

- The negation of the Boolean expression $p \lor (\sim p \land q)$ is 1. [Sep. 06, 2020 (I)] equivalent to :
 - (a) $p \wedge \sim q$ (b) ~ $p \wedge \sim q$
 - (c) ~ $p \lor \sim q$ (d) ~ $p \lor q$
- 2. The negation of the Boolean expression $x \leftrightarrow y$ is equivalent to: [Sep. 05, 2020 (I)]
 - (a) $(x \land y) \lor (\neg x \land \neg y)$ (b) $(x \land y) \land (\neg x \lor \neg y)$
 - (c) $(x \land \neg y) \lor (\neg x \land y)$ (d) $(\neg x \land y) \lor (\neg x \land \neg y)$
- 3. Given the following two statements :

 $(S_1): (q \lor p) \to (p \leftrightarrow \neg q)$ is a tautology.

 (S_2) : ~ $q \land (\sim p \leftrightarrow q)$ is a fallacy. Then :

- [Sep. 04, 2020 (I)]
- (a) both (S_1) and (S_2) are correct
- (b) only (S_1) is correct
- (c) only (S_2) is correct
- (d) both (S_1) and (S_2) are not correct
- 4. The proposition $p \rightarrow \sim (p \land \sim q)$ is equivalent to :

[Sep. 03, 2020 (I)]

(a) q (b) $(\sim p) \lor q$

(c)
$$(\sim p) \land q$$
 (d) $(\sim p) \lor (\sim q)$

- Let p, q, r be three statements such that the truth value of 5. $(p \land q) \rightarrow (\sim q \lor r)$ is F. Then the truth values of p, q, r are respectively : [Sep. 03, 2020 (II)] (a) T, F, T (b) T, T, T (c) F, T, F(d) T, T, F
- If $p \rightarrow (p \land \neg q)$ is false, then the truth values of p and q are 6. respectively: [Jan. 9, 2020 (II)] (a) F, F (b) T, F (c) T, T (d) F, T

- 7. Which one of the following is a tautology?
 - [Jan. 8, 2020 (I)]
 - (a) $(p \land (p \rightarrow q)) \rightarrow q$ (b) $q \rightarrow (p \land (p \rightarrow q))$ (d) $p \lor (p \land q)$ (c) $p \land (p \lor q)$
 - Which of the following statements is a tautology?

[Jan. 8, 2020 (II)]

- (a) $p \lor (\sim q) \to p \land q$ (b) $\sim (p \land \sim q) \rightarrow p \lor q$
- (c) $\sim (p \lor \sim q) \to p \land q$ (d) $\sim (p \lor \sim q) \to p \lor q$

9. The logical statement

8.

$$(p \Rightarrow q) \land (q \Rightarrow \sim p)$$
 is equivalent to: [Jan. 7, 2020 (I)]

(a)
$$p$$
 (b) q (c) $\sim p$ (d) $\sim q$

10. If the truth value of the statement $p \rightarrow (\neg q \lor r)$ is false (F), then the truth values of the statements p, q, r are respectively. [April 12, 2019 (I)]

(a) T, T, F (b) T, F, F (c) T, F, T (d) F, T, T

11. The Boolean expression ~ $(p \Rightarrow (~q))$ is equivalent to :

[April 12, 2019 (II)]

(a)
$$p \land q$$
 (b) $q \Rightarrow p$ (c) $p \lor q$ (d) $(\sim p) \Rightarrow q$

12. Which one of the following Boolean expressions is a tautology ? [April 10, 2019 (I)] (a) $(p \land q) \lor (p \land \sim q)$ (b) $(p \lor q) \lor (p \lor \sim q)$ (c) $(p \lor q) \land (p \lor \sim q)$ (d) $(p \lor q) \land (\sim p \lor \sim q)$ 13. If $p \Rightarrow (q \lor r)$ is false, then the truth values of p, q, r are respectively: [April 09, 2019 (II)] (a) F, T, T (b) T, F, F (c) T, T, F (d) F, F, F

14. Which one of the following statements is not a tautology?

[April 08, 2019 (II)]

(a) $(p \lor q) \to (p \lor (\sim q))$ (b) $(p \land q) \to (\sim p) \lor q$ (c) $p \rightarrow (p \lor q)$ (d) $(p \land q) \rightarrow p$

