1.	LAW OF MASS ACTION In a chemical equilibrium, the rate constant for the backward reaction is 7.5×10^{-4} and the equilibrium constant is 1.5. The rate constant for the forward reaction is:- (1) 2×10^{-3} (2) 5×10^{-4}	7.	Which Oxide of Nitrogen is most stable :- (1) $2NO_{2(g)} \implies N_{2(g)} + 2O_{2(g)}$ $K = 6.7 \times 10^{16} \text{ mol } L^{-1}$ (2) $2 NO_{(g)} \implies N_{2(g)} + O_{2(g)}$ $K = 2.2 \times 10^{30}$	
2.	(3) 1.12×10^{-3} (4) 9.0×10^{-4} In this reaction Ag ⁺ + 2NH ₃ \implies Ag(NH ₃) ₂ ⁺ at 298K molar concentration of Ag ⁺ , Ag(NH ₃) ₂ ⁺ and NH ₃ is 10^{-1} , 10^{-1} , and 10^{3} . The value of K _c at 298K for this equilibrium :- (1) 10^{-6} (2) 10^{6}		(3) $2 N_2O_5 (g) \implies 2N_{2(g)} + 5O_{2(g)}$ $K = 1.2 \times 10^{34} \text{ mol}^5 \text{ L}^{-5}$ (4) $2N_2O_{(g)} \implies 2N_{2(g)} + O_{2(g)}$ $K = 3.5 \times 10^{33} \text{ mol} \text{ L}^{-1}$	
3.	(3) 2×10^{-3} (4) 2×10^{6} At 1000 K, the value of K _p for the reaction : A(g) + 2B(g) \implies 3C(g) + D(g) is 0.05 atm. The value of K _c in terms of R would be :- (1) 20000 R (2) 0.02 R	δ.	 For a reaction N₂ + 3H₂ = 2NH₃, the value of K_c does not depends upon :- (a) Initial concentration of the reactants (b) Pressure (c) Temperature (d) Catalyst 	
4.	(3) $5 \times 10^{-5} \text{ R}$ (4) $5 \times 10^{-5} \times \text{R}^{-1}$ For the reaction $\text{CuSO}_4.5\text{H}_2\text{O}_{(s)} \iff \text{CuSO}_4.3\text{H}_2\text{O}_{(s)} + 2\text{H}_2\text{O}_{(g)}$ Which one is correct representation :- (1) $\text{K}_p = p_{\text{H}_2\text{O}}^2$ (2) $\text{K}_c = [\text{H}_2\text{O}]^2$ (3) $\text{K}_p = \text{K}_c(\text{RT})^2$ (4) All	9 .	(1) Only c (2) a, b, c (3) a, b, d (4) a, b, c, d Effect of increasing temperature on equilibrium constant is given by $\log K_2 - \log K_1 = \frac{-\Delta H}{2.303R}$ $\begin{bmatrix} 1 & 1 \end{bmatrix}$	
5.	$\log \frac{K_p}{K_c} + \log RT = 0 \text{ is true relationship for the}$ following reaction:- (1) PCl ₅ \iff PCl ₃ + Cl ₂ (2) 2SO ₂ + O ₂ \implies 2SO ₃		$\left[\frac{T_2}{T_2} - \frac{T_1}{T_1}\right]$. Then for an endothermic reaction the false statement is:- (1) $\left[\frac{1}{T_2} - \frac{1}{T_1}\right]$ = positive (2) log K ₂ > log K ₁ (3) ΔH = positive (4) K ₂ > K ₁	
6.	(3) $N_2 + 3H_2 \implies 2NH_3$ (4) (2) and (3) both Consider the two gaseous equilibrium involving SO_2 and the corresponding equilibrium constants at 299 K $SO_2(q) + \frac{1}{2}O_2(q) \implies SO_2(q)$; K,	10.	In system A(s) \implies 2B(g) + 3C(g) at equilibrium if concentration of 'C' is doubled then concentration of B at equilibrium. (1) Double its original concentration (2) Half its original concentration (3) $2\sqrt{2}$ its original concentration	
	$4SO_{3} (g) \implies 4 SO_{2} (g) + 2O_{2} (g) ; K_{2}$ The value of the equilibrium constant are related by :- $(1) K_{2} = \frac{1}{(K_{1})^{4}} \qquad (2) K_{2} = K_{1}^{4}$ $(3) K_{2} = \left(\frac{1}{K_{1}}\right)^{\frac{1}{4}} \qquad (4) K_{2} = \frac{1}{K_{1}}$	11.	(4) $\frac{1}{2\sqrt{2}}$ its original concentration The equilibrium constant (K _p) for the reaction PCl ₅ (g) \implies PCl ₃ (g) + Cl ₂ (g) is 16. If the volume of the container is reduced to one-half its original volume, the value of K _p for the reaction at the same temperature will be :- (1) 32 (2) 64 (3) 16 (4) 4	

