RA	CE # 22		REDOX	CHEMISTRY		
Red	ox titration					
1.	The amount of KMnO ₄ required to prepare 100 mL of a 0.1 N solution in an acidic medium is					
	(A) 3.16 g	(B) 1.58 g	(C) 0.316 g	(D) 31.6 g		
2.	0.185 g of an iron wire containing 99.8% iron is dissolved in an acid to form ferrous ions. The solution requires					
	29.3 mL of $K_2Cr_2O_7$ solution for complete reaction. The normality of the $K_2Cr_2O_7$ solution is					
	(A) 0.05	(B) 0.02	(C) 0.22	(D) 0.11		
3.	25 mL of a solution of KMnO ₄ containing $3.16 g$ potassium permanganate per litre of the solution oxidizes $20 mL$ of a solution of FeSO ₄ . in acidic medium. Calculate the weight of the crystalline FeSO ₄ in $500 mL$ of the solution.					
	(A) 9.5 g	(B) 7.5 g	(C) 17.5 g	(D) 1.7 g		
4.	needed 35.0 mL of	an N/10 Na ₂ CO ₃ solution for	or complete neutralization.	o one litre. 25.0 mL of this dilute solution The percentage purity of H_2SO_4 is		
	(A) 95.28%	(B) 98.48%	(C) 87.78%	(D) 90.76%		
5.	As_2O_3 is oxidised to H_3AsO_4 by $KMnO_4$ in acidic medium. Volume of $0.02M$ $KMnO_4$ required for this purpose by $1mmol$ of As_2O_3 will be					
	(A) 10 mL	(B) 20 mL	(C) 40 mL	(D) 80 mL		
6.	25 ml of a solution of Fe ²⁺ ions was titrated with a solution of the oxidizing agent $Cr_2O_7^{2-}$. 32.0 ml of 0.025M $K_2Cr_2O_7$ solution was required. What is the molarity of the Fe ²⁺ solution.					
	(A) 0.189M	(B) 0.92M	(C) 0.192M	(D) 0.190M		
7.	When ferrous oxalate is titrated against $K_2Cr_2O_7$, meq of Fe^{2+} , $C_2O_4^{\ 2-}$ and $Cr_2O_7^{\ 2-}$ in this redox reaction are x, y and z respectively. Then					
	(A) x = y	(B) x + y = z	(C) x + 2y = z	(D) $2x + 6y = 6z$		
8.	What mass of MnO ₂ is reduced by 35 ml of 0.16 N oxalic acid in acid solution? The skeleton reaction is					
	$MnO_2 + H^+ + H_2C_2O_4 \rightarrow CO_2 + H_2O + Mn^{2+}$					
	(A) 8.7 g	(B) 0.24 g	(C) 0.84 g	(D) 43.5 g		
9.	How many grams of I_2 are present in a solution which requires 40 ml of 0.11 N Na ₂ S ₂ O ₃ to react with it? $S_2O_3^{2-} + I_2 \rightarrow S_4O_6^{2-} + 2I^-$					
	(A) 12.7 g	(B) 0.558 g	(C) 25.4 g	(D) 11.4 g		
10.	What volume of 2N K ₂ Cr ₂ O ₇ solution is required to oxidise 0.81 g of H ₂ S in acid medium?					
	$\operatorname{Cr_2O_7^{2-}} + \operatorname{H_2S} \to \operatorname{Cr^{+3}} + \operatorname{S}$					
	(A) 47.8 ml	(B) 23.8 ml	(C) 40 ml	(D) 72 ml		
11.	What volume of 0.	1 N oxalic acid solution can	be oxidized by 250 gram o	f an 8 percent KMnO ₄ solution?		
	(A) 6.3 L	(B) 12.6 L	(C) 25.2 L	(D) 0.63 L		
12.	How many gram of medium?	KMnO ₄ are contained in 4 li	tres of 0.05 N solution. The	KMnO ₄ is to be used as an oxidant in acid		
	(A) 1.58 g	(B) 15.8 g	(C) 6.32 g	(D) 31.6 g		
13.	The eq. wt. of Fe ₂ (S	SO_4) ₃ , the salt to be used as	an oxidant in an acid soluti	on is		
	(A) (mol. wt)/1	(B) (mol. wt./2)	(C) (mol. wt.)/3	(D) (mol.wt.)/5		

