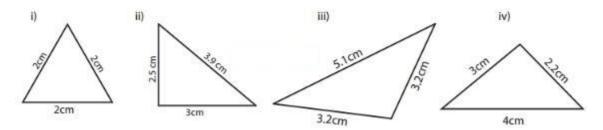

Chapter - 4

Geometry

Question 1. Fill in the blanks. (a) Every triangle has at least (b) A triangle in which none of (c) In an isosceles triangle (d) The sum of three angles of (e) A right-angled triangle with	f the s ang f a tria	sides equal is called a gles are equal. angle is
Solution: (a) Two (b) Scalene Triangle (c) Two (d) 180° (e) Isosceles right-angled triangle 	ngle	
Question 2. Match the following		
(i) No sides are equal	-	Isosceles triangle
(ii) One right angle	-	Scalene triangle
(iii) One obtuse angle	_	Right angled triangle
(iv) Two sides of equal length	-	Equilateral triangle
(v) All sides are equal		Obtuse angled triangle
Solution: (i) Scalene triangle (ii) Right-angled triangle (iii) Obtuse angled triangle (iv) Isosceles triangle (v) Equilateral triangle		

Question 3.

In $\triangle ABC$, name the

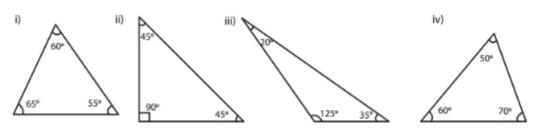

- a) Three sides:,
- b) Three Angles:,
- c) Three Vertices:,

(a) $\overline{AB}, \overline{BC}, \overline{CA}$

- (b) \angle ABC, \angle BCA, \angle CAB or \angle A, \angle B, \angle C
- (c) A, B, C

Question 4.

Classify the given triangles based on its sides as scalene, isosceles or equilateral.

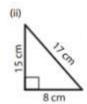


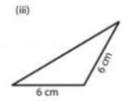
Solution:

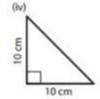
- (i) Equilateral triangle
- (ii) Scalene triangle
- (iii) Isosceles triangle
- (iv) Scalene triangle

Question 5.

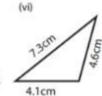
Classify the given triangles based on their angles as acute-angled, right-angled, or obtuse-angled.




- (i) Acute angled triangle
- (ii) Right-angled triangle
- (iii) Obtuse angled triangle
- (iv) Acute angled triangle


Question 6.

Classify the following triangles based on its sides and angles?



Solution:

- (i) Isosceles Acute angled triangle
- (ii) Scalene Right-angled triangle
- (iii) Isosceles Obtuse angled triangle
- (iv) Isosceles Right-angled triangle
- (v) Equilateral Acute angled triangle
- (vi) Scalene Obtuse angled triangle

Question 7.

Can a triangle be formed with the following sides? If yes, name the type of triangle.

- (i) 8 cm, 6 cm, 4 cm
- (ii) 10 cm, 8 cm, 5 cm
- (iii) 6.2 cm, 1.3 cm, 3.5 cm
- (iv) 6 cm, 6 cm, 4 cm
- (v) 3.5 cm, 3.5 cm, 3.5 cm
- (vi) 9 cm, 4 cm, 5 cm

Solution:

- (i) Sum of two smaller sides of the triangle
- = 6 + 4 = 10 cm > 8 cm

It is greater than the third side. So, a triangle can be formed a scalene triangle.

- (ii) Sum of two smaller sides of the triangle
- = 8 + 5 = 13 cm > 10 cm

It is greater than the third side. So, a triangle can be formed a scalene triangle.

(iii) Sum of two smaller sides of the triangle

$$= 1.3 + 3.5 = 4.8 \text{ cm} < 6.2 \text{ cm}$$

It is not greater than the third side. So, a triangle cannot be formed.

(iv) Two sides are equal.

So, a triangle can be formed. Isosceles triangle.

(v) Three sides are equal.

So, a triangle can be formed equilateral triangle.

(vi) Sum of two smaller sides of the triangle

$$= 4 + 5 = 9 \text{ cm} = 9 \text{ cm}$$

It is equal to the third side. No, a triangle cannot be formed.

Question 8.

Can a triangle be formed with the following angles? If yes, name the type of triangle.

(i) 60° , 60° , 60°

(ii) 60°, 40°, 42°

(iii) 90°, 55°, 35°

(iv) 60°, 90°, 90°

(v) 70° , 60° , 50°

(vi) 100°, 50°, 30°

Solution:

(i) 60°, 60°, 60°

Sum of the angles = $60^{\circ} + 60^{\circ} + 60^{\circ} = 180^{\circ}$

A triangle can be formed as an acute-angled triangle.

