to Euclid's Division Algorithm,

For any two positive integers, 'a' and 'b', there exists a unique pair of integers 'q' and 'r' which satisfy the relation:

```
a = bq + r, 0 ≤ r ≤ b

(i)

\frac{13}{25}
= \frac{13}{5 \times 5}
= \frac{13}{5^2} = \frac{13 \times 2^2}{2^2 \times 5^2}
= \frac{13 \times 4}{(2 \times 5)^2}
= \frac{52}{(10)^2} = 0.52
(ii)

\frac{15}{16}
```

=	$\frac{15}{2 \times 2 \times 2 \times 2}$
=	$\frac{15}{2^4}$
=	$\frac{15 \times 5^4}{2^4 \times 5^4}$
=	$\frac{15 \times 625}{(2 \times 5)^4}$
=	$\frac{9375}{10^4} = 0.9375$
(iii)
23 2 ³ .	3 5 ²
=	$\frac{23 \times 5}{2^3 \cdot 5^3}$
=	$\frac{115}{(2\times5)^3}$
=	$\frac{115}{10^3} = 0.115$
(iv)
72 3 ²	18 5 ²
=	$\frac{802}{5^2}$
=	$\frac{802 \times 2^2}{2^2 \times 5^2}$
=	$\frac{3208}{(2\times5)^2}$

 $= \frac{3208}{10^2} = 32.08$ (v) $\frac{143}{110}$ $= \frac{143}{2 \times 5 \times 11}$ $= \frac{13}{2 \times 5}$ $= \frac{13}{10} = 1.3$

Q. 4. The decimal form of some real numbers is given below. In each case, decide whether the number is rational or not. If it is rational, and expressed in form p/q, what can you say about the prime factors of q?

(i) 43.123456789 (ii) 0.120120012000120000.... (iii) 43.123456789

Answer: (i) 43.123456789

43.123456789 is terminating.

So, it would be a rational number

 $43.123456789 = \frac{43123456789}{100000000}$ $= \frac{43123456789}{10^{9}}$ $= \frac{43123456789}{(2 \times 5)^{9}}$ $= \frac{43123456789}{2^{9} \times 5^{9}}$

Hence, 43.123456789 is now in the form of $\frac{p}{q}$.

And the prime factors of q are in terms of 2 and 5.

(ii) 0.120120012000120000....

0.120120012000120000.... is non-terminating and non-repeating.

So, it is not a rational number.

(iii)

(iii) 43. 123456789

 $43.\overline{123456789}$ is non-terminating but terminating.

So, it would be a rational number.

In a non-terminating, repeating expansion of $\frac{p}{q}$

q will have factors other than 2 or 5.

Exercise 1.4

Q. 1 A. Prove that the following are irrational.

Answer :

Let $\frac{1}{\sqrt{2}}$ be rational. Then, there exists positive co-primes a and b such that

$$\frac{1}{\sqrt{2}} = \frac{a}{b}$$
$$\frac{b}{\sqrt{2}} = a$$

$$\Rightarrow b = a\sqrt{2}$$

 $\Rightarrow \sqrt{2} = \frac{b}{a}$

 $\frac{b}{a}$ is rational as a and b are integers

 $\therefore \sqrt{2}$ is rational which contradicts to the fact that $\sqrt{2}$ is irrational.

Hence, our assumption is false and $\frac{1}{\sqrt{2}}$ is irrational.

Q. 1 B. Prove that the following are irrational.

$$\sqrt{3} + \sqrt{5}$$

Answer :

Let us suppose that $\sqrt{3} + \sqrt{5}$ is rational.