15.	The Boolean expression		25.
	$((p \land q) \lor (p \lor \sim q)) \land (\sim$	$(p \land \sim q)$ is equivalent to :	
		[Jan. 12, 2019 (I)]	
	(a) $p \wedge q$	(b) $p \wedge (\sim q)$	26.
	(c) $(\sim p) \land (\sim q)$	(d) $\mathbf{p} \vee (\sim \mathbf{q})$	
16.	The expression ~ (~ $p \rightarrow$	q) is logically equivalent to : [Jan. 12, 2019 (II)]	
	(a) ~ p \wedge ~ q	(b) $p \wedge \sim q$	27.
	(c) $\sim p \wedge q$	(d) $p \wedge q$	
17.		r is true, then which one of the tautology? [Jan. 11, 2019 (I)]	28.
	(a) $(p \lor r) \rightarrow (p \land r)$	(b) $(p \wedge r) \rightarrow (p \vee r)$	-0.
	(c) p∧r	(d) p∨r	
18.	Consider the following t P : 5 is a prime numbe Q : 7 is a factor of 192 R : L.C.M. of 5 and 7	r. 2. is 35.	29.
	Then the truth value o statements is true? (a) $(\sim P) \lor (Q \land R)$ (c) $(\sim P) \land (\sim Q \land R)$		20
19.	If the Boolean expre	ssion $(p \oplus q) \land (\sim p \odot q)$ is	30.
		where $\oplus, \odot \in \{\land, \lor\}$ then the	
	ordered pair (\oplus, \odot) is:	[Jan. 09, 2019 (I)]	
20.	The logical statement	(c) (\land,\lor) (d) (\land,\land)	21
20.	The logical statement $[\sim (\sim p \lor q) \lor (p \land r)]$	∧ (~ p ∧ r)	31.
20.	The logical statement	∧ (~ p ∧ r) [Jan. 09, 2019 (II)]	31.
	The logical statement $[\sim (\sim p \lor q) \lor (p \land r)]$ is equivalent to: (a) (~ p \land ~ q) \land r (c) (p \land r) \land ~ q	$(\sim p \land r)$ [Jan. 09, 2019 (II)] (b) $\sim p \lor r$	31. 32.
20. 21.	The logical statement $[\sim (\sim p \lor q) \lor (p \land r)]$ is equivalent to: (a) $(\sim p \land \sim q) \land r$ (c) $(p \land r) \land \sim q$ The Boolean expression	$(\sim p \land r)$ [Jan. 09, 2019 (II)] (b) $\sim p \lor r$ (d) $(p \land \sim q) \lor r$	
	The logical statement [~ (~ $p \lor q$) \lor ($p \land r$)] is equivalent to: (a) (~ $p \land ~ q$) $\land r$ (c) ($p \land r$) $\land ~ q$ The Boolean expression ~ ($p \lor q$) \lor (~ $p \land q$) is eq	(~ p ∧ r) [Jan. 09, 2019 (II)] (b) ~ p ∨ r (d) $(p ∧ ~ q) ∨ ruivalent to : [2018]$	
	The logical statement [~ (~ $p \lor q$) \lor ($p \land r$)] is equivalent to: (a) (~ $p \land ~ q$) $\land r$ (c) ($p \land r$) $\land ~ q$ The Boolean expression ~ ($p\lor q$) \lor (~ $p\land q$) is eq (a) p (b) q	$ (\sim p \land r) $ [Jan. 09, 2019 (II)] (b) ~ p $\lor r$ (d) (p $\land \sim q$) $\lor r$ uivalent to : [2018] (c) ~q (d) ~p then the truth values of p and q [Online April 16, 2018]	
21.	The logical statement [~ (~ $p \lor q$) \lor ($p \land r$)] is equivalent to: (a) (~ $p \land ~ q$) $\land r$ (c) ($p \land r$) $\land ~ q$ The Boolean expression ~ ($p\lor q$) \lor (~ $p\land q$) is eq (a) p (b) q If $p \rightarrow$ (~ $p\lor ~ q$) is false are respectively. (a) T, F (b) F, F If ($p\land ~ q$) \land ($p\land r$) $\rightarrow ~ p$	$ (\sim p \land r) $ [Jan. 09, 2019 (II)] (b) ~ p $\lor r$ (d) (p $\land \sim q$) $\lor r$ uivalent to : [2018] (c) ~q (d) ~p c, then the truth values of p and q [Online April 16, 2018] (c) F, T (d) T, T $\lor q$ is false, then the truth values	
21. 22.	The logical statement [~ (~ p $\lor q$) \lor (p \land r)] is equivalent to: (a) (~ p \land ~ q) \land r (c) (p \land r) \land ~ q The Boolean expression ~ (p \lor q) \lor (~ p \land q) is eq (a) p (b) q If $p \rightarrow$ (~ $p \lor \sim$ q) is false are respectively. (a) T, F (b) F, F If (p \land ~ q) \land (p \land r) \rightarrow ~ p of p, q and r are respective	$ (\sim p \land r) $ [Jan. 09, 2019 (II)] (b) ~ p $\lor r$ (d) (p $\land \sim q$) $\lor r$ uivalent to : [2018] (c) ~q (d) ~p b, then the truth values of p and q [Online April 16, 2018] (c) F, T (d) T, T $\lor q$ is false, then the truth values rely [Online April 15, 2018]	32.
21.22.23.	The logical statement [~ (~ p $\lor q$) $\lor (p \land r)$] is equivalent to: (a) (~ p $\land \sim q$) $\land r$ (c) (p $\land r$) $\land \sim q$ The Boolean expression ~ (p $\lor q$) $\lor (\sim p \land q)$ is eq (a) p (b) q If $p \rightarrow (\sim p \lor \sim q)$ is false are respectively. (a) T, F (b) F, F If (p $\land \sim q$) $\land (p \land r) \rightarrow \sim p$ of p, q and r are respective (a) F, T, F (b) T, F, T	$ (\sim p \land r) $ [Jan. 09, 2019 (II)] (b) ~ p $\lor r$ (d) (p $\land \sim q$) $\lor r$ uivalent to : [2018] (c) ~q (d) ~p then the truth values of p and q [Online April 16, 2018] (c) F, T (d) T, T $\lor q$ is false, then the truth values rely [Online April 15, 2018] (c) F, F, F (d) T, T, T	
21. 22.	The logical statement $[\sim (\sim p \lor q) \lor (p \land r)]$ is equivalent to: (a) $(\sim p \land \sim q) \land r$ (c) $(p \land r) \land \sim q$ The Boolean expression $\sim (p\lor q)\lor (\sim p\land q)$ is eq (a) p (b) q If $p \rightarrow (\sim p \lor \sim q)$ is false are respectively. (a) T, F (b) F, F If $(p\land \sim q)\land (p\land r) \rightarrow \sim p$ of p, q and r are respective (a) F, T, F (b) T, F, T Which of the following is	$ (\sim p \land r) $ [Jan. 09, 2019 (II)] (b) ~ p $\lor r$ (d) (p $\land \sim q$) $\lor r$ uivalent to : [2018] (c) ~q (d) ~p c, then the truth values of p and q [Online April 16, 2018] (c) F, T (d) T, T $\lor q$ is false, then the truth values rely [Online April 15, 2018] (c) F, F, F (d) T, T, T is a tautology? [2017]	32.
21.22.23.	The logical statement $[\sim (\sim p \lor q) \lor (p \land r)]$ is equivalent to: (a) $(\sim p \land \sim q) \land r$ (c) $(p \land r) \land \sim q$ The Boolean expression $\sim (p\lor q)\lor (\sim p\land q)$ is eq (a) p (b) q If $p \rightarrow (\sim p \lor \sim q)$ is false are respectively. (a) T, F (b) F, F If $(p\land \sim q)\land (p\land r) \rightarrow \sim p$ of p, q and r are respective (a) F, T, F (b) T, F, T Which of the following is	$ (\sim p \land r) $ [Jan. 09, 2019 (II)] (b) ~ p $\lor r$ (d) (p $\land \sim q$) $\lor r$ uivalent to : [2018] (c) ~q (d) ~p c, then the truth values of p and q [Online April 16, 2018] (c) F, T (d) T, T $\lor q$ is false, then the truth values rely [Online April 15, 2018] (c) F, F, F (d) T, T, T is a tautology? [2017] (b) (q \rightarrow p) $\lor \sim$ (p \rightarrow q)	32.

