Distinction between Pairs of Compounds

UNSATURATION TEST

(a) Double/Triple bonded Compounds $(C=C)/(C=C) + Br_2$ in CCl_4 (Brown colour) \rightarrow Colourless compound.

•
$$R - CH = CH - R + Br_2$$

(Alkene)

 CCl_4
 $R - CH - CH - R$

(Colourless)

•
$$R-C \equiv C-R+Br_2$$
(Alkene) (Brown)

 CCl_4
 $R-C-C-R$
Br Br
 $C-C-R$
Br Br
 $C-C-C-R$
Colourless)

(b) Double/Triple bonded Compounds + Baeyer's reagent (Pink colour) → Brown precipitate

•
$$R - CH = CH - R + KMnO_4 \rightarrow R - CH - CH - R + MnO_2$$
(Cold, dilute)

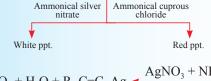
(Cold, dilute)

(Colourless)

(Colourless)

•
$$R - C \equiv C - R' + KMnO_4 \rightarrow MnO_2 + RCOOH R'COOH$$
(Hot, dilute) Brown ppt.

•
$$R - C \equiv C - H + KMnO_4 \rightarrow MnO_2 + RCOOH + CO_2 + H_2O$$
(Alkyne) (Hot, dilute) Brown ppt. (Colourless)


Baeyer's reagent is cold, dilute KMnO₄ solution having pink colour.

The above test are not given by Benzene. Although it has unsaturation.

TEST FOR TERMINAL ALKYNE

Terminal alkyne

$$NH_4NO_3 + H_2O + R - C \equiv C - Ag$$

$$White ppt.$$

$$R - C \equiv CH$$

$$Terminal alkyne$$

$$CuCl_2 + NH_4OH$$

$$CuCl_2 + NH_4OH$$

$$R - C \equiv CH$$

$$Terminal alkyne$$

$$CuCl_2 + NH_4OH$$

NATURE OF X-GROUP IN C-X BOND

$$R-X$$
 + aqueous KOH \rightarrow $R-OH + KX $\xrightarrow{\text{HNO}_3}$ $\xrightarrow{\text{AgX}}$ $\xrightarrow{\text{(Precipitate)}}$$

If X is Cl, precipitate will be white and for Br yellow precipitate will be obtained.

DISTINCTION BETWEEN 1°, 2° AND 3° ALCOHOL

$$\begin{array}{c|ccc} \bullet & R-CH_2-OH & \xrightarrow{Lucas\ reagent} & R-CH_2-Cl \\ & Primary\ alcohol & & Cloudiness\ appears \\ & & after\ 30\ minute \end{array}$$

Lucas reagent is anhydrous $ZnCl_2 + conc.$ HCl.

OH
$$H_{3}C - CH - R + I_{2} \xrightarrow{\text{NaOH} \atop \text{Iodoform}} CHI_{3} + RCOONa$$

$$\xrightarrow{\text{Iodoform} \atop \text{(Yellow ppt.)}}$$

 $H_3C - \dot{C}H - R$ type of alcohols give iodoform test.

PHENOL

Phenol + ferric chloride → Violet colouration (neutral)

$$6 \longrightarrow OH + FeCl_3 \rightarrow 3H^+ + [Fe(OC_6H_5)_6]^{3-} + 3HCl$$
Violet colouration

CARBONYL GROUP

• Carbonyl compound + 2, 4-Dinitrophenylhydrazine → Yellow/orange crystal (Brady's reagent)

$$O_2N$$
 O_2N
 O_2N

All aldehydes and only aliphatic methyl ketones
 + NaHSO₃ → White crystalline bisulphite.

$$\begin{array}{c} R \\ R \\ H \end{array} \begin{array}{c} C = O + NaHSO_3 \rightarrow R - \overset{\bullet}{C} - SO_3^-Na^+ \\ H \\ OH \\ H_3C \end{array} \begin{array}{c} OH \\ OH \\ CH_3 \end{array}$$

ALDEHYDE GROUP

Aldehyde + Tollen's reagent → Silver mirror

$$\begin{array}{c}
O \\
R-C-H+3OH^{\Theta}+2[Ag(NH_3)_2]^+ \rightarrow RCOO^{\Theta}+2H_2O+4NH_3+2Ag\downarrow\\
\text{(silver mirror)}
\end{array}$$

• Aldehyde + Fehling's solution → Reddish brown precipitate

$$\begin{array}{c} O \\ R-C-H+2Cu^{2^{+}} + 5OH^{-} \rightarrow RCOO^{\Theta} + 3H_{2}O + Cu_{2}O \\ \text{(Reddish brown ppt)} \end{array}$$