Let $\sqrt{3} + \sqrt{5}$ be rational equal to $\frac{a}{b}$, where a and b are integers and $a\neq 0$ and $b\neq 0$ Then,

$$\sqrt{3} + \sqrt{5} = \frac{a}{b}$$

$$\Rightarrow \sqrt{5} = \frac{a}{b} - \sqrt{3}$$

$$\Rightarrow (\sqrt{5})^2 = \left(\frac{a}{b} - \sqrt{3}\right)^2 \text{ [squaring both sides]}$$

$$\Rightarrow 5 = \frac{a^2}{b^2} - \frac{2a\sqrt{3}}{b} + 3$$

$$\Rightarrow \frac{a^2 - 2b^2}{b^2} = 2\sqrt{3}\frac{a}{b}$$

$$\Rightarrow \sqrt{3} = \frac{a^2 - 2b^2}{2ab}$$

Since a and b are integers, $\frac{a^2-2b^2}{2ab}$ is rational. So, $\sqrt{3}$ is rational

Now, this contradicts the fact that $\sqrt{3}$ is rational.

Hence $\sqrt{3} + \sqrt{5}$ is irrational.

Q. 1 C. Prove that the following are irrational.

$$6 + \sqrt{2}$$

Answer : $6 + \sqrt{2}$

Let 6 + $\sqrt{2}$ be a rational number equal to $\frac{a}{b}$, where a,b are positive co-primes. Then,

$$6 + \sqrt{2} = \frac{a}{b}$$

$$\Rightarrow \sqrt{2} = \frac{a}{b} - 6$$

$$\Rightarrow \sqrt{2} = \frac{a-6b}{b}$$

Since a and b are integers, $\frac{a-6b}{b}$ is also rational and hence, $\sqrt{2}$ should be rational. This is contracdicts the fact that $\sqrt{2}$ is irrational. Therefore , our assumption is false and hence, 6 + $\sqrt{2}$ is irrational.

Q. 1 D. Prove that the following are irrational.

 $\sqrt{5}$

Answer : $\sqrt{5}$

Let take $\sqrt{5}$ as rational number equal to $\frac{a}{b}$, where a, b are positive co-primes. Then,

$$\sqrt{5} = \frac{a}{b}$$

 $\Rightarrow \sqrt{5} b = a$

 \Rightarrow 5b² = a²[squaring both sides] ...I

Therefore, 5 divides a^2 and according to theorem of rational number, for any prime number p divides a^2 then it will divide a also.

Put value of a in Eq. I, we get

 $5b^2 = (5c)^2$

 $\Rightarrow 5b^2 = 25c^2$

$$\Rightarrow \frac{b^2}{5} = 5c^2$$
 [divide by 25 both sides]

Using same theorem we get that b will divide by 5 and we have already get that a is divided by 5. This contradicts our assumption.

Hence, $\sqrt{5}$ is irrational.

Q. 1 E. Prove that the following are irrational.

$$3 + 2\sqrt{5}$$

Answer : $3 + 2\sqrt{5}$

Let us assume on the contrary that $3 + 2\sqrt{5}$ is rational. Then, there exist co-prime positive integers a and b such that

$$3 + 2\sqrt{5} = \frac{a}{b}$$
$$\Rightarrow 2\sqrt{5} = \frac{a}{b} - 3$$
$$\Rightarrow \sqrt{5} = \frac{a - 3b}{2b}$$

 $\Rightarrow \sqrt{5}$ is rational [: a,b are integers $\frac{a-3b}{2b}$ is a rational]

This contradicts the fact that $\sqrt{5}$ is irrational. So, our supposition is incorrect.

Hence, $3 + 2\sqrt{5}$ is an irrational number.

Q. 2. Prove that $\sqrt{p} + \sqrt{q}$ is irrational, where p, q are primes.

Answer : Let $\sqrt{p} + \sqrt{q}$ be rational $\Rightarrow \sqrt{p} + \sqrt{q} = \frac{a}{b}$ [where a, b are co-primes and integers]

Squaring both sides

$$\Rightarrow (\sqrt{p} + \sqrt{q})^2 = \left(\frac{a}{b}\right)^2$$
$$\Rightarrow p + q + 2\sqrt{pq} = \frac{a^2}{b^2}$$
$$\Rightarrow 2\sqrt{pq} = a^2/b^2 - p - q$$
$$\Rightarrow 2\sqrt{pq} = \frac{a^2 - pb^2 - qb^2}{b^2}$$

$$\Rightarrow \sqrt{p} = \frac{a^2 - pb^2 - qb^2}{2b^2\sqrt{q}} \dots |$$

: from Eq. I our assumption contradicts here, because p is rational Hence, $\sqrt{p} + \sqrt{q}$ is irrational number.