м-220

25.	The following statement $(p \rightarrow q) \rightarrow [(\sim p \rightarrow q) \rightarrow q]$ is : [2017] (a) a fallacy (b) a tautology (c) equivalent to $\sim p \rightarrow q$ (d) equivalent to $p \rightarrow \sim q$
26.	The proposition $(\sim p) \lor (p \land \sim q)$
	[Online April 8, 2017]
	(a) $p \to \sim q$ (b) $p \land (\sim q)$
	(c) $q \to p$ (d) $p \lor (\sim q)$
27.	The Boolean Expression $(p \land \neg q) \lor q \lor (\neg p \land q)$ is equivalent to: [2016] (a) $p \lor q$ (b) $p \lor \neg q$ (c) $\neg p \land q$ (d) $p \land q$
28.	The negation of $\sim s \lor (\sim r \land s)$ is equivalent to : [2015]
	(a) $s \lor (r \lor \sim s)$ (b) $s \land r$
	(c) $s \wedge \sim r$ (d) $s \wedge (r \wedge \sim s)$
29.	The statement $\sim (p \leftrightarrow \sim q)$ is: [2014]
	(a) a tautology
	(b) a fallacy
	(c) eqivalent to $p \leftrightarrow q$
	(d) equivalent to $\sim p \leftrightarrow q$
30.	Let p, q, r denote arbitrary statements. Then the logically
	equivalent of the statement $p \Rightarrow (q \lor r)$ is:
	[Online April 12, 2014]
	(a) $(p \lor q) \Rightarrow r$ (b) $(p \Rightarrow q) \lor (p \Rightarrow r)$
	(c) $(p \Rightarrow q) \land (p \Rightarrow r)$ (d) $(p \Rightarrow q) \land (p \Rightarrow -r)$
31.	The proposition $\sim (p \lor \sim q) \lor \sim (p \lor q)$ is logically
	equivalent to: [Online April 11, 2014]
32.	(a) p (b) q (c) $\sim p$ (d) $\sim q$ Consider Statement-1: $(p \land \sim q) \land (\sim p \land q)$ is a fallacy.
	Statement-1 : $(p \to q) \land (\neg p \to q)$ is a failedy. Statement-2 : $(p \to q) \leftrightarrow (\neg q \to \neg p)$ is a faultoty.
	(a) Statement-1 is true; Statement-2 is true;

- (a) Statement-1 is true; Statement-2 is true; Statement-2 is a correct explanation for Statement-1.
- (b) Statement-1 is true; Statement-2 is true; Statement-2 is not a correct explanation for Statement-1.
- (c) Statement-1 is true; Statement-2 is false.
- (d) Statement-1 is false; Statement-2 is true.
- **33.** Let p and q be any two logical statements and $r: p \rightarrow (\sim p \lor q)$. If r has a truth value F, then the truth values of p and q are respectively :

[Online April 25, 2013]

(a) F, F (b) T, T (c) T, F (d) F, T

34. For integers *m* and *n*, both greater than 1, consider the following three statements :

P: m divides n $O: m \text{ divides } n^2$

- Q: m arviacs nR: m is prime,
- then

[Online April 23, 2013]

(a) $Q \wedge R \to P$ (b) $P \wedge Q \to R$

(c)
$$Q \to R$$
 (d) $Q \to P$

35. The statement $p \rightarrow (q \rightarrow p)$ is equivalent to : [Online April 22, 2013]

(a) $p \to q$ (b) $p \to (p \lor q)$

- (c) $p \to (p \to q)$ (d) $p \to (p \land q)$
- **36.** Statement-1: The statement $A \rightarrow (B \rightarrow A)$ is equivalent
 - to $A \rightarrow (A \lor B)$.

Statement-2: The statement ~ $[(A \land B) \rightarrow (\sim A \lor B)]$ is a Tautology. [Online April 9, 2013]

- (a) Statement-1 is false; Statement-2 is true.
- (b) Statement-1 is true; Statement-2 is true; Statement-2 is **not** correct explanation for Statement-1.
- (c) Statement-1 is true; Statement-2 is false.
- (d) Statement-1 is true; Statement-2 is true; Statement-2 is the correct explanation for Statement-1.
- **37.** Let *p* and *q* be two Statements. Amongst the following, the Statement that is equivalent to $p \rightarrow q$ is

[Online May 19, 2012]

(a)
$$p \wedge \sim q$$
 (b) $\sim p \vee q$ (c) $\sim p \wedge q$ (d) $p \vee \sim q$

38. The logically equivalent preposition of $p \Leftrightarrow q$ is

[Online May 12, 2012]

- (a) $(p \Rightarrow q) \land (q \Rightarrow p)$ (b) $p \land q$
- (c) $(p \land q) \lor (q \Rightarrow p)$ (d) $(p \land q) \Rightarrow (q \lor p)$
- **39.** The only statement among the following that is a tautology is [2011RS]
 - (a) $A \land (A \lor B)$ (b) $A \lor (A \land B)$
 - (c) $[A \land (A \rightarrow B)] \rightarrow B$ (d) $B \rightarrow [A \land (A \rightarrow B)]$
- 40. Statement-1: $\sim (p \leftrightarrow \sim q)$ is equivalent to $p \leftrightarrow q$.

Statement-2: $\sim (p \leftrightarrow \sim q)$ is a tantology [2009]

- (a) Statement-1 is true, Statement-2 is true;
 Statement-2 is not a correct explanation for Statement-1.
- (b) Statement-1 is true, Statement-2 is false.
- (c) Statement-1 is false, Statement-2 is true.
- (d) Statement-1 is true, Statement-2 is true, Statement-2 is a correct explanation for statement -1
- 41. The statement $p \rightarrow (q \rightarrow p)$ is equivalent to [2008] (a) $n \rightarrow (n \rightarrow q)$ (b) $n \rightarrow (n \rightarrow q)$

(a)
$$p \rightarrow (p \rightarrow q)$$
 (b) $p \rightarrow (p \lor q)$
(c) $p \rightarrow (p \lor q)$ (d) $p \rightarrow (p \lor q)$

(c) $p \to (p \land q)$ (d) $p \to (p \leftrightarrow q)$

42. Let p be the statement "x is an irrational number", q be the statement "y is a transcendental number", and r be the statement "x is a rational number iff y is a transcendental number". [2008]

Statement-1: *r* is equivalent to either *q* or *p*

Statement-2: *r* is equivalent to $\sim (p \leftrightarrow \sim q)$.

