Chapter 13

Conic Sections-II

Solutions

SECTION - A

Objective Type Questions (One options is correct)

(1)
$$\frac{3}{4}$$

(2)
$$\frac{1}{2}$$

(3)
$$\frac{3}{2}$$

Sol. Answer (1)

Equation of normal to the curve $y^2 = x$

$$y = mx - 2am - am^3$$

Put
$$a = \frac{1}{4}$$

$$y = mx - \frac{1}{2}m - \frac{1}{4}m^3$$
 but these normals passes through $(c, 0)$

$$\Rightarrow 0 = mc - \frac{1}{2}m - \frac{1}{4}m^3$$

$$m\left(\frac{m^2}{4}+\frac{1}{2}-c\right)=0$$

$$m = 0$$
 and $\frac{m^2}{4} + \frac{1}{2} - c = 0$

$$m = 0$$
 $m^2 + 2 - 4c = 0$

∴ Normal is *x*-axis

Remaining normals are perpendicular

$$\therefore m_1 m_2 = -1$$

$$2 - 4c = 1$$

$$4c = 3$$

$$c=\frac{3}{4}$$

- If the line $\frac{x}{a} + \frac{y}{b} = \sqrt{2}$ touches the ellipse $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$ at P, then eccentric angle of the point is equal to
 - (1) 0

(2)

(3)45° 60°

Sol. Answer (3)

Let point of contact be $P(a\cos\alpha, b\sin\alpha)$

:. Equation of tangent

$$\frac{x\cos\alpha}{a} + \frac{y\sin\alpha}{b} = 1$$

$$\frac{x}{a\sqrt{2}} + \frac{y}{b\sqrt{2}} = 1$$

These lines are coincident lines

$$\therefore \frac{\cos \alpha}{\frac{1}{\sqrt{2}}} = \frac{\sin \alpha}{\frac{1}{\sqrt{2}}} = 1$$

$$\cos \alpha = \frac{1}{\sqrt{2}}$$
 and $\sin \alpha = \frac{1}{\sqrt{2}}$

- $\alpha = 45^{\circ}$
- The tangent at any point on the ellipse $16x^2 + 25y^2 = 400$ meets the tangents at the ends of the major axis at T_1 and T_2 . The circle on T_1T_2 as diameter passes through
 - (1) (3, 0)
- (2) (0,0)

(4, 0)

Sol. Answer (1)

Given
$$16x^2 + 25y^2 = 400 \Rightarrow \frac{x^2}{25} + \frac{y^2}{16} = 1$$

Any tangent to the ellipse is

$$\frac{x\cos\theta}{5} + \frac{y\sin\theta}{4} = 1$$

$$T_1:\left(5,4\tan\frac{\theta}{2}\right)$$

$$T_2: \left(-5, 4\cot\frac{\theta}{2}\right)$$

Equation of a circle is

$$(x-5)(x+5) + \left(y-4\tan{\frac{\theta}{2}}\right)\left(y-4\cot{\frac{\theta}{2}}\right) = 0$$

$$\Rightarrow x^2 + y^2 - 8y \csc\theta - 9 = 0$$

which passes through (3, 0)

- If CD is a diameter of an ellipse $x^2 + 9y^2 = 25$ and the eccentric angle of C is $\frac{\pi}{6}$, then the eccentric angle of D is

Sol. Answer (2)

Clearly eccentric angle of $D = \frac{7\pi}{6} - 2\pi$

$$=-\frac{5\pi}{6}$$

- If θ_1 , θ_2 , θ_3 , θ_4 be eccentric angles of the four concyclic points of the ellipse $\frac{x^2}{a^2} + \frac{y^2}{h^2} = 1$, then $\theta_1 + \theta_2 + \theta_3 + \theta_4$ is (where $n \in I$)
 - (1) $(2n+1)\frac{\pi}{2}$
- (2) $(2n + 1)\pi$

Sol. Answer (3)

The equation of chords of the ellipse are

$$\frac{x}{a}\cos\left(\frac{\theta_1+\theta_2}{2}\right) + \frac{y}{b}\sin\left(\frac{\theta_1+\theta_2}{2}\right) = 1$$