Exercise 1.5

Q. 1 A. Determine the value of the following.

log255

Answer : The logarithmic form of log255

Using property of logarithmic, $\log_b x = \frac{\log_a x}{\log_a b}$ and $\log_a a^x = x$

$$= \frac{\log_5 5}{\log_5 25}$$
$$= \frac{1}{\log_5 5^2}$$
$$= \frac{1}{2} = 0.5$$

Q. 1 B. Determine the value of the following.

log₈₁3

Answer : The logarithmic form of log813

Using property of logarithmic, $\log_b x = \frac{\log_a x}{\log_a b}$ and $\log_a a^x = x$

$$= \frac{\log_3 3}{\log_3 81}$$
$$= \frac{1}{\log_5 3^4}$$

$$=\frac{1}{4}=0.25$$

Q. 1 C. Determine the value of the following.

$$\log_2\left(\frac{1}{16}\right)$$

Answer : The logarithmic form of $\log_2 \frac{1}{16}$

Using property of logarithmic,

$$\log_{a} \frac{x}{y} = \log_{a} x - \log_{a} y$$

 $= 0 - \log_2 2^4$

= 0 - 4 = -4

Q. 1 D. Determine the value of the following.

log₇1

Answer : The logarithmic form of log7 1

= 0

Q. 1 E. Determine the value of the following.

 $\log_x \sqrt{x}$

Answer : The logarithmic form of log_x \sqrt{x}

Using the property of logarithmic, $\log_a a^x = x$

 $= \log_{x} x^{1/2}$ $= \frac{1}{2}$

Q. 1 F. Determine the value of the following.

 $\log_2 512$

Answer : The Logarithmic form of log₂512

Using the property of logarithmic, $\log_a a^x = x$

 $= \log_2 2^9$

= 9

Q. 1 G. Determine the value of the following.

log₁₀0.01

Answer : The Logarithmic form of log100.01

 $= \log_{10} \frac{1}{100}$

Using property of logarithmic, $\log_a \frac{x}{y} = \log_a x - \log_a y$ and $\log_a a^x = x$

$$= \log_{10}1 - \log_{10}100$$

- $= 0 \log_{10} 10^2$
- = 0 2 = -2

Q. 1 H.Determine the value of the following.

$$\log_{\frac{2}{3}}\left(\frac{8}{27}\right)$$

Answer : The Logarithmic form of

$$\log_{\frac{2}{3}}\frac{8}{27}$$

Using the property of logarithmic, $\log_a a^x = x$

$$= \log_{\frac{2}{3}} \frac{2^{3}}{3^{3}}$$

$$= \log_{\frac{2}{3}} \left(\frac{2}{3}\right)^3$$

= 3

Q. 1 I. Determine the value of the following.

 $2^{2 + \log_2 3}$

Answer : The Logarithmic form of $2^{2 + \log_2 3}$

Using property of logarithmic, $a^{m+n} = a^m \times a^n$ and $a^{\log_a x} = x$

 $= 2^{2 + \log_2 3}$

 $= 2^2 \times 2^{\log_2 3}$

= 4 × 3

= 12

Q. 2. Write the following expressions as log N and find their values.

(i) $\log 2 + \log 5$ (ii) $\log_2 16 - \log_2 2$ (iii) $3 \log_{64} 4$ (iv) $2 \log 3 - 3 \log 2$ (v) $\log 10 + 2 \log 3 - \log 2$

Answer : Some basic logarithmic formulas are

1. $a^{\log_a b} = b$ 2. $\log_a 1 = 0$ 3. $\log_a a = 1$ 4. $\log_a(x \cdot y) = \log_a x + \log_a y$ 5. $\log_a xy = \log_a x - \log_a y$ 6. $\log_a 1x = -\log_a x$ 7. $\log_a x^p = p \log_a x$