- (a) Statement -1 is false, Statement-2 is true
- (b) Statement -1 is true, Statement-2 is true; Statement -2 is a correct explanation for Statement-1
- (c) Statement -1 is true, Statement -2 is true; Statement -2 is not a correct explanation for Statement-1
- (d) Statement -1 is true, Statement-2 is false

- 43. Consider the statement: "For an integer n, if n³ 1 is even, then n is odd." The contrapositive statement of this statement is: [Sep. 06, 2020 (II)]
 - (a) For an integer n, if n is even, then $n^3 1$ is odd.
 - (b) For an integer n, if n³ − 1 is not even, then n is not odd.
 - (c) For an integer n, if n is even, then $n^3 1$ is even.
 - (d) For an integer n, if n is odd, then $n^3 1$ is even.
- 44. The statement $(p \rightarrow (q \rightarrow p)) \rightarrow (p \rightarrow (p \lor q))$ is :

[Sep. 05, 2020 (II)]

- (a) equivalent to $(p \land q) \lor (\sim q)$
- (b) a contradiction
- (c) equivalent to $(p \lor q) \land (\sim p)$
- (d) a tautology
- **45.** Contrapositive of the statement :
 - 'If a function f is differentiable at a, then it is also continuous at a', is : [Sep. 04, 2020 (II)]
 - (a) If a function *f* is continuous at *a*, then it is not differentiable at *a*.
 - (b) If a function *f* is not continuous at *a*, then it is not differentiable at *a*.
 - (c) If a function *f* is not continuous at *a*, then it is differentiable at *a*
 - (d) If a function *f* is continuous at *a*, then it is differentiable at *a*.
- **46.** The contrapositive of the statement "If *I* reach the station in time, then *I* will catch the train" is : **[Sep. 02, 2020 (I)]**
 - (a) If *I* do not reach the station in time, then *I* will catch the train.
 - (b) If *I* do not reach the station in time, then *I* will not catch the train.
 - (c) If I will catch the train, then I reach the station in time.
 - (d) If *I* will not catch the train, then *I* do not reach the station in time.

- м-222 –
- **47.** Negation of the statement:
 - $\sqrt{5}$ is an integer of 5 is irrational is: [Jan. 9, 2020 (I)]
 - (a) $\sqrt{5}$ is not an integer or 5 is not irrational
 - (b) $\sqrt{5}$ is not an integer and 5 is not irrational
 - (c) $\sqrt{5}$ is irrational or 5 is an integer.
 - (d) $\sqrt{5}$ is an integer and 5 is irrational
- **48.** Let A, B, C and D be four non-empty sets. The contrapositive statement of "If $A \subseteq B$ and $B \subseteq D$, then

 $A \subseteq C$ " is: [Jan. 7, 2020 (II)]

- (a) If $A \not\subseteq C$, then $A \subseteq B$ and $B \subseteq D$
- (b) If $A \subseteq C$, then $B \subset A$ or $D \subset B$
- (c) If $A \not\subseteq C$, then $A \not\subseteq B$ and $B \subseteq D$
- (d) If $A \not\subseteq C$, then $A \not\subseteq B$ or $B \not\subseteq D$
- **49.** The negation of the Boolean expression $\sim s \lor (\sim r \land s)$ is equivalent to : [April 10, 2019 (II)]
 - (a) $\sim s \wedge \sim r$ (b) r
 - (c) $s \lor r$ (d) $s \land r$
- **50.** For any two statements p and q, the negation of the expression $p \lor (\sim p \land q)$ is: [April 9, 2019 (I)]

(a) $\sim p \land \sim q$ (b) $p \land q$

- (c) $p \leftrightarrow q$ (d) $\sim p \lor \sim q$
- **51.** The contrapositive of the statement "If you are born in India, then you are a citizen of India", is :

[April 8, 2019 (I)]

- (a) If you are not a citizen of India, then you are not born in India.
- (b) If you are a citizen of India, then you are born in India.
- (c) If you are born in India, then you are not a citizen of India.
- (d) If you are not born in India, then you are not a citizen of India.
- **52.** Contrapositive of the statement "If two numbers are not equal, then their squares are not equal". is :

[Jan. 11, 2019 (II)]

- (a) If the squares of two numbers are not equal, then the numbers are equal.
- (b) If the squares of two numbers are equal, then the numbers are not equal.
- (c) If the squares of two numbers are equal, then the numbers are equal.
- (d) If the squares of two numbers are not equal, then the numbers are not equal.

53. Consider the following two statements. **Statement** *p*:

(b) T.T

The value of sin 120° can be divided by taking $\theta = 240^{\circ}$ in

the equation 2 sin $\frac{\theta}{2} = \sqrt{1 + \sin \theta} - \sqrt{1 - \sin \theta}$.

Statement q:

(a) F, T

54.

The angles A, B, C and D of any quadrilateral ABCD satisfy

the equation
$$\cos\left(\frac{1}{2}(A+C)\right) + \cos\left(\frac{1}{2}(B+D)\right) = 0$$

Then the truth values of p and q are respectively.

(c)
$$F, F$$
 (d) $I,$

Contrapositive of the statement

'If two numbers are not equal, then their squares are not equal', is : [Online April 9, 2017]

- (a) If the squares of two numbers are equal, then the numbers are equal.
- (b) If the squares of two numbers are equal, then the numbers are not equal.
- (c) If the squares of two numbers are not equal, then the numbers are not equal.
- (d) If the squares of two numbers are not equal, then the numbers are equal.

55. The contrapositive of the following statement,

"If the side of a square doubles, then its area increases four times", is : [Online April 10, 2016]

- (a) If the area of a square increases four times, then its side is not doubled.
- (b) If the area of a square increases four times, then its side is doubled.
- (c) If the area of a square does not increases four times, then its side is not doubled.
- (d) If the side of a square is not doubled, then its area does not increase four times.

56. Consider the following two statements :

P: If 7 is an odd number, then 7 is divisible by 2.

Q: If 7 is a prime number, then 7 is an odd number.

If V_1 is the truth value of the contrapositive of P and V_2 is the truth value of contrapositive of Q, then the ordered pair (V_1, V_2) equals: **[Online April 9, 2016]** (a) (F, F) (b) (F, T) (c) (T, F) (d) (T, T)

- **57.** Consider the following statements :
 - P : Suman is brilliant
 - O : Suman is rich.
 - R : Suman is honest
 - the negation of the statement

"Suman is brilliant and dishonest if and only if suman is rich" can be equivalently expressed as :

[Online April 11, 2015]

 $\begin{array}{ll} (a) & \sim Q \leftrightarrow \sim P \lor R \\ (c) & \sim Q \leftrightarrow P \lor \sim R \end{array} \qquad \begin{array}{ll} (b) & \sim Q \leftrightarrow \sim P \land R \\ (d) & \sim Q \leftrightarrow P \land \sim R \end{array}$

- 58. The contrapositive of the statement "If it is raining, then
I will not come", is :[Online April 10, 2015]
 - (a) If I will not come, then it is raining.
 - (b) If I will not come, then it is not raining.
 - (c) If I will come, then it is raining.
 - (d) If I will come, then it is not raining.
- **59.** The contrapositive of the statement "if I am not feeling well, then I will go to the doctor" is

[Online April 19, 2014]

- (a) If I am feeling well, then I will not go to the doctor
- (b) If I will go to the doctor, then I am feeling well
- (c) If I will not go to the doctor, then I am feeling well
- (d) If I will go to the doctor, then I am not feeling well.
- 60. The contrapositive of the statement "I go to school if it does not rain" is [Online April 9, 2014]
 - (a) If it rains, I do not go to school.
 - (b) If I do not go to school, it rains.
 - (c) If it rains, I go to school.
 - (d) If I go to school, it rains.