The equation of chords of the ellipse are
$$\frac{x}{a}\cos\left(\frac{\theta_1+\theta_2}{2}\right) + \frac{y}{b}\sin\left(\frac{\theta_1+\theta_2}{2}\right) = 1$$
And
$$\frac{x}{a}\cos\left(\frac{\theta_2+\theta_3}{2}\right) + \frac{y}{b}\sin\left(\frac{\theta_3+\theta_4}{2}\right) = 1$$
If θ_1 , θ_2 , θ_3 , θ_4 are concyclic points, then these lines will
$$\frac{1}{4}\cos\left(\frac{\theta_1+\theta_2}{2}\right) = \frac{1}{4}\cos\left(\frac{\theta_3+\theta_4}{2}\right)$$

If θ_1 , θ_2 , θ_3 , θ_4 are concyclic points, then these lines will make equal angle with the axes

$$\therefore \quad tan\left(\frac{\theta_1 + \theta_2}{2}\right) = -tan\left(\frac{\theta_3 + \theta_4}{2}\right)$$

$$\Rightarrow \frac{\theta_1 + \theta_2}{2} + \frac{\theta_3 + \theta_4}{2} = n\pi$$

$$\Rightarrow \ \theta_1 + \theta_2 + \theta_3 + \theta_4 = 2n\pi, \ n \in I$$

- Let the eccentric angles of three point A, B and C on the ellipse $\frac{x^2}{a^2} + \frac{y^2}{h^2} = 1$ are θ_1 , $\frac{\pi}{2} + \theta_1$, $\pi + \theta_1$. 6. A circle through A, B and C cuts the ellipse again at D. Then the eccentric angle of D is
 - (1) $\pi 3\theta_1$
- $\frac{3\pi}{2}$ $3\theta_1$
- (3) $\frac{\pi}{2}$ 3 θ_1
- (4) $3\theta_1 \frac{\pi}{2}$

Sol. Answer (3)

Let the eccentric angle of D be θ_2 .

Then
$$\theta_1 + \frac{\pi}{2} + \theta_1 + \pi + \theta_1 + \theta_2 = 2\pi$$

$$\Rightarrow \frac{3\pi}{2} + 3\theta_1 + \theta_2 = 2\pi$$

$$\Rightarrow \theta_2 = 2\pi - \frac{3\pi}{2} - 3\theta_1$$

$$\Rightarrow \theta_2 = \frac{\pi}{2} - 3\theta_1$$

The area of the region bounded by the ellipse $\frac{x^2}{16} + \frac{y^2}{9} \le 1$ and the circle $x^2 + y^2 \ge 9$ is 7.

(1) 12π

(2)Зπ (3)9π

(4) 6π

Sol. Answer (2)

Area of the shaded part

$$= \pi \times 3 \times 4 - \pi \times 3^2$$

$$= 12\pi - 9\pi$$

 $=3\pi$

Area of the region bounded by the curve $\left\{ (x,y) : \frac{x^2}{a^2} + \frac{y^2}{b^2} \le 1 \le \frac{x}{a} + \frac{y}{b} \right\}$ 8.

(1)
$$\left(\frac{\pi}{4} - \frac{1}{2}\right)ab$$

(2)
$$\left(\frac{\pi}{4} + \frac{1}{2}\right)$$
ab

(3)
$$\left(\frac{\pi}{4} - \frac{1}{3}\right)$$
 as

$$(4)$$
 $\frac{\pi}{4}ab$

Sol. Answer (1)

Area of the shaded part

=
$$\frac{1}{4}$$
th (area of the ellipse) – $ar(\triangle AOB)$

$$= \frac{\pi}{4}ab - \frac{1}{2}ab$$

$$=\left(\frac{\pi}{4}-\frac{1}{2}\right)ab$$
 sq. units

The ellipse $x^2 + 4y^2 = 4$ is inscribed in a rectangle aligned with the co-ordinate axes which is turn in inscribed 9. in another ellipse that passes through the (4, 0). Then the equation of the ellipse is