12. The equilbrium constant for the reaction :

 $N_2(g) + O_2(g) \implies 2NO(g)$ at 2000 K is 4×10^4 . In presence of catalyst the equilibrium is established ten times faster at the same temperature. What is the value of equilibrium constant in presence of catalyst :-

(1) 40×10^{-4} (2) 4×10^{-4}

(3) 4×10^4 (4) None

DEGREE OF DISSOCIATION AND APPLICATION OF LAW OF MASS ACTION

13. For the reaction : P → Q + R. Initially 2 mol of P was taken. Up to equilibrium 0.5 mol of P was dissociated. What would be the degree of dissociation :-

(1) 0.5 (2) 1 (3) 0.25 (4) 4.2

14. The dissociation of CO_2 can be expressed as

 $2CO_2 \implies 2CO + O_2$. If the 2 mol of CO_2 is taken initially and 40% of the CO_2 is dissociated completely. What is the total number of moles at equilibrium:-

- (1) 2.4 (2) 2.0 (3) 1.2 (4) 5
- 15. In a 13 L vessel initially following reaction occur C(s) + S₂(g) ⇒ CS₂ (g) by 12 g C, 64 g S₂, 76 g CS₂ at 1027°C temperature then total pressure is.

(1) 200R (2) 158R (3) 100R (4) 79R

16. The reaction A + B → C + D is studied in a one litre Vessel at 250°C. The initial concentration of A was 3n and of B was n. After equilibrium was attained then equilibrium concentration of C was found to be equal to equilibrium concentration of B. What is the concentration of D at equilibrium :-

(1)
$$\frac{n}{2}$$
 (2) $\left(3n - \frac{n}{2}\right)$
(3) $\left(n + \frac{n}{2}\right)$ (4) n

17. In the reaction PCl₅ → PCl₃ + Cl₂ the partial pressure of PCl₃, Cl₂ and PCl₅ are 0.3, 0.2 and 0.6 atm respectively at equilibrium. If partial pressure of PCl₃ and Cl₂ was increased twice, what will be the partial pressure of PCl₅ is in atm at new equilibrium condition :-

(1) 0.3 (2) 1.2 (3) 2.4 (4) 0.15

18. In a 0.25 L tube dissociation of 4 mol of NO is take place. If its degree of dissociation is 10%. The value of K_p for reaction $2 \text{ NO} \implies N_2 + O_2$ is :-

(1)
$$\frac{1}{(18)^2}$$
 (2) $\frac{1}{(8)^2}$
(3) $\frac{1}{16}$ (4) $\frac{1}{32}$

19. K_c for the esterification reaction : $CH_3COOH + C_2H_5OH \Longrightarrow CH_3COOC_2H_5 + H_2O$ is 4. If 4 mol each of acid and alcohol are taken initially, what is the equilibrium concentration of the acid in 1 litre container :-

(1)
$$\frac{2}{3}$$
 (2) $\frac{4}{3}$ (3) $\frac{3}{4}$ (4) $\frac{3}{2}$

20. 4 moles of A are mixed with 4 moles of B, when 2 mol of C are formed at equilibrium, according to the reaction, A + B ⇒ C + D. The equilibrium constant is :-

(1) 4 (2) 1 (3)
$$\sqrt{2}$$
 (4) $\sqrt{4}$

21. 1.50 mol each of hydrogen and iodine were placed in a sealed 10 L container maintained at 717 K. At equilibrium 1.25 mol each of hydrogen and iodine were left behind. The equilibrium constant, K_c for the reaction

$$H_2(g) + I_2(g) \implies 2HI(g) \text{ at } 717 \text{ K is}$$

(1) 0.4 (2) 0.16 (3) 25 (4) 50

- **22.** When $NaNO_3$ is heated in a closed vessel, O_2 is liberated and $NaNO_2$ is left behind. At equilibrium
 - (1) Addition of NaNO₃ favours forward reaction
 - (2) Addition of NaNO₂ favours reverse reaction
 - (3) Increasing pressure favours reverse reaction.
 - (4) Decreasing temperature favours forward reaction.
- **23.** In which of the following equilibrium reactions, the equilibrium would shift to right side, if total pressure is decreased :-