61. The negation of the statement

"If I become a teacher, then I will open a school", is :

[2012]

- (a) I will become a teacher and I will not open a school.
- (b) Either I will not become a teacher or I will not open a school.
- (c) Neither I will become a teacher nor I will open a school.
- (d) I will not become a teacher or I will open a school.

- **62.** Let *p* and *q* denote the following statements *p* : The sun is shining
 - q: I shall play tennis in the afternoon

The negation of the statement "If the sun is shining then I shall play tennis in the afternoon", is

- [Online May 26, 2012]
- (a) $q \Rightarrow p$ (b) $q \land p$
- (c) $p \wedge \neg q$ (d) $\neg q \Rightarrow \neg p$
- 63. The Statement that is TRUE among the following is

[Online May 7, 2012]

- (a) The contrapositive of $3x + 2 = 8 \Rightarrow x = 2$ is $x \neq 2$ $\Rightarrow 3x + 2 \neq 8$.
- (b) The converse of $\tan x = 0 \Rightarrow x = 0$ is $x \neq 0 \Rightarrow \tan x = 0$.
- (c) $p \Rightarrow q$ is equivalent to $p \lor \sim q$.
- (d) $p \lor q$ and $p \land q$ have the same truth table.
- **64.** Let S be a non-empty subset of R. Consider the following statement :

P : There is a rational number $x \in S$ such that x > 0.

Which of the following statements is the negation of the statement P ? [2010]

- (a) There is no rational number $x \in S$ such than $x \leq 0$.
- (b) Every rational number $x \in S$ satisfies $x \leq 0$.
- (c) $x \in S$ and $x \le 0 \Rightarrow x$ is not rational.
- (d) There is a rational number $x \in S$ such that $x \leq 0$.

Hints & Solutions

- 1. **(b)** Negation of given statement $= \sim (p \lor (\sim p \land q))$ $= \sim p \land \sim (\sim p \land q) = \sim p \land (p \lor \sim q)$ $= (\sim p \land q) \lor (\sim p \land \sim q)$ $= F \lor (\sim p \land \sim q) = \sim p \land \sim q$
- 2. (a) $p: x \leftrightarrow y = (x \rightarrow y) \land (y \rightarrow x)$ $= (-x \lor y) \land (y \lor x)$ $= -(x \land y) \land (x \lor y)$ ($\because -(x \land y) = -x \lor -y$) Negation of p is $\sim p = (x \land y) \lor -(x \lor y) = (x \land y) \lor (-x \land -y)$
- 3. (d) The truth table of both the statements is

	р	q	~p	~q	q∨ p	p⇔~q	(S 1)	∼p⇔q	(S2)
	Т	Т	F	F	Т	F	F	F	F
Γ	Т	F	F	Т	Т	Т	Т	Т	Т
	F	Т	Т	F	Т	Т	Т	Т	F
	F	F	Т	Т	F	F	Т	F	F

 \therefore S₁ is not tautology and

 S_2 is not fallacy.

Hence, both the statements (S_1) and (S_2) are not correct.

7. (a)

p	q	$p \rightarrow q$	$p \wedge (p \rightarrow q)$	$(p \land (p \to q)) \to q$	$q \to p \land (p \to q)$	$p \wedge q$	$p \lor (p \land q)$	$p \lor q$	$p \wedge (p \lor q)$
Т	Τ	Т	Т	Т	Т	Т	Т	Т	Т
Т	F	F	F	Т	Т	F	Т	Т	Т
F	Τ	Т	F	Т	F	F	F	Т	F
F	F	Т	F	Т	Т	F	F	F	F

6.

8. (d) $(\sim p \land q) \rightarrow (p \lor q)$

$$\Rightarrow ~ \{(\sim p \land q) \land (\sim p \land \sim q)\} \\ \Rightarrow ~ \{\sim p \land f\}$$

$$\begin{array}{c} \Rightarrow \\ 9. \quad \textbf{(c)} \end{array}$$

p	q	$p \Rightarrow q$	~ p	$q \Rightarrow \sim p$	$(p \Rightarrow q) \land (p \Rightarrow \sim q)$
T	T	Т	F	F	F
T	F	F	F	Т	F
F	Т	Т	Т	Т	Т
F	F	Т	Т	Т	Т

Clearly $(p \Rightarrow q) \land (q \Rightarrow \neg p)$ is equivalent to $\neg p$

4. (b)

р	q	~q	$p^{\wedge} \sim q$	~p	$p \rightarrow \sim (p \wedge \sim q)$	~ <i>p</i> ∨q
Т	Т	F	F	F	Т	Т
Т	F	Т	Т	F	F	F
F	Т	F	F	Т	Т	Т
F	F	Т	F	Т	Т	Т

 $\therefore p \rightarrow \sim (p \land \sim q)$ is equivalent to $\sim p \lor q$

5. (d)
$$(p \land q) \rightarrow (\sim q \lor r)$$

$$= \sim (p \land q) \lor (\sim q \lor r)$$

$$= (\sim p \lor \sim q) \lor (\sim q \lor r)$$

$$= (\sim p \lor \sim q \lor r)$$

 \therefore (~ $p \lor ~ q \lor r$) is false, then ~p, ~q and r all these must be false.

 $\Rightarrow p$ is true, q is true and r is false.

(c)	р	q	$\sim q$	$p \wedge \sim q$	$p \to (p \land \sim q)$
	Т	Т	F	F	F
	Т	F	Т	Т	Т
	F	Т	F	F	Т
	F	F	Т	F	Т

10.	(a)	Given statement $p \rightarrow (\sim q \lor r)$ is False.

 \Rightarrow *p* is True and ~ *q* ∨ *r* is False

 \Rightarrow p is True and ~ q is False and r is False

 \therefore truth values of p, q r are T, T, F respectively.

11. (a) Given Boolean expression is,

$$(p \Rightarrow (\sim q)) \qquad \{ \because p \Rightarrow q \text{ is same as } \sim p \lor q \}$$

$$= \sim ((\sim p) \lor (\sim q)) = p \land q$$

12. (b)
$$(p \lor q) \lor (p \lor \sim q) = p \lor (q \lor p) \lor \sim q$$

 $= (p \lor p) \lor (q \lor \sim q) = p \lor T = T$

Hence first statement is tautology.