(1)
$$x^2 + 12y^2 = 16$$

$$(2) \quad 4x^2 + 48y^2 = 48$$

(2)
$$4x^2 + 48y^2 = 48$$
 (3) $4x^2 + 64y^2 = 48$

(4)
$$x^2 + 16y^2 = 16$$

Sol. Answer (1)

$$E: x^2 + 4y^2 = 4$$

$$\Rightarrow \frac{x^2}{4} + \frac{y^2}{1} = 1$$

Let the equation of the ellipse be

$$\frac{x^2}{16} + \frac{y^2}{b^2} = 1$$

Which is passing through A(2, 1), so we get

$$\frac{4}{16} + \frac{1}{b^2} = 1$$

$$\Rightarrow \frac{1}{h^2} = 1 - \frac{4}{16} = \frac{12}{16}$$

$$\Rightarrow b^2 = \frac{16}{12}$$

Required equation is $\frac{x^2}{16} + \frac{y^2}{\frac{16}{12}} = 1$

$$\Rightarrow \frac{x^2}{16} + \frac{12y^2}{16} = 1$$

$$\Rightarrow x^2 + 12y^2 = 16$$

10. If *LM* is a double ordinate of the hyperbola $\frac{x^2}{a^2} - \frac{y^2}{b^2} = 1$ such that *OLM* is an equilateral triangle, *O* being the centre of the hyperbola, then the eccentricity *e* of the hyperbola, satisfies

(1)
$$e > \frac{2}{\sqrt{3}}$$

$$(2) \qquad e = \frac{2}{\sqrt{3}}$$

(3)
$$e < \frac{2}{\sqrt{3}}$$

(4)
$$1 < e < \frac{2}{\sqrt{3}}$$

Sol. Answer (1)

$$ON^2 = l^2 - \frac{l^2}{4} = \frac{3}{4}l^2$$

$$ON = \frac{\sqrt{3}}{2}l$$

$$L\left(\frac{\sqrt{3}}{2}l,\frac{l}{2}\right)$$
 lies on the hyperbola

$$\frac{3l^2}{4a^2} - \frac{l^2}{4b^2} = 1$$

But
$$b^2 = a^2(e^2 - 1)$$

$$\Rightarrow \frac{3l^2}{4a^2} - \frac{l^2}{4a^2(e^2 - 1)} = 1$$

$$\Rightarrow \frac{l^2}{4a^2} \left[3 - \frac{1}{e^2 - 1} \right] = 1$$

$$\Rightarrow \frac{l^2}{a^2} = \frac{4(e^2 - 1)}{(3e^2 - 4)}$$

 $\triangle OLM$ is equilateral triangle.

$$\frac{l^2}{a^2} > 1$$

$$\frac{4(e^2-1)}{(3e^2-4)} > 1$$

$$\Rightarrow \frac{4(e^2-1)}{3e^2-4}-1>0$$

$$\Rightarrow \frac{e^2}{3e^2-4} > 0$$

$$3e^2 - 4 > 0$$

$$\Rightarrow$$
 e > $\frac{2}{\sqrt{3}}$

11. A normal to the parabola $y^2 = 4px$ with slope m touches the rectangular hyperbola $x^2 - y^2 = p^2$, if

(1)
$$m^6 - 4m^4 - 3m^2 + 1 = 0$$

(2)
$$m^6 + 4m^4 + 3m^2 + 1 = 0$$

(3)
$$m^6 + 4m^4 - 3m^2 + 1 = 0$$

$$(4) \quad m^6 - 4m^4 + 3m^2 - 1 = 0$$

Sol. Answer (2)

$$y^2 = 4px$$

$$y = mx - 2pm - pm^3$$

... (i)

Equation of tangent of $x^2 - y^2 = p^2$ at $(p \sec \theta, p \tan \theta)$ is $x \sec \theta - y \tan \theta = p$.

Comparing (i) and (ii), $-m = 1 = -2\pi$

... (ii)

$$\frac{-m}{\sec \theta} = \frac{1}{-\tan \theta} = \frac{-2pm - pm^3}{p} = -2m - m^3$$