• H₃C – C – group also give iodoform test

$$H_3C - C - R + I_2 + NaOH \xrightarrow{Iodoform test} CHI_3 + RCOONa \xrightarrow{Iodoform} (Yellow ppt.)$$

AROMATIC ALDEHYDE GROUP

- Aromatic aldehyde + Tollen's reagent → Silver mirror
- Aromatic aldehyde + Fehling's solution → Negative test

CARBOXYLIC GROUP

Carboxylic acid + Sodium bicarbonate → effervescence RCOOH + NaHCO₃ → RCOONa + H₂O + CO₂↑

FORMIC ACID

HCOOH
Formic acid

Fehling's solution

$$H_2O + \frac{CO_3^{2-} + Cu_2O}{Red ppt.}$$
 $2Ag + \frac{CO_3^{2-} + Cu_2O}{Red ppt.}$

Silver mirror

AMINES (1°)

Amines (1°, 2°& 3°) (Hinsberg's test)

- Primary amine + Benzenesulphonyl chloride → Precipitate KOH Soluble
- Secondary amine + Benzenesulphonyl chloride → Precipitate KOH insoluble
- Tertiary amine + Benzenesulphonyl chloride → No reaction.

Benzenesulphonyl chloride is called Hinsberg's reagent.

Chloroethane and Chlorobenzene

•
$$C_2H_5$$
-Cl + aq KOH \xrightarrow{Boil} C_2H_5 -OH + KCl $\xrightarrow{HNO_3}$ AgCl White ppt

• Cl + aq. KOH
$$\xrightarrow{\text{Boil}}$$
 No reaction $\xrightarrow{\text{HNO}_3}$

Chlorocyclohexane and chlorobenzene

•
$$Cl + aq. KOH \xrightarrow{Boil} OH + KCl \xrightarrow{HNO_3} AgCl \xrightarrow{HNO_3} White ppt.$$

• Cl + aq. KOH
$$\xrightarrow{\text{Boil}}$$
 No reaction $\xrightarrow{\text{HNO}_3}$

Chlorocyclohexane and bromoethane

•
$$C_2H_5$$
-Cl + aq. KOH $\xrightarrow{\text{Boil}}$ C_2H_5 -OH+KCl $\xrightarrow{\text{HNO}_3}$ AgCl (Chloroethane) White ppt.

•
$$C_2H_5$$
-Br + aq. KOH $\xrightarrow{\text{Boil}}$ C_2H_5 -OH+KBr $\xrightarrow{\text{HNO}_3}$ AgBr $\xrightarrow{\text{Yellow ppt}}$

Benzyl chloride and chlorobenzene

$$Cl$$
 $CH_2 + aq$
 $CH_2 + aq$
 $CH_2 + kCl$
 $AgCl$
 $AgNO_3$
 $AgNO_3$

• Cl + aq. KOH
$$\frac{\text{Boil}}{\text{HNO}_3, \text{AgNO}_3}$$
 No reaction

Ethyl chloride and vinyl chloride

•
$$C_2H_5$$
-Cl+aq. KOH \xrightarrow{Boil} C_2H_5 -OH+KCl (Ethyl chloride)

AgCl $\xrightarrow{HNO_3}$ $\xrightarrow{AgNO_3}$

•
$$H_2C = CH - CI + aq$$
. KOH \xrightarrow{Boil} No reaction Vinyl chloride

n-Propyl alcohol and iso-propyl alcohol

• CH₃CH₂CH₂OH + HCl $\xrightarrow{\text{ZnCl}_2}$ CH₃CH₂CH₂Cl No cloudiness at room temp.

OH Cl
•
$$H_3C - CH - CH_3 \xrightarrow{Z_{nCl_2}} H_3C - CH - CH_3$$

Cloudiness within 5 minutes

Ethyl alcohol and methyl alcohol (lodoform test)

- $CH_3CH_2OH + 4I_2 + 6NaOH \rightarrow CHI_3 + HCOONa$ Yellow ppt.
- $CH_3OH + 4I_2 + 6NaOH \rightarrow No \text{ yellow ppt.}$

Ethyl alcohol and acetone (2,4 - DNP)

$$H_3C$$
 $C = O + H$
 $N - NH$
 NO_2
 O_2N
 O_2N

• $C_2H_5OH \xrightarrow{2,4-DNP}$ No reaction

Phenol and ethyl alcoho (Neutral FeCl₃)

Phenol + Neutral ferric chloride → Violet colouration

$$6 \longrightarrow OH + FeCl_3 \rightarrow 3H^+ + [Fe(OC_6H_5)_6]^{3-} + 3HCl$$
Violet colouration