- **13.** (b) For $p \Rightarrow q \lor r$ to be F. *r* should be F and $p \Rightarrow q$ should be F for $p \Rightarrow q$ to be F, $p \Rightarrow T$ and $q \Rightarrow F$ *p*, *q*, $r \equiv T$, F, F
- 14. (a) By truth table :

i.e. $(p \lor r) \rightarrow F$

	(4)	Dy ara			-						
-	$q \sim q$	$pv \sim q$	~ p	$p \wedge \sim q$	pvq	$p \rightarrow pvq$	$p \wedge q$	$(p \land q) \rightarrow p$	~ pvq		
	$T \mid F$	Т	F	F	T	Т	Т	Т	Т		
-	$F \mid T$	Т	F	Т	T	T	F	T	F		
	$F \mid F$	F	T	F	T	T	F	T	T		
F	$F \mid T$	Т	Т	F	F	Т	F	Т	Т		
		($(p \wedge q)$		$\vee q$ ($(\mathbf{p} \lor \mathbf{q}) \rightarrow (\mathbf{p})$	\vee (~ q))			
				T T		T T					
				T		I F					
				T		Т					
15.											
	$((p \land q) \lor (pv \sim q)) \land (\sim p \land \sim q)$										
	$= (p \lor \sim q) \land (\sim p \land \sim q)$										
	$= ((p \lor \neg q) \land \neg p) \land ((p \lor \neg q) \land \neg q)$										
	=(($p \wedge \sim p$	∨ (~	$\sim q \wedge \sim q$	p))^	$\sim q$					
	=(~	$p \wedge \sim q$)∧ ~	$q = (\sim$	$p \wedge \gamma$	~q)					
16.	(a)	~(~ <i>p</i>	\rightarrow	Q)≡~	$(p \vee$	$q) \equiv \sim p$	$\wedge \sim q$				
17.	(b)	q is fa	lse a	nd [(p	$\wedge q)$	$\leftrightarrow r$] is	true				
	As ($p \wedge q$	is fa	lse							
	-	$se \leftrightarrow r$									
	-	ce r is	-								
		on (a):									
	-	e r is f	-	<i>sp</i> • <i>r</i> ,							
				an eith	er he	e true or	false				
		-	,			$(p \vee r)$	laise				
	-		-	spri) –	$(p \lor r)$					
	-	r) is fa			1						
		$e, F \rightarrow$			na						
		F is a									
	Hen	ce, it is	s a ta	utolog	şу						
	Opti	on (c):	(<i>p</i> \	$(r) \rightarrow 0$	$(p \land i)$	r)					

It can either be true or false Option (d): $(p \land r)$, Since, *r* is false Hence, $(p \land r)$ is false.

- **18.** (d) P is True, Q is False and R is True
 - (a) $(\sim P) \lor (Q \land R) \equiv F \lor (F \land T) \equiv F \lor F = F$
 - (b) $(P \land Q) \lor (\sim R) \equiv (T \land F) \lor (F) \equiv F \lor F = F$
 - (c) $(\sim P) \land (\sim Q \land R) \equiv F \land (T \land T) \equiv F \land T = F$
 - (d) $P \lor (\sim Q \land R) \equiv T \lor (T \land T) \equiv T \lor T = T$
- **19.** (c) Check each option
 - (a) $(p \lor q) \land (\sim p \land q) = (\sim p \land q)$
 - (b) $(p \lor q) \land (\sim p \lor q) = q$
 - (c) $(p \land q) \land (\sim p \lor q) = p \land q$
 - (d) $(p \land q) \land (\sim p \land q) = F$
- 20. (c) Logical statement,
 - $= [\sim (\sim p \lor q) \lor (p \land r)] \land (\sim q \land r)$
 - $= [(p \wedge \sim q) \vee (p \wedge r)] \wedge (\sim q \wedge r)$
 - $= [(p \wedge \sim q) \wedge (\sim q \wedge r)] \vee [(p \wedge r) \wedge (\sim q \wedge r)]$
 - $= [p \wedge \sim q \wedge r] \vee [p \wedge r \wedge \sim q]$

$$= (p \wedge \sim q) \wedge r$$

$$= (p \wedge r) \wedge \sim q$$

21. (d) $\sim (p \lor q) \lor (\sim p \land q)$

 $\Rightarrow (\sim p \land \sim q) \lor (\sim p \land q)$

$$\Rightarrow \sim p \land (\sim q \lor q)$$

$$\Rightarrow \sim p \land t \equiv \sim p$$

22. <u>(d)</u>

p	q	~ p	~ q	$\sim p \lor \sim q$	$p \to (\sim p \lor \sim q)$
Т	Т	F	F	F	F
Т	F	F	Т	Т	Т
F	Т	Т	F	Т	Т
F	F	Т	Т	Т	Т

From the truth table,

 $p \rightarrow (\sim p \lor \sim q)$ is false only when p and q both are true.

23. (b) As the truth table for the $(p \land q) \land (p \land r) \rightarrow p \lor q$ is false, then only possible values of (p, q, r) is (T, F, T)

p	q	r	~q	$p \wedge \neg q$	p∧r	~ <i>p</i>	$\sim p \lor q$	$(p \wedge \neg q) \wedge (p \wedge r)$	$(p \land \neg q) \land (p \land r) \to \neg p \lor q$
Т	Т	Т	F	F	Т	F	Т	F	Т
Т	F	Т	Т	Т	Т	F	F	Т	F
Т	Т	F	F	F	F	F	Т	F	Т
F	Т	Т	F	F	F	Т	Т	F	Т
F	F	Т	Т	F	F	Т	Т	F	Т
F	Т	F	F	F	F	Т	Т	F	Т
Т	F	F	Т	Т	F	F	F	F	Т
F	F	F	Т	F	F	Т	Т	F	Т

24. (a) Truth table

р	q	~p	$p \lor q$	$(\sim p) \land (p \lor q)$	$(\neg p) \land (p \lor q) \rightarrow q$
Т	Т	F	Т	F	Т
Т	F	F	Т	F	Т
F	Т	Т	Т	Т	Т
F	F	Т	F	F	Т

 $\therefore (a) \sim p \wedge (p \vee q) \rightarrow q \ \, \text{be a tautology}$

Other options are not tautology.

25. (b) We have

р	q	~ p	$p \rightarrow q$	$\sim p \rightarrow q$	$(\sim p \rightarrow q) \rightarrow q$	$(p \rightarrow q) \rightarrow ((\sim p \rightarrow q) \rightarrow q)$
Т	F	F	F	Т	F	Т
Т	Т	F	Т	Т	Т	Т
F	F	Т	Т	F	Т	Т
F	Т	Т	Т	Т	Т	Т

... It is tautology.