$$\Rightarrow \frac{-m}{\sec \theta} = \frac{1}{-\tan \theta} = -2m - m^3$$

$$\Rightarrow \frac{m}{\sec \theta} = \frac{1}{\tan \theta} = 2m + m^3$$

$$\Rightarrow \sec \theta = \frac{m}{2m + m^3}$$

$$\Rightarrow \tan \theta = \frac{1}{2m + m^3}$$

$$1 + \tan^2\theta = \sec^2\theta$$

$$\Rightarrow 1 + \frac{1}{(2m+m^3)^2} = \frac{(m)^2}{(2m+m^3)^2}$$

$$\Rightarrow$$
 $(2m + m^3)^2 + 1 = m^2$

$$\Rightarrow m^6 + 4m^2 + 4m^4 + 1 = m^2$$

$$\Rightarrow m^6 + 4m^4 + 4m^2 - m^2 + 1 = 0$$

$$\Rightarrow m^6 + 4m^4 + 3m^2 + 1 = 0$$

- 12. The locus of a point $P(\alpha, \beta)$, such that the line $y = \alpha x + \beta$ is a tangent to $\frac{x^2}{a^2} \frac{y^2}{b^2} = 1$, is
 - (1) An ellipse
- A circle
- (3)A parabola
- (4) A hyperbola

Sol. Answer (4)

Condition of tangent

$$c^2 = a^2m^2 - b^2$$

$$b^2 = a^2 \alpha^2 - b^2$$

- \therefore Locus of $P(\alpha, \beta)$, $a^2x^2 y^2 = b^2$ is a hyperbola
- 13. Let $P(a \sec \theta, b \tan \theta)$ and $Q(a \sec \phi, b \tan \phi)$, where $\theta + \phi = \frac{\pi}{2}$, be two points on $\frac{x^2}{2^2} \frac{y^2}{k^2} = 1$. If (h, k) is the point of intersection of the normals at P and Q, then K is equal to

(1)
$$\frac{a^2+b^2}{a}$$

(2)
$$-\left(\frac{a^2+b^2}{a}\right)$$
 (3) $\frac{a^2+b^2}{b}$

$$(3) \qquad \frac{a^2 + b^2}{b}$$

$$(4) \qquad -\left(\frac{a^2+b^2}{b}\right)$$

Sol. Answer (4)

Equation of normal at $(a \sec \theta, b \tan \theta)$

$$ax \cos\theta + by \cot\theta = a^2 + b^2 \dots$$
 (i)

Equation of normal at φ,

$$ax \cos \phi + by \cot \theta = a^2 + b^2$$

$$ax \sin \phi + by \tan \phi = a^2 + b^2$$

$$\phi = \frac{\pi}{2} - \theta$$

(i)
$$\times \sin\theta$$
 (ii) $\times \cos\theta$

$$by[\cos\theta - \sin\theta] = (a^2 + b^2)[\sin\theta - \cos\theta]$$

$$\therefore y = \frac{-(a^2 + b^2)}{b}$$

$$\therefore k = \frac{-(a^2 + b^2)}{b}$$

14. An ellipse has eccentricity $\frac{1}{2}$ and one focus at the point $P\left(\frac{1}{2},1\right)$. Its one directrix is the common tangent, nearer to the point P, to $x^2 + y^2 = 1$ and the hyperbola $x^2 - y^2 = 1$. The equation of the ellipse is

(1)
$$\frac{\left(x-\frac{1}{3}\right)^2}{\frac{1}{9}} + \frac{\left(y-1\right)^2}{\frac{1}{12}} = 1$$

(2)
$$\frac{\left(x-\frac{1}{3}\right)^2}{\frac{1}{8}} + \frac{(y-1)^2}{\frac{1}{12}} = 1$$

(3)
$$\frac{\left(x-\frac{1}{3}\right)^2}{\frac{1}{9}} + \frac{\left(y-1\right)^2}{\frac{1}{8}} = 1$$

None of these

Sol. Answer (1)

The directrix of the ellipse is x = 1

Clearly the equation of common tangent is x = 1

Equation of ellipse

$$Ps = ePM$$

$$\Rightarrow Ps^2 = e^2PM^2$$

$$\Rightarrow \left(x - \frac{1}{2}\right)^{2} + \left(y - 1\right)^{2} = \frac{1}{4}(x - 1)^{2}$$

$$\Rightarrow \frac{\left(x - \frac{1}{3}\right)^2}{\frac{1}{9}} + \frac{\left(y - 1\right)^2}{\frac{1}{12}} = 1$$

15. If the polars of (x_1, y_1) and (x_2, y_2) w.r.t. the hyperbola $\frac{x^2}{a^2} - \frac{y^2}{b^2} = 1$ are at right angles, then the value of $\frac{x_1x_2}{y_1y_2}$ is