8. $\log_a^k x = 1k \log_a x$, for $k \neq 0$

I. log 2 + log 5

using the property of logarithm, $log_a xy = log_a x + log_a y$

 $= \log(2 \times 5)$

= log 10

II. log₂ 16 – log₂ 2

using the property of logarithm,

$$\log_a \frac{x}{y} = \log_a x - \log_a y$$

and

 $log_{a} x^{m} = mlog_{a} x$ $= log_{2} \frac{16}{2}$ $= log_{2} 8$ $= log_{2} 2^{3}$ $= 3 log_{2} 2 \qquad [\because log_{a} x^{m} = mlog_{a} x]$ $= 3 [log_{2} 2 = 1]$ III. 3 log_{64} 4 Using the property of logarithm, $log_{a} x^{m} = mlog_{a} x$ $= log_{64} 4^{3}$ $= log_{64} 64$ = 1IV. 2 log 3 - 3 log 2

using the property of logarithm,

$$\log_a \frac{x}{y} = \log_a x - \log_a y$$

and

 $log_{a} x^{m} = mlog_{a} x$ $= log 3^{2} - log 2^{3}$ $= \frac{log \frac{3^{2}}{2^{a}}}{2^{a}}$ $= \frac{log \frac{9}{8}}{8}$ V. log 10 + 2 log 3 - log 2 using the property of logarithm, log_{a} xy = log_{a} x + log_{a} y $= log 5 + log 2 + log 3^{2} - log 2$ = log 5 + log 9 $= log (5 \times 9)$

= log 45

Q. 3. Evaluate each of the following in terms of x and y, if it is given $x = log_2 3$ and $y = log_2 5$

(iii) log₂60 (iv) log₂6750

Answer :

I. log₂15

 $\Rightarrow \log_2 5 + \log_2 3 \ [: \log_a xy = \log_a x + \log_a y]$

 \Rightarrow x + y

II. log₂7.5

$$\Rightarrow \log_2 \frac{15}{2}$$

$$\Rightarrow \log_2 15 - \log_2 2 [: \log_a \frac{x}{y} = \log_a x - \log_a y]$$

$$\Rightarrow \log_2 5 + \log_2 3 - \log_2 2 [: \log_a xy = \log_a x + \log_a y]$$

$$\Rightarrow x + y - 1$$
III. $\log_2 60$

$$\Rightarrow \log_2 12 + \log_2 5 [: \log_a xy = \log_a x + \log_a y]$$

$$\Rightarrow \log_2 4 + \log_2 3 + \log_2 5 [: \log_a xy = \log_a x + \log_a y]$$

$$\Rightarrow 2\log_2 2 + \log_2 3 + \log_2 5$$

$$\Rightarrow 2(1) + x + y = x + y + 2$$
IV. $\log_2 6750$

$$\Rightarrow \log_2 54 + \log_2 125] [: \log_a xy = \log_a x + \log_a y]$$

$$\Rightarrow \log_2 3 + \log_2 2 + \log_2 125]]$$

$$\Rightarrow \log_2 3 + \log_2 5 + \log_2 2$$

$$\Rightarrow 3 \log_2 3 + 3 \log_2 5 + \log_2 2$$

$$\Rightarrow 3x + 3y + 1$$
Q. 4. Expand the following.

(i) log1000
(ii)
$$\log\left(\frac{128}{625}\right)$$

(iii) $\log x^2 y^3 z^4$
(iv) $\log \frac{p^2 q^3}{r}$
(v) $\log \sqrt{\frac{r}{x^3}}$

Answer :

i.

$$log1000 = log10^{3}$$

 $= 3log10$
ii. $log\frac{128}{625} = log\frac{2^{7}}{5^{4}}$
 $\Rightarrow log2^{7} - log5^{4}$
 $\Rightarrow 7log2 - 4 log5$
iii. $logx^{2} y^{3} z^{4}$

- $\Rightarrow \log x^2 + + \log y^3 + \log z^4$
- \Rightarrow 2 logx + 3 logy + 4 logz

Q. 5. If $x^2 + y^2 = 25xy$, then prove that $2 \log(x + y) = 3\log 3 + \log x + \log y$.

Answer : $x^2 + y^2 = 25xy$

Adding 2xy on both sides

$$x^2 + y^2 + 2xy = 27xy$$

 $(x + y)^2 = 27xy$

Taking log both sides

$$\log (x + y)^2 = \log 27xy$$

 $2 \log (x + y) = \log 27 + \log x + \log y$

 $2 \log(x + y) = \log 3^3 + \log x + \log y$

 $2 \log (x + y) = 3 \log 3 + \log x + \log y$

Hence proved.