CH₃CH₂OH + Neutral ferric chloride → No violet colouration

Benzoic acid and phenol (NaHCO₃)

- Benzoic acid + Sodium bicarbonate → effervescence
 C₆H₅COOH + NaHCO₃ → C₆H₅COONa + CO₂↑ + H₂O
- Phenol + Sodium bicarbonate → No effervescence (Phenol is less acidic than benzoic acid)

Propanone and propanol (2,4 - DNP)

$$H_3C$$
 $C = O + H$
 $N - NH$
 O_2N
 O_2N

• Propanol + 2,4–Dinitrophenylhydrazine → No crystals

Ethanal and propanal (lodoform test)

$$\bullet \ \ H_{3}C - C - H + I_{2} + NaOH \xrightarrow{Iodofrom \ test} CHI_{3} + HCOONa \xrightarrow{Iodofrom \ (Yellow \ ppt.)}$$

•
$$H_3C - CH_2 - C - H + I_2 + NaOH \xrightarrow{Iodofrom \text{ test}} No \text{ yellow ppt}$$

Propanal and propanone (Tollen's and Fehling reagent)

• Propanal + Tollen's reagent → Silver mirror

Propanal + Fehling's solution → Reddish brown precipitate

• Propanone Propanone Negative test

Negative test

Pentan-2-one and pentan-3-one (lodoform test)

• H₃C-CH₂-C-CH₂-CH₃+I₂+NaOH - No yellow ppt.

Propanal and benzaldehyde (Fehling solution)

Propanal + Fehling's solution → Reddish brown precipitate

$$H_3C-CH_2-C-H+2Cu^{2+} + 5OH^- \rightarrow CH_3CH_2COO^- + 3H_2O+Cu_2O$$
Feblusian Solution

• Benzaldehyde + Fehling's solution → No precipitate

CHO+2Cu²⁺+5OH
$$^-$$
 No reaction

Methanoic acid and ethanoic acid (Tollen's & Fehling solution)

• HCOOH Methanoic acid Fehling's solution
$$H_2O + CO_3^{2-} + Cu_2O$$
• $COOH_{Methanoic acid}$
• Ethanoic acid Fehling's solution $COOH_{Methanoic acid}$
• Ethanoic acid No brown ppt.

Ethanal and methanal (lodoform test)

- CH₃CHO+I₂+NaOH lodoform test → CHI₃+HCOONa lodoform (Yellow ppt.)

Acetophenone and benzophenone (lodoform test)

Benzoic acid and ethylbenzoate

• $C_6H_5COOH+NaHCO_3 \rightarrow C_6H_5COONa+CO_2 \uparrow + H_2O$

effervescence

• Ethyl benzoate + Sodium bicarbonate → No effervescence

Benzaldehyde and acetophenone (Tollen's test)

Benzaldehyde + Tollen's reagent → Silver mirror

• Acetophenone + Tollen's reagent → No silver mirror

Methyl amine and dimethyl amine (Isocyanide test)

• $CH_3NH_2 + CHCl_3 + 3KOH \rightarrow CH_3NC + 3KCl + 3H_2O$ Methyl amine (alc.) Methyl isocynaide (Offensive smell)

CH₃

• H₃C-NH+CHCl₃+3KOH(alc.) → No offensive smell
Di-methyl amine

Aniline and ethyl amine (Diazotisation)

$$NH_{2} \xrightarrow{\text{NaNO}_{2} + \text{HCl}} \longrightarrow N_{2} \text{Cl}$$

$$N = N \longrightarrow OH$$
Orange dye
p-hydroxy azobenzene

• CH₃CH₂NH₂ NaNO₂+HCl CH₃CH₂OH No Orange dye

Aniline and N-methylaniline (Isocyanide Test)

• NH-CH₃+CHCl₃+3KOH → No offensive smell

Aniline and Benzylamine (Diazotisation + phenol)

NH₂ NaNO₂+HCl
$$N_2$$
Cl OH

Aniline

N = N

Orange dye

CH₂-NH₂

NaNO₂+HCl

CH₂-OH

No orange dye

Glucose and fructose

- Glucose + Br_2 + H_2O \rightarrow Gluconic acid + 2HBr (Brown colour) (Colourless)
- Fructose + Br_2 + H_2O \rightarrow Brown colour (Brown colour) (no change in colour)

Glucose and sucrose

- Glucose + Tollen's reagent → Silver mirror
- Sucrose + Tollen's reagent → No silver mirror

Glucose and starch

- Glucose + Fehling's solution → Red ppt.
- Starch + Fehling's solution → No red ppt.

OR

- Glucose + I_2 solution \rightarrow No blue colour
- Starch + I₂ solution → Blue colour