(ii) 60°, 40°, 42°

Sum of the angles = $60^{\circ} + 40^{\circ} + 42^{\circ} = 142^{\circ}$

A triangle cannot be formed.

(iii) 90°, 50°, 35°

Sum of the angles = $90^{\circ} + 55^{\circ} + 35^{\circ} = 180^{\circ}$

A triangle can be formed Right-angled triangle.

(iv) 60°, 90°, 90°

No, a triangle can not be formed.

A triangle cannot have more than one right angle.

(v) 70°, 60°, 50°

Sum of the angles = $70^{\circ} + 60^{\circ} + 50^{\circ} = 180^{\circ}$

A triangle can be formed as an acute-angled triangle.

(vi)
$$100^{\circ}$$
, 50° , 30°

Sum of the angles =
$$100^{\circ} + 50^{\circ} + 30^{\circ} = 180^{\circ}$$

A triangle can be formed as an obtuse-angled triangle.

Question 9.

Two angles of the triangles are given. Find the third angle

- (i) 80° , 60°
- (ii) 75°, 35°
- (iii) 52°, 68°
- (iv) 50°, 90°
- (v) 120° , 30°
- (vi) 55°, 85°

Solution:

(i)
$$80^{\circ}$$
, 60°

Let the third angle be x.

Sum of the angles = 180°

$$80^{\circ} + 60^{\circ} + x = 180^{\circ}$$

$$140 + x = 180^{\circ}$$

$$x = 180^{\circ} - 140^{\circ}$$

$$x = 40^{\circ}$$

Third angle = 40°

(ii) 52°, 68°

Let the third angle be x.

Sum of the angles = 180°

$$52^{\circ} + 68^{\circ} + x = 180^{\circ}$$

$$120 + x = 180^{\circ}$$

$$x = 60^{\circ}$$

Third angle = 60°

(iii) 75°, 35°

Let the third angle be x.

Sum of the angles 180°

$$75^{\circ} + 35^{\circ} + x = 180^{\circ}$$

$$110 + x = 180^{\circ}$$

$$x = 180^{\circ} - 110^{\circ}$$

$$x = 70^{\circ}$$

Third angle = 70°

```
(iv) 50^\circ, 90^\circ
Let the third angle be x. Sum of the angles = 180^\circ
50^\circ + 90^\circ + x = 180^\circ
140 + x = 180^\circ
x = 180^\circ - 140^\circ
x = 40^\circ
Third angle = 40^\circ
```

(v)
$$120^\circ$$
, 30°
Let the third angle be x.
Sum of the angles = 180°
 $120^\circ + 30^\circ + x = 180^\circ$
 $150 + x = 180^\circ$
 $x = 180^\circ - 150^\circ$
 $x = 30^\circ$
Third angle = 30°

(vi)
$$55^{\circ}$$
, 85°
Let the third angle be x.
Sum of the angles = 180°
 $55^{\circ} + 85^{\circ} + x = 180^{\circ}$
 $140 + x = 180^{\circ}$
 $x = 180^{\circ} - 140^{\circ}$
 $x = 40^{\circ}$
Third angle = 40°

Question 10.

I am a closed figure with each of my three angles is 60°. Who am I?

Solution:

Equilateral triangle

Question 11.

Using the given information, write the type of triangle in the table given below.

S.No.	∠1	∠2	∠3	Type of triangle based on angles	Type of triangle based on sides
i.	60°	40°	80°	Acute angled triangle.	Scalene Triangle
ii.	50°	50°	80°		
iii.	45°	45°	90°		
iv.	55°	45°	80°		
v.	75°	35°	70°		
vi.	60°	30°	90°		
vii.	25°	64°	91°		
viii.	120°	30°	30°		

- (ii) Acute angled triangle, Isosceles triangle
- (iii) Right-angled triangle, Isosceles triangle
- (iv) Acute angled triangle, Scalene triangle
- (v) Acute angled triangle, Scalene triangle
- (vi) Right-angled triangle. Scalene triangle
- (vii) Obtuse angled triangle, Scalene triangle
- (viii) Obtuse angled triangle, Isosceles triangle

Objective Type Questions

Question 12.

The given triangle is

- (a) a right-angled triangle
- b) an equilateral triangle
- (c) a scalene triangle
- (d) an obtuse-angled triangle

(b) an equilateral triangle

Question 13.

If all angles of a triangle are less than a right angle, then it is called _____.