(1)
$$N_2 + 3H_2 \rightleftharpoons 2NH_3$$

(2) $H_2 + I_2 \rightleftharpoons 2HI$
(3) $N_2O_4 \rightleftharpoons 2NO_2$
(4) $H_2 + CI_2 \rightleftharpoons 2HCI$

- 24. For the manufacture of ammonia by the reaction N₂ + 3H₂ ⇒ 2NH₃ + 21.9 k Cal, the favourable conditions are :(1) Low temperature, low pressure & catalyst
 - (2) Low temperature, high pressure & catalyst
 - (3) High temperature, low pressure & catalyst
 - (4) High temperature, high pressure & catalyst
- **25**. In the reaction $2A_{(g)} + B_{(g)} \rightleftharpoons C_{(g)} + 362$ kCal. Which combination of pressure and temperature gives the highest yield of C at equilibrium:-
 - (1) 1000 atm and 500°C
 - (2) 500 atm and 500°C
 - (3) 1000 atm and 50°C
 - (4) 500 atm and 100°C
- **26.** The reaction in which yield of production cannot be increased by the application of high pressure is :-
 - (1) $PCl_3(g) + Cl_2(g) \implies PCl_5(g)$
 - (2) $N_2(g) + O_2(g) \implies 2NO(g)$
 - (3) $N_2(g) + 3H_2(g) \implies 2NH_3(g)$
 - (4) $2SO_2(g) + O_2(g) \implies 2SO_3(g)$
- 27. In a vessel containing SO₃, SO₂ and O₂ at equilibrium, some helium gas is introduced so that the total pressure increases while temperature and volume remain constant. According to Le-Chatelier principle, the dissociation of SO₃,
 - (1) Increases (2) Decreases
 - (3) Remains unaltered (4) None of these

PHYSICAL EQUILIBRIUM

- **28**. For the equilibrium reaction, $H_2O(\ell) \Longrightarrow H_2O_{(g)}$, What happens, if pressure is applied:-
 - (1) More water evaporates
 - (2) The boiling point of water is increased
 - (3) No effect on boiling point
 - (4) None of the above
- - (1) There is no effect on the equilibrium state
 - (2) More gas is formed
 - (3) More gas is solidifies
 - (4) None of above

CALCULATION OF DEGREE OF DISSOCIATION BY V.D. METHOD

- **30.** Vapour density of PCl_5 is 104.25 at t°C. Then degree of dissociation of PCl_5 is. (Mw = 208.5) (1) 20% (2) 0%
 - (3) 30% (4) 15%
- When heating PCl₅ then it decompose PCl₃ and Cl₂ in form of gas, The vapour density of gas mixture is 70.2 and 57.9 at 200° C and 250°C. The degree of dissociation of PCl₅ at 200°C and 250°C is

(1) 48.50% & 80%	(2) 60% & 70%
(3) 70% & 80%	(4) 80% & 90%

32. The equation $\alpha = \frac{D-d}{(n-1)d}$ is correctly matched

for

Where D = Theoretical vapour density

d = Observed vapour density

(1)
$$A \xrightarrow{nB} \frac{nB}{2} + \frac{nC}{3}$$

(2) $A \xrightarrow{nB} \frac{nB}{3} + \left(\frac{2n}{3}\right)C$
(3) $A \xrightarrow{nB} \frac{n}{2}B + \left(\frac{n}{4}\right)C$
(4) $A \xrightarrow{n} \left(\frac{n}{2}\right)B + C$