Q. 6.

If
$$\log\left(\frac{x+y}{3}\right) = \frac{1}{2}(\log x + \log y)$$
, then find the value of $\frac{x}{y} + \frac{y}{x}$.

Answer :

$$\log \frac{x+y}{3} = \frac{1}{2}(\log x + \log y)$$
$$\Rightarrow 2 \log \frac{x+y}{3} = \log x + \log y$$

$$\Rightarrow \log\left(\frac{x+y}{3}\right)^2 = \log xy \left[\because \log_a xy = \log_a x + \log_a y\right] \left[\because \log_a x^m = m\log_a x\right]$$

Remove log from both sides

$$\Rightarrow \left(\frac{x+y}{3}\right)^2 = xy$$
$$\Rightarrow \frac{(x+y)^2}{3^2} = xy$$
$$\Rightarrow x^2 + y^2 + 2xy = 9xy$$

$$\Rightarrow x^2 + y^2 = 7xy$$

Divide by xy both sides

Q. 7. If (2.3) $\times = (0.23)^{y} = 1000$ then find the value of

 $\frac{1}{x} - \frac{1}{y}.$ **Answer** : $2.3^{x} = 0.23^{y} = 1000$ Consider $2.3^{x} = 1000$ $\Rightarrow \log 2.3^{x} = \log 10^{3}$ \Rightarrow x log2.3 = 3 log 10 $\Rightarrow \log 2.3 = \frac{3}{x} [\because \log 10 = 1] \dots I$ Consider $0.23^{y} = 1000$ $\Rightarrow \log 0.23^{\text{y}} = \log 1000$ \Rightarrow y log0.23 = log 10³ \Rightarrow y log 0.23 = 3 log 10 ⇒ log 0.23 = УII Subtract eq. II from I $\Rightarrow \log 2.3 - \log 0.23 = \frac{3}{x} - \frac{3}{y}$ $\Rightarrow \log \frac{2.3}{0.23} = \frac{3}{x} - \frac{3}{y}$ $\Rightarrow \log 10 = \frac{3}{x} - \frac{3}{y}$

$$\Rightarrow 1 = \frac{3}{x} - \frac{3}{y}$$
$$\Rightarrow 3\left(\frac{1}{x} - \frac{1}{y}\right) = 1$$
$$\Rightarrow \frac{1}{x} - \frac{1}{y} = \frac{1}{3}$$

Q. 8. If $2^{x+1} = 3^{1-x}$ then find the value of x.

Answer : $2^{(x+1)} = 3^{(1-x)}$

Taking log base both sides

$$\log(2^{(x+1)}) = \log(3^{(1-x)})$$

 $(x + 1) \log 2 = (1 - x) \log 3x \log 2 + x \log 3 = \log 3 - \log 2x(\log 2 + \log 3) = \log 3 - \log 2$

 $x = (\log 3 - \log 2)/(\log 2 + \log 3)$

Q. 9 A. Is log2 rational or irrational? Justify your answer.

Answer : Assume that log 2 is rational, that is,

where p, q are integers.

Since, $\log 1 = 0$ and $\log 10 = 1$, $0 < \log 2 < 1$ and therefore, p<q

From Eq. 1,

 $2 = 10^{\frac{p}{q}}$

 $2^{q} = (2 \times 5)^{p}$

 $2^{(q-p)} = 5^p$

Where p-q is an integer greater than 0.

Now, it can be seen that the L.H.S is even and the R.H.S is odd.

Hence, there is contradiction and log 2 is irrational.

Q. 9 B. log 100 rational or irrational? Justify your answer.

Answer : Let us assume log 100 is rational

 $\log 100 = \log_{10} 100$

 $\log_{10} 10^2 = 2 \log_{10} 10 = 2$

As 2 is rational number, \therefore log 100 is also rational.