14.	In basic medium CrO ₄ ² react with 40 ml of 0.3		$Cr(OH)_4^- \& SO_4^{2-}$. How	many ml of 0.25 M Na ₂ CrO ₄ are required to		
	(A) 16 ml	(B) 32 ml	(C) 128 ml	(D) 42 ml		
15.	What is the molarity of (A) 0.5 M	H ₂ O ₂ solution whose 100 (B) 1 M	ml produce the 0.5 mole (C) 2.5 M	e of I_2 when reacted with excess KI solution (D) 5 M		
16.	16 . 2 mole, equimolar mixture of $Na_2C_2O_4$ and $H_2C_2O_4$ required V_1L of 0.1 M KMnO ₄ in acidic medium oxidation. The same amount of the mixture required V_2L of 0.2 M NaOH for neutralization. The ratio of					
	(A) 1:2	(B) 2:1	(C) 4:5	(D) 5:4		
17.	The number of mole of oxalate ions oxidised by one mole of MnO ₄ ⁻ is :					
	(A) 1/5	(B) 2/5	(C) 5/2	(D) 5		
18.	10 mole of ferric oxalate is oxidised by x mole of MnO ₄ in acidic medium. The value of 'x' is-					
	(A) 12	(B) 4	(C) 40	(D) 18		
19.	A solution containing 2.10 gm of $Fe(NH_4)_2(SO_4)_2$ $6H_2O(M = 392g \text{ mol}^{-1})$ was titrated with acidic 23 mL of $Na_2Cr_2O_3$ solution. What is molarity of $Na_2Cr_2O_7$ -					
	(A) 0.0215 M	(B) 0.0388 M	(C) 0.0644 M	(D) 0.0744 M		
20.	Consider the redox reactions in column-I and molar ratios of oxidizing to reducing agents in column-II respectively. Match the items in the column appropriately.					
	Column-I		G 1 TT			
	Column-I		Column-II			
		$MnO_2 + CO_2$	(P) 2 : 1			
	Column-I (A) MnO ₄ ⁻ + C ₂ O ₄ ²⁻ \rightarrow (B) ClO ⁻ + Fe(OH) ₃ \rightarrow	= = =				
	(A) $MnO_4^- + C_2O_4^{2-} \rightarrow$ (B) $ClO^- + Fe(OH)_3 \rightarrow$	Cl ⁻ + FeO ₄ ²⁻	(P) 2:1			
	(A) $MnO_4^- + C_2O_4^{2-} \rightarrow$	$Cl^- + FeO_4^{2-}$ $\Rightarrow CrO_4^{2-} + HO^-$	(P) 2 : 1 (Q) 3 : 1			
Volu	(A) $MnO_4^- + C_2O_4^{2-} \rightarrow$ (B) $ClO^- + Fe(OH)_3 \rightarrow$ (C) $HO_2^- + Cr(OH)_3^- \rightarrow$	$Cl^- + FeO_4^{2-}$ $\Rightarrow CrO_4^{2-} + HO^-$	(P) 2:1 (Q) 3:1 (R) 2:3			
Volu 21.	(A) $MnO_4^- + C_2O_4^{2-} \rightarrow$ (B) $ClO^- + Fe(OH)_3 \rightarrow$ (C) $HO_2^- + Cr(OH)_3^- \rightarrow$ (D) $N_2H_4 + Cu(OH)_2 \rightarrow$ time strength of H_2O_2	$Cl^- + FeO_4^{2-}$ $\Rightarrow CrO_4^{2-} + HO^-$	(P) 2:1 (Q) 3:1 (R) 2:3			
	(A) $MnO_4^- + C_2O_4^{2-} \rightarrow$ (B) $ClO^- + Fe(OH)_3 \rightarrow$ (C) $HO_2^- + Cr(OH)_3^- \rightarrow$ (D) $N_2H_4 + Cu(OH)_2 \rightarrow$ time strength of H_2O_2	$Cl^{-} + FeO_4^{2-}$ $\Rightarrow CrO_4^{2-} + HO^{-}$ $\Rightarrow N_2O + Cu$	(P) 2:1 (Q) 3:1 (R) 2:3	(D) 8.0		
	(A) $MnO_4^- + C_2O_4^{2-} \rightarrow$ (B) $ClO^- + Fe(OH)_3 \rightarrow$ (C) $HO_2^- + Cr(OH)_3^- \rightarrow$ (D) $N_2H_4 + Cu(OH)_2 \rightarrow$ (me strength of H_2O_2 What is the volume strength of H_2O_3	$Cl^{-} + FeO_{4}^{2-}$ $CrO_{4}^{2-} + HO^{-}$ $N_{2}O + Cu$ ength of 1.5 N H ₂ O ₂ (aq.) (B) 8.4	(P) 2:1 (Q) 3:1 (R) 2:3 (S) 3:2	(D) 8.0		
21.	(A) $MnO_4^- + C_2O_4^{2-} \rightarrow$ (B) $ClO^- + Fe(OH)_3 \rightarrow$ (C) $HO_2^- + Cr(OH)_3^- \rightarrow$ (D) $N_2H_4 + Cu(OH)_2 \rightarrow$ sime strength of H ₂ O ₂ What is the volume street (A) 4.8 A 10-volume H ₂ O ₂ solution	Cl ⁻ + FeO ₄ ²⁻ $\Rightarrow \text{CrO}_4^{2-} + \text{HO}^-$ $\Rightarrow \text{N}_2\text{O} + \text{Cu}$ ength of 1.5 N H ₂ O ₂ (aq.) (B) 8.4 ution is equal to	(P) 2:1 (Q) 3:1 (R) 2:3 (S) 3:2	(D) 8.0 (D) all of these		
21.	(A) $MnO_4^- + C_2O_4^{2-} \rightarrow$ (B) $ClO^- + Fe(OH)_3 \rightarrow$ (C) $HO_2^- + Cr(OH)_3^- \rightarrow$ (D) $N_2H_4 + Cu(OH)_2 \rightarrow$ nme strength of H_2O_2 What is the volume stre (A) 4.8 A 10-volume H_2O_2 solution (A) 3% (w/w) H_2O_2	$Cl^{-} + FeO_{4}^{2-}$ $CrO_{4}^{2-} + HO^{-}$ $N_{2}O + Cu$ ength of 1.5 N $H_{2}O_{2}$ (aq.) (B) 8.4 attion is equal to (B) 30 g/L $H_{2}O_{2}$	(P) 2:1 (Q) 3:1 (R) 2:3 (S) 3:2 (C) 3.0	. ,		

11. (A) 12. (C) 13. (B) 14. (C) 15. (D) 16. (C) 17. (C) 18. (A) 19. (B)

20. A–R, B–S, C–P, D–Q **21.** (B) **22.** (B) **23.** (D)