SOLUTION

CHEMICAL EQUILIBRIUM

 $K_{\rm C} = \frac{k_{\rm f}}{k_{\rm c}} \implies k_{\rm f} = k_{\rm c}. \ k_{\rm b}$ 1. = $1.5 \times 7.5 \times 10^{-4}$ $= 1.12 \times 10^{-3}$ $Ag^+ + 2NH_3 \rightleftharpoons Ag(NH_3)_2^+$ 2. At $eq^{m} 10^{-1}M = 10^{3}M = 10^{-1}M$ $K_{\rm C} = \frac{10^{-1}}{(10^{-1})(10^3)^2} = 10^{-6}$ $K_p = K_c (RT)^{\Delta ng}$ 3. $\Delta ng = (3 + 1) - (1 + 2) = 1$ So $K_{C} = \frac{K_{p}}{PT}$ $K_{\rm C} = \frac{.05}{R \times 1000} = 5 \times 10^{-5} R^{-1}$ $CuSO_4.5H_2O(s) \rightleftharpoons CuSO_4.3H_2O(s) + 2H_2O(g)$ 4. $k_{p} = P_{H_{2}O}^{2}$ $k_{c} = [H_{2}O]^{2}$ $k_{p} = k_{c} (RT)^{2}$ ($\Delta ng = 2$) $\log\left(\frac{k_{p}}{k_{c}}\right) + \log(RT) = 0$ 5. $= \log 1$ $\log\left(\frac{k_p}{k} \times RT\right) = \log 1$ $\frac{k_p}{k_c}$.(RT) = 1 $k_{p} = k_{c} (RT)^{-1}$ $\Delta nq = -1$ $2SO_2 + O_2 \rightleftharpoons 2SO_3$; $\Delta ng = -1$ equation (1) = $\frac{-eq^{n}(ii)}{4}$ 6. $k_1 = \frac{1}{k_2^{1/4}} \implies k_1^4 = \frac{1}{k_2}$ $k_2 = \frac{1}{k^4}$ 7. Low value of k means extent of reactant is low means reactant is stable. So NO₂ is stalbe among others $N_2 + 3H_2 \rightleftharpoons 2NH_3$ 8.

k depends upon temp.

It does not depends upon pressure, initial concentration, catalyst.

 $\log k_2 - \log k_1 = \frac{-\Delta H}{2.303 R} \cdot \left(\frac{1}{T} - \frac{1}{T}\right)$ 9. or $\log\left(\frac{k_2}{k_1}\right) = \frac{-\Delta H}{2.303R}\left(\frac{1}{T_2} - \frac{1}{T_1}\right)$ on increasing temperature means $T_{2} > T_{1}$ So $\left(\frac{1}{T_{c}}-\frac{1}{T_{c}}\right) < 0$ Endothermic Reaction $\Delta H > 0$ $k_2 > k_1$ $logk_2 > logk_1$ **10.** $A(s) \rightleftharpoons 2B(g) + 3C(g)$ $k_c = [B]^2 [C]^3 = [B_{New}]^2 [2C]^3$ $[B_{new}] = \frac{[B]}{2\sqrt{2}}$ $k_{_{\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!}}$ does not depends upon change in volume 11. of container **12.** k_p or k_c does not depends upon catalyst $\alpha = \frac{n_{\text{dissociated}}}{n_{\text{initial}}} = \frac{0.5}{2} = .75$ 13. = 75% **14.** $2CO_2 \rightleftharpoons 2CO + O_2$ 2mole $2(1-\alpha) 2\alpha$ α $n_{T} = 2(1 - \alpha) + 2\alpha + \alpha$ $= 2 + \alpha = 2.4$ $(\alpha = 40\%)$ 15. $C(s) + S_{2}(g)$ \rightleftharpoons $CS_{2}(g)$ 64gm 12gm 76gm 1mole 1mole 1mole (solid) PV = n RT $P \times 13$ Lit = $2 \times R \times 1300$ P = 200 R**16.** A B ⇒ C + D + 3n n 3n-x n–x х given [C] = (B) \Rightarrow x = n - x \Rightarrow x = $\frac{n}{2}$ $[D]_{eq} = \frac{n}{2}$ **17.** $k_p = \frac{P_{PCl_3} \cdot P_{Cl_2}}{P_{PCl_2}} = \frac{P'_{PCl_3} \cdot P'_{Cl_2}}{P'_{PCl_2}}$ $\Rightarrow \frac{0.3 \times 0.2}{0.6} = \frac{0.6 \times 0.4}{P'_{PCL}}$ $P'_{PCl_{5}} = 2.4$