26. (b) $(\sim p) \lor (p \land \sim q)$

р	q	~ p	$\sim \mathbf{q}$	$p\wedge \sim q$	$(\sim p) \lor (p \land \sim q)$
Т	Т	F	F	F	F
Т	F	F	Т	Т	Т
F	Т	Т	F	F	F
F	F	Т	Т	F	F

27. (a) $(p \land \sim q) \lor q \lor (\sim p \land q)$

$$\Rightarrow \{(p \lor q) \land (\sim q \lor q)\} \lor (\sim p \land q)$$

$$\Rightarrow \{(p \lor q) \land T\} \lor (\sim p \land q)$$

$$\Rightarrow (p \lor q) \lor (\sim p \land q)$$

- $\Rightarrow \{(p \lor q) \lor \sim p\} \land (p \lor q \lor q)$
- \Rightarrow T \land (p \lor q)
- $\Rightarrow p \lor q$

28. (b) $\sim [\sim s \lor (\sim r \land s)]$

 $= s \land \sim (\sim r \land s)$

$$= s \wedge (r \vee \sim s)$$

$$= (s \land r) \lor (s \land \sim s)$$
$$= (s \land r) \lor f$$

$$= (S \land I)$$

= $S \land I$

29. (c) (i) (ii) $\sim (p \leftrightarrow \sim q)$ $p \leftrightarrow q$ р q $\sim q$ $p \leftrightarrow \sim q$ F FТ FT Т FF Т Т F F Т F Т Т FFТ Т F F Т Т

From column (i) and (ii) are equivalent. Clearly equivalent to $p \leftrightarrow q$ **30.** (b) Given statement is

 $p \Rightarrow (q \lor r)$ which is equivalent to $(p \Rightarrow q) \lor (p \Rightarrow r)$

- 31. (c) Given $\sim (p \lor \sim q) \lor \sim (p \lor q)$ $\equiv (\sim p \lor q) \lor (\sim p \lor \sim q)$ $\equiv \sim p \lor (q \lor \sim q)$ $\equiv \sim p$
- 32. (b) Statement-2: $(p \rightarrow q) \leftrightarrow (\sim q \rightarrow \sim p)$ $\equiv (p \rightarrow q) \leftrightarrow (p \rightarrow q)$ which is always true. So, statement 2 is true Statement-1: $(p \land \sim q) \land (\sim p \land q)$ $= p \land \sim q \land \sim p \land q$ $= p \land \sim p \land \sim q \land q$ $= f \land f = f$ So statement-1 is true
- **33.** (c) $p \rightarrow (\sim p \lor q)$ has truth value F. It means $p \rightarrow (\sim p \lor q)$ is false. It means p is true and $\sim p \lor q$ is false. $\Rightarrow p$ is true and both $\sim p$ and q are false. $\Rightarrow p$ is true and q is false.

34. (a)

(b)
$$\frac{8}{4} = 2, \frac{64}{4} = 16$$
; but 4 is not prime.

Hence $P \land Q \rightarrow R$, false

(c)
$$\frac{(6)^2}{12} = \frac{36}{12} = 3$$
; but 12 is not prime

Hence $Q \rightarrow R$, false

(d)
$$\frac{(4)^2}{8} = \frac{16}{8} = 2$$
; $\frac{4}{8}$ is not an integer

Hence
$$Q \rightarrow P$$
, false

q	р	$q \rightarrow p$	$p \rightarrow (q \rightarrow p)$	$p \lor q$	$p \rightarrow (p \lor q)$
Т	Т	Т	Т	Т	Т
Т	F	F	Т	Т	Т
F	Т	Т	Т	Т	Т
F	F	Т	Т	F	Т

Since truth value of $p \rightarrow (q \rightarrow p)$ and

 $p \rightarrow (p \lor q)$ are same, hence $p \rightarrow (q \rightarrow p)$ is equivalent to $p \rightarrow (p \lor q)$.

36. (c)

)	A	B	~ A	$A \wedge B$	$\sim A \lor B$	$(\mathbf{A} \land \mathbf{B}) \rightarrow (\sim \mathbf{A} \lor \mathbf{B})$	$\sim [(\mathbf{A} \land \mathbf{B}) \rightarrow (\sim \mathbf{A} \lor \mathbf{B})]$
	Т	Т	F	Т	Т	Т	F
	Т	F	F	F	F	Т	F
	F	Т	Т	F	Т	Т	F
	F	F	Т	F	Т	Т	F

37. (b) Let p and q be two statements. $p \rightarrow q$ is equivalent to $\sim p \lor q$.

38. (a)
$$(p \Rightarrow q) \land (q \Rightarrow p)$$
 means $p \Leftrightarrow q$

39. (c) Truth table of all options is as follows.

А	B	Av B	A ∧ B	$A \land (A \lor B)$	$A \lor (A \land B)$	$A \rightarrow B$	$A \land (A \rightarrow B)$	$[A \land (A \rightarrow B) \rightarrow B]$	$[B \rightarrow [A \land (A \rightarrow B)]$
Т	F	Т	F	Т	Т	F	F	Т	Т
F	Т	Т	F	F	F	Т	F	Т	F
Т	Т	Т	Т	Т	Т	Т	Т	Т	Т
F	F	F	F	F	F	Т	F	Т	Т

... It is tautology.

40. (b) The truth table for the logical statements, involved in statement 1, is as follows :

	(1)		(ii)		
p	q	~ q	$p \leftrightarrow \sim q$	$\sim (p \leftrightarrow \sim q)$	$p \leftrightarrow q$	
Т	Т	F	F	Т	Т	
Т	F	Т	Т	F	F	
F	Т	F	Т	F	F	
F	F	Т	F	Т	Т	

We observe the columns (i) and (ii) are identical, therefore

 $\sim (p \leftrightarrow \sim q)$ is equivalent to $p \leftrightarrow q$

But ~ $(p \leftrightarrow \neg q)$ is not a tautology as all entries in its column are not *T*.

 \therefore Statement-1 is true but statement-2 is false.

41. (b) The truth table for the given statements, as follows :

р	q	p∨ q	q→ p	$p \rightarrow (q \rightarrow p)$	$p \rightarrow (p \lor q)$
Т	Т	Т	Т	Т	Т
Т	F	Т	Т	Т	Т
F	Т	Т	F	Т	Т
F	F	F	Т	Т	Т

From table we observe that

 $p \rightarrow (q \rightarrow p)$ is equivalent to $p \rightarrow (p \lor q)$

42. (None)

Given that

p: x is an irrational number

q: y is a transcendental number

r: x is a rational number iff y is a transcendental number. clearly $r: \sim p \leftrightarrow q$

Truth table to check the equivalence of 'r' and 'q or p'; 'r' and $\sim (p \leftrightarrow \sim q)$

_				(i)	(ii)		(iii)
р	q	~p	~q	~p ↔ q	q or p	p↔ ~q	\sim (p \leftrightarrow \sim q)
Т	Т	F	F	F	Т	F	Т
Т	F	F	Т	Т	Т	Т	F
F	Т	Т	F	Т	Т	Т	F
F	F	Т	Т	F	F	F	Т

From columns (i), (ii) and (iii), we observe, that none of the these statements are equivalent to each other.