- (a) an obtuse-angled triangle
- (b) a right-angled triangle
- (c) an isosceles right-angled triangle
- (d) an acute-angled triangle

Solution:

(d) an acute-angled triangle

Question 14.

If two sides of a triangle are 5 cm and 9 cm, then the third side is

- (a) 5 cm
- (b) 3 cm
- (c) 4 cm
- (d) 14 cm

Solution:

(a) 5 cm

Question 15.

The angles of a right-angled triangle are

- (a) acute, acute, obtuse
- (c) acute, right, right
- (c) right, obtuse, acute
- (d) acute, acute, right

Solution:

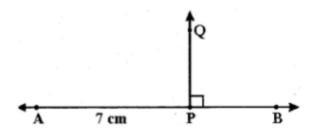
(d) acute, acute, right

Question 16.

An equilateral triangle is

- (a) an obtuse-angled triangle
- (b) a right-angled triangle
- (c) an acute-angled triangle
- (d) a scalene triangle

Solution:


(c) an acute-angled triangle

Ex 4.2

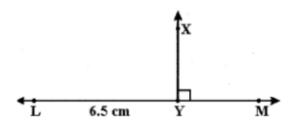
Question 1.

Draw a line segment AB = 7 cm and mark a point P on it. Draw a line perpendicular to the given line segment at P.

Solution:

Step 1: Draw a line AB = 7 cm and take a point P anywhere on the line.

Step 2: Place the set square on the line in such a way that the vertex which forms right angle coincides with P and one arm of the right angle coincides with the line AB.


Step 3: Draw a line PQ through P along the other arm of the right angle of the set square.

Step 4: The line PQ is perpendicular to the line AB at P. That is, PQ \perp AB \angle APQ = \angle BPQ = 90°

Question 2.

Draw a line segment LM = 6.5 cm and mark a point X not lying on it. Using a set square construct a line perpendicular to LM through X.

Solution:

Step 1: Draw a line LM = 6.5 cm and take a point X anywhere above the line LM.

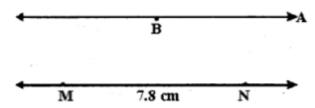
Step 2: Place one of the arms of the right angle of a set square along the line LM and the other arm of its right angle touches the point X.

Step 3: Draw a line through the point X meeting LM at Y.

Step 4: The line XY is perpendicular to the line LM at Y. That is, LM \perp XY.

Question 3.

Find the distance between the given lines using a set square at two different points on each of the pairs of lines and check whether they are parallel.


Solution:

They are parallel

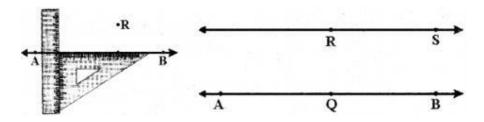
Question 4.

Draw a line segment measuring 7.8 cm. Mark a point B above it at a distance of 5 cm. Through B draw a line parallel to the given segment.

Solution:

Step 1: Draw a line. Mark two points M and N on the line such that MN = 7.8 cm. Mark a point B any where above the line.

Step 2: Place the set square below B in such a way that one of the edges that form a right angle lies along MN Place the scale along the other edge of the set square.


Step 3: Holding the scale firmly, Slide the set square along the edge of the scale until the other edge of the set square reaches the point B. Through B draw a line.

Step 4: The line MN is parallel to AB. That is, MN || AB.

Question 5.

Draw a line and mark a point R above it at a distance of 5.4 cm Through R draw a line parallel to the given line.

Solution:

Step 1 : Using a scale draw a line AB and mark a point Q on the line.

Step 2 : Place the set square in such a way that the vertex of the right angle coincides with Q and one of the edges of right angle lies along AB. Mark the point R such that QR = 5.4 cm

Step 3 : Place the scale and the set square as shown in the figure.

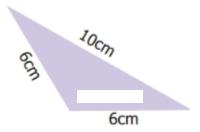
Step 4 : Hold the scale firmly and slide the set square along the edge of the scale until the other edge touches the point R. Draw a line RS through R.

Step 5: The line RS is parallel to AB. That is, RS | AB.

Ex 4.3

Miscellaneous Practice Problems

Question 1.


What are the angles of an isosceles right-angled triangle?

Solution:

Since it is a right-angled triangle One of the angles is 90° The other two angles are equal because it is an isosceles triangle. The other two angles must be 45° and 45° Angles are 90° , 45° , 45° .

Question 2.

Which of the following correctly describes the given triangle?

- (a) It is a right isosceles triangle
- (b) It is an acute isosceles triangle
- (c) It is an obtuse isosceles triangle
- (d) It is an obtuse scalene triangle

Solution:

(c) It is an obtuse isosceles triangle

Question 3.