- **18.** 2NO \rightleftharpoons N₂ + O₂ 4mole $\frac{4\alpha}{2}$ $\frac{4\alpha}{2}$ $4(1-\alpha)$ $(\alpha = 10\% = 0.1)$ 3.6 .2 moles $k_{p} = k_{c} (\Delta n_{a} = 0)$ $=\frac{\left(\frac{.2}{V}\right)\left(\frac{.2}{V}\right)}{\left(\frac{3.6}{V}\right)^2} = \frac{1}{(18)^2}$ **19.** $CH_3COOH + C_2H_5OH \rightleftharpoons CH_3COOC_2H_5 + H_2O$ 4mole 4mole 4-x 4-x Х $k_c = 4 = \frac{x \cdot x}{(4 - x)(4 - x)}$ $2 = \frac{x}{4-x}$ 8-2x = xx = 8/3 $[CH_{3}COOH] = 4 - \frac{8}{2}$ $=\frac{4}{3}$ M in 1 lit continer [CH₃COOH] 20. B С + D Α \rightleftharpoons 4mole mole 4-x 4-x x х given n(C) = $2 \Rightarrow x = 2$ $k_{c} = \frac{\left(\frac{x}{v}\right)\left(\frac{x}{v}\right)}{\left(\frac{4-x}{v}\right)\left(\frac{4-x}{v}\right)} = \left(\frac{x}{4-x}\right)$ $=\left(\frac{2}{4-2}\right)^2 = 1$ 2HI(g)**21.** H₂(g) $I_2(g)$ 1.5 mole 1.5 mole1.5-x 1.5-x 2x given 1.5 - x = 1.25x = 0.25 $k_{c} = \frac{(2x/v)^{2}}{\left(\frac{1.5-x}{1.5-x}\right)\left(\frac{1.5-x}{1.5-x}\right)}$ $=\left(\frac{2x}{1.5-x}\right)^2$ $=\left(\frac{0.25\times2}{1.25}\right)^2 = \frac{4}{25} = 0.16$
- **22.** NaNO₃(s) \rightleftharpoons NaNO₂(s) + O₂(g) Addition of solid does not effect on equilibrium state $P \uparrow$ reaction move BD On decreasing pressure Reaction move right side 23. menas F.D. if $\Delta nq > 0$ **24.** $N_2(g) + 3H_2(g) \rightleftharpoons 2NH_3 + 21.9$ kcal manufacturing of NH₃ favoure High pressure ($\Delta ng < 0$) low temperature ($\Delta H < 0$) and suitable catalyst 25. $2A(g) + B(g) \rightleftharpoons C(g) + 362$ kcal High yeild of C(g) means reaction favoured in F.D if T low $(\Delta H < 0)$ P High($\Delta ng < 0$) **26**. yield of product can not be increased by apply pressure if $\Delta ng > 0$ or $\Delta ng = 0$ **27.** $SO_3 \rightleftharpoons SO_2 + \frac{1}{2}O_2$ Addition of He inert gas of constant volume Reⁿ neither goes to F.D. nor B.D. So α_{SO_2} remain same **28.** $H_2O(\ell) \rightleftharpoons H_2O(g)$ $P \uparrow$; $\Delta ng > 0$; Re^n goes B.D. Boiling point increases. **29.** $CO_2(s) \rightleftharpoons CO_2(g)$ On cooling reaction goes B.D $(\Delta H > 0)$ So CO2(g) solidifies. **30.** $PCl_5 \rightleftharpoons PCl_3 + Cl_2$ $\frac{D}{d} = 1 + (n-1)\alpha$ $\frac{M_0/2}{d} = 1 + (2 - 1)\alpha$ $\frac{208.5/2}{104.25} = 1 + \alpha$ $\alpha = 0$ **31.** $PCl_5 \rightleftharpoons PCl_3 + Cl_2$ $\frac{D}{d} = 1 + (n-1)\alpha$ $\frac{208.5/2}{70.2} = 1 + \alpha \qquad (At \ 200^{\circ}C)$ $\alpha_{200} = 0.485 = 48.5\%$ $\frac{208.5/2}{57.9} = 1 + \alpha_{250}$ $\alpha_{250} = 0.80 = 80\%$ **32.** $\alpha = \frac{D-d}{(n-1)d}$ n : sum of stoichiometric coefficient of product