(1)
$$\frac{a^4}{b^4}$$

(2)
$$-\frac{a^4}{b^4}$$

(3)
$$\frac{b^4}{a^4}$$

$$(4) \qquad -\frac{b^4}{a^4}$$

Sol. Answer (2)

$$H: \frac{x^2}{a^2} - \frac{y^2}{b^2} = 1$$

Points : (x_1, y_1) and (x_2, y_2)

Polar at (x_1, y_1) is $\frac{xx_1}{a^2} - \frac{yy_1}{b^2} = 1$

$$\Rightarrow \frac{yy_1}{b^2} = \frac{xx_1}{a^2} - 1$$

$$\Rightarrow y = \frac{b^2 x x_1}{a^2 y_1} - \frac{b^2}{y_1}$$

$$\Rightarrow y = \left(\frac{b^2 x_1}{a^2 y_1}\right) x - \frac{b^2}{y_1}$$

$$\therefore m_1 = \frac{b^2 x_1}{a^2 y_1}$$

Similarly
$$m_2 = \frac{b^2 x_2}{b^2 y_2}$$

Given $m_1 \times m_2 = -1$

$$\Rightarrow \frac{b^2 x_1}{a^2 y_1} \times \frac{b^2 x_2}{a^2 y_2} = -1$$

$$\Rightarrow \frac{x_1 x_2}{y_1 y_2} = -\frac{a^4}{b^4}$$

- 16. If the locus of the point of intersection of two perpendicular tangents to a hyperbola $\frac{x^2}{25} \frac{y^2}{16} = 1$ is a circle with centre (0, 0), then the radius of a circle is
 - (1) 5

(2)

(3)

(4)

Sol. Answer (3)

Hyperbola :
$$\frac{x^2}{25} - \frac{y^2}{16} = 1$$

Clearly, locus of P is a director circle

$$\Rightarrow x^2 + y^2 = 25 - 16 = 9$$

$$x^2 + y^2 = (3)^2$$

Radius = 3

SECTION - B

Objective Type Questions (More than one options are correct)

- Equation $y^2 2x 2y + 5 = 0$ represents
 - (1) A pair of straight line

A circle with centre (1, 1)

(3) A parabola with vertex (2, 1)

A parabola with directrix $x = \frac{3}{2}$

Sol. Answer (3, 4)

$$y^2 - 2y = 2x - 5$$

 $(y-1)^2 = 2(x-2)$ represents a parabola with vertex (2, 1) and directrix $x-2=-\frac{1}{2}$

$$x=\frac{3}{2}$$

- The locus of the mid-point of the focal radii of a variable point moving on the parabola, $y^2 = 4ax$ is a parabola 2.
 - (1) Focus has the coordinates (a, 0)
 - (2) Directrix is x = 0
 - (3) Vertex is $\left(\frac{a}{2}, 0\right)$
 - (4) Latus rectum is half the latus rectum of the original parabola
- **Sol.** Answer (1, 2, 3, 4)

S(a, 0) is a focus

Moving point Q(x, y)

Let P(h, k) be mid-point of SQ

$$h=\frac{a+x}{2}, k=\frac{y}{2}$$

$$x = 2h - a, y = 2k$$

Q(x, y) will satisfy the $y^2 = 4ax$

$$4k^2 = 4a(2h - a)$$

$$\therefore$$
 Locus of $P(h, k)$

$$y^2 = 2a\left(x - \frac{a}{2}\right)$$

Shifting origin at $\left(\frac{a}{2},0\right)$

$$\therefore y^2 = 2ax$$

Length of latus rectum = 2a

Vertex
$$\left(\frac{a}{2},0\right)$$

Equation of directrix $x = -\frac{a}{2}$

$$\Rightarrow x - \frac{a}{2} = -\frac{a}{2}$$

$$\Rightarrow x = 0$$

Focus of parabola

Focus with respect to original axis (a, 0)

- If tangents PA and PB are drawn from P(-1, 2) to $y^2 = 4x$, then 3.
 - (1) Equation of AB is y = x 1
 - (3) Length of AB is 4

- Length of AB is 8
- Equation of AB is y = x + 1

Sol. Answer (1, 2)