Which of the following is not possible?

- (a) An obtuse isosceles triangle.
- (b) An acute isosceles triangle.
- (c) An obtuse equilateral triangle.
- (d) An acute equilateral triangle.

Solution:

(c) An obtuse equilateral triangle.

Question 4.

If one angle of an isosceles triangle is 124°, then find the other angles

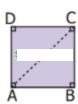
Solution:

In an isosceles triangle, any two sides are equal. Also, the two angles are equal.

Sum of three angles of a triangle = 180°

Given one angle = 124°

Sum of other two angles = 180° – 124° = 56°

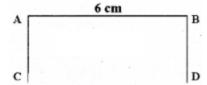

Other angles are = $\frac{56}{2}$ = 28°

28° and 28°.

Question 5.

The diagram shows a square ABCD. If the line segment joins A and C, then mention the type of triangle so formed.

Solution:



Isosceles right-angled triangles

Question 6.

Draw a line segment AB of length 6 cm. At each end of this line segment AB, draw a line perpendicular to the line segment AB. Are these lines parallel?

Solution:

yes, they are parallel

Challenge Problems

Question 7.

Is a triangle possible with the angles 90°, 90°, and 0°, Why?

Solution:

No, a triangle cannot have more than one right angle.

Question 8.

Which of the following statements is true? Why?

- (a) Every equilateral triangle is an isosceles triangle.
- (b) Every isosceles triangle is an equilateral triangle

Solution:

"(a)" is true, because an isosceles triangle need not have three equal sides

Question 9.

If one angle of an isosceles triangle is 70° , then find the possibilities for the other two angles.

Solution:

(i) Given one angle = 70°

Also, it is an isosceles triangle.

Another one angle also can be 70°.

Sum of these two angles = $70^{\circ} + 70^{\circ} = 140^{\circ}$

We know that the sum of three angles in a triangle = 180° .

Third angle = $180^{\circ} - 140^{\circ} = 40^{\circ}$

One possibility is 70°, 70°, and 40°

(ii) Also if one angle is 70°

Sum of other two angles = $180^{\circ} - 70^{\circ} = 110^{\circ}$

Both are equal. They are $\frac{110}{2}$ = 55°.

Another possibility is 70°, 55° and 55°.

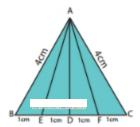
Question 10.

Which of the following can be the sides of an isosceles triangle?

(a) 6 cm, 3 cm, 3 cm

(b) 5 cm, 2 cm, 2 cm

(c) 6 cm, 6 cm, 7 cm


(d) 4 cm, 4 cm, 8 cm

Solution:

(c) 6 cm, 6 cm, 7 cm

Question 11.

Study the given figure and identify the following triangles,

(a) equilateral triangle

(b) isosceles triangle

(c) scalene triangles

(d) acute triangle

(e) obtuse triangle

(f) right triangle

Solution:

(a) BC = 1 + 1 + 1 + 1 = 4 cm

AB = AC = 4 cm

 ΔABC is an equilateral triangle.

(b) ΔABC and ΔAEF are isosceles triangles.

Since AB = AC = 4 cm Also AE = AF.

(c) In a scalene triangle, no two sides are equal.

 ΔAEB , ΔAED , ΔADF , ΔAFC , ΔABD , ΔADC , ΔABF , and ΔAEC are scalene triangles.

(d) In an acute-angled triangle all the three angles are less than 90°.

 ΔABC , ΔAEF , ΔABF , and ΔAEC are acute-angled triangles.

(e) In an obtuse-angled triangle any one of the angles is greater than 90° .

 Δ AEB and Δ AFC are obtuse angled triangles.

(f) In a right triangle, one of the angles is 90°.

 ΔADB , ΔADC , ΔADE , and ΔADF are right-angled triangles.

Question 12.

Two sides of the triangle are given in the table. Find the third side of the triangle.

SI. I	No.	Side – 1	Side - 2	The length of the third side(any three measures)
i.		7 cm	4 cm	
ii.		8 cm	8 cm	
iii	i.	7.5 cm	3.5 cm	
iv	<i>/</i> .	10 cm	14 cm	

Solution:

- (i) between 3 and 11
- (ii) between 0 and 16
- (iii) between 4 and 11
- (iv) between 4 and 24

Question 13.

Complete the following table:

Types of Triangle / Its Angles	Acute angled triangle	Right angled triangle	Obtuse angled triangle
Any two angles	Always acute angles	i.	Always acute angles
Third angle	ii.	Right angle	iii.

Solution:

- (i) Always acute angles
- (ii) Acute angle
- (iii) Obtuse angle