: Statement 1 as well as statement 2 both are false.

... None of the options is correct.

- **43.** (a) Contrapositive statement will be
 - "For an integer *n*, if *n* is not odd then $n^3 1$ is not even".

"For an integer *n*, if *n* is even then $n^3 - 1$ is odd".

44. (d) The truth table of $(p \to (q \to p)) \to (p \to (p \lor q))$ is

р	q	p∨ q	$p \rightarrow (p \lor q)$	q→p	$p \rightarrow (q \rightarrow p)$	$(p \rightarrow (q \rightarrow p))$ $\rightarrow (p \rightarrow (p \lor q))$
Т	Т	0	Т	Т	Т	Т
Т	F	Т	Т	Т	Т	Т
F	Т	Т	Т	F	Т	Т
F	F	F	Т	Т	Т	Т

Hence, the statement is tautology.

- **45.** (b) Contrapositive statement will be "If a function is not continuous at '*a*', then it is not differentiable at '*a*'.
- **46.** (d) Contrapositive of $p \rightarrow q$ is $\sim q \rightarrow \sim p$
 - i.e. contrapositive of 'if *p* then *q*' is 'if not *q* then not *p*'.
- 47. (b) Let p and q the statements such that $p = \sqrt{5}$ is an integer q = 5 is an irrational number.

Then, negation of the given statement

- $\sqrt{5}$ is not an integer and 5 is not an irrational Number $\sim (p \lor q) = \sim p \land \sim q$
- **48.** (d) Let $P = A \subseteq B$, $Q = B \subseteq D$, $R = A \subseteq C$ Contrapositive of $(P \land Q) \rightarrow R$ is $\sim R \rightarrow \sim (P \land Q)$ $\sim R \rightarrow \sim P \lor \sim Q$
- 49. (d) $\sim s \lor (\sim r \land s) \equiv (\sim s \lor \sim r) \land (\sim s \lor s)$ $\equiv (\sim s \lor \sim r)$ ($\because \sim s \lor s$) is tautology) $\equiv \sim (s \land r)$

Hence, its negation is $s \wedge r$.

50. (d)
$$\sim (p \lor (\sim p \land q)) = \sim (\sim p \land q) \land \sim p$$

= $(\sim q \lor p) \land \sim p$
= $\sim p \land (p \lor \sim q)$
= $(\sim q \land \sim p) \lor (p \land \sim p)$
= $(\sim p \land \sim q)$

51. (a) S: "If you are born in India, then you are a citizen of India."

Contrapositive of $p \rightarrow q$ is $\sim q \rightarrow \sim p$

So contrapositive of statement S will be :

"If you are not a citizen of India, then you are not born in India."

52. (c) Contrapositive of "If *A* then *B*" is "If ~B then $\sim A$ ". Hence contrapositive of "If two numbers are not equal, then their squares are not equal" is "If squares of two numbers are equal, then the two numbers are equal".

53. (a) Statement *p*:

$$\sin 120^\circ = \cos 30^\circ = \frac{\sqrt{3}}{2} \implies 2\sin 120^\circ = \sqrt{3}$$

So, $\sqrt{1 + \sin 240^\circ} - \sqrt{1 - \sin 240^\circ}$
$$= \sqrt{\frac{1 - \sqrt{3}}{2}} - \sqrt{\frac{1 + \sqrt{3}}{2}} \neq \sqrt{3}$$

Statement q:

So,
$$A + B + C + D = 2\pi \implies \frac{A+C}{2} + \frac{B+D}{2} = \pi$$

$$\implies \cos\left(\frac{A+C}{2}\right) + \cos\left(\frac{B+D}{2}\right)$$
$$= \cos\left(\frac{A+C}{2}\right) - \cos\left(\frac{A+C}{2}\right) = 0$$

Therefore, statement p is false and statement q is true.

 $54. \quad (a) \ p \to q$

then $\sim\!q\!\rightarrow\!\sim\!p$

 \therefore If the square of two numbers are equal, then the numbers are equal.

55. (c) Contrapositive of $p \rightarrow q$ is given by $\sim q \rightarrow \sim p$ So (c) is the right option.

56. (a) Contrapositive of P: T is not divisible by $2 \Rightarrow T$ is not divisible by $2 \Rightarrow T$

T is not divisible by $2 \Rightarrow T$ is not odd number $T \Rightarrow F : F(V_1)$ Contra positive Q:

T is not odd number \Rightarrow *T* is not a prime number $F \Rightarrow F : T(V_2)$

57. (d) Suman is brilliant and dishonest can be expressed as $P \wedge \sim R$

therefore given statement is equal to ($P \land \sim R$) $\leftrightarrow Q$

Negation of the above statement is $\sim Q \leftrightarrow P_{\wedge} \sim R$

- **58.** (d) The centre positive of the statement is "If i will come, then it is not raining".
- 59. (c) Given statement can be written in implication form as I am not feeling well ⇒ I will go to the doctor. Contrapositive form :
 I will not go to the doctor ⇒ I am feeling well.
 i.e. If I will not go to the doctor, then I am feeling well.
- 60. (b) let p = If it does not rain q = I go to school According to law of contrapositive

$$p \Rightarrow q \equiv {\sim}q \Rightarrow {\sim} p$$

i.e. $\sim q = I$ do not go to school

$$\sim p =$$
It rains

- $\sim q \Rightarrow \sim p$ is If I do not go to school, it rains.
- 61. (a) Let p: I become a teacher. q: I will open a school

Negation of $p \rightarrow q$ is $\sim (p \rightarrow q) = p \land \sim q$

i.e. I will become a teacher and I will not open a school.

62. (c) Let p: The sun is shining.

q: I shall play tennis in the afternoon.

Negation of $p \rightarrow q$ is $\sim (p \rightarrow q) = p \wedge \sim q$

- 63. (a) Only statement given in option
 - (a) is true.
 - (b) The converse of tanx = $0 \Rightarrow x = 0$ is
 - $x = 0 \Longrightarrow \tan x = 0$
 - : Statement (b) is false
 - (c) $\sim (p \Rightarrow q)$ is equivalent to $p \land \sim q$
 - : Statement given in option (c) is false.

(d) No, $p \lor q$ and $p \land q$ does not have the same truth value.

64. (b) Given that P : there is a rational number $x \in S$ such that x > 0.

~ P : Every rational number $x \in S$ satisfies $x \le 0$.