Equation of chord of contact T = 0

$$\therefore y.2 = 2(x-1)$$

$$\Rightarrow y = x - 1$$

$$\Rightarrow y^2 = 4x$$

Solve equation (i) and (ii),

$$A(3+2\sqrt{2},2+2\sqrt{2})$$

$$B(3-2\sqrt{2},2-2\sqrt{2})$$

$$AB = \sqrt{(4\sqrt{2})^2 + (4\sqrt{2})^2} = \sqrt{64} = 8$$

- Two parabolas have the same focus. If their directrices are the x-axis and the y-axis respectively, then the slope of their common chord is
 - (1) 1

(2)

Sol. Answer (1, 2)

Let focus be (a, b) and directrix x = 0

 \therefore Vertex of parabola $\left(\frac{a}{2},b\right)$

:. Equation of parabola

$$(y-b)^2 = 2a\left(x-\frac{a}{2}\right) \qquad \dots (i)$$

Similarly equation of other parabola

$$(x-a)^2 = 2b\left(y - \frac{b}{2}\right) \qquad \dots (ii)$$

Equation of common chord (i) - (ii),

$$y^2 = x^2$$

$$y = \pm x$$

- ∴ Slope of common chord are 1 and -1.
- Equation of a common tangent to the circle $x^2 + y^2 = 18$ and $y^2 = 24x$ is 5.

(1)
$$x + y + 6 = 0$$

(2)
$$x - v + 6 = 0$$

(2)
$$x - y + 6 = 0$$
 (3) $x + y - 6 = 0$

(4)
$$x - y - 6 = 0$$

Sol. Answer (1, 2)

Equation of tangent to $y^2 = 24x$

be
$$y = mx + \frac{6}{m}$$

Line (i) is a tangent to the circle

.. Distance from centre = radius

$$\Rightarrow \left| \frac{\frac{6}{m}}{\sqrt{m^2 + 1}} \right| = \sqrt{18}$$

$$\Rightarrow \left(\frac{6}{m}\right)^2 = 18(m^2 + 1)$$

$$\Rightarrow$$
 2 = m^2 (m^2 + 1)

$$\Rightarrow m^4 + m^2 - 2 = 0$$

$$\Rightarrow$$
 $(m^2 + 2)(m^2 - 1) = 0$

$$\Rightarrow m = \pm 1$$

$$\therefore x - y + 6 = 0$$

$$x + y + 6 = 0$$

The normals to parabola $y^2 = 4ax$ from the point (5a, -2a) are

(1)
$$y = x - 3a$$

(2)
$$y + 2x = 12a$$

(3)
$$y = -3x + 33a$$

(4)
$$y = x + 3a$$

Sol. Answer (1, 2)

Any normal to parabola $y^2 = 4ax$ may be

$$y - 2at = -t\{x - at^2\}$$

Or
$$y + tx - 2at - at^3 = 0$$

(5a, -2a) lies on (i), then

$$t^3 - 3t + 2 = 0$$

$$\Rightarrow$$
 $t = -1, 2, -1$

:. Equation of normals are

$$y = x - 3a$$
 and $y + 2x = 12a$

- Equation $x^2 2x 2y + 5 = 0$ represents 7.
 - (1) Parabola with vertex (1, 1)

Parabola with vertex (1, 2)

...(i)

(3) Parabola with directrix, $y = \frac{5}{2}$

Parabola with directrix, $y = \frac{-1}{2}$

Sol. Answer (2, 3)

Given,
$$x^2 - 2x - 2y + 5 = 0$$

$$\Rightarrow (x-1)^2 = 2\{y-2\}$$

Equation (i) is a parabola whose vertex is (1, 2)

Its directrix is
$$y - 2 = a = \frac{1}{2}$$
 or $y = \frac{5}{2}$

The coordinates of a focus of the ellipse $4x^2 + 9y^2 = 1$ are 8.

$$(1) \left(\frac{\sqrt{5}}{6}, 0\right)$$

$$(2) \quad \left(-\frac{\sqrt{5}}{6}, \ 0\right)$$

(3)
$$\left(\frac{\sqrt{5}}{3}, 0\right)$$

(4)
$$\left(-\frac{\sqrt{5}}{3}, 0\right)$$

Sol. Answer (1, 2)

$$\frac{x^2}{\frac{1}{4}} = \frac{Y^2}{\frac{1}{9}} = 1$$

$$a^2 = \frac{1}{4}, b^2 = \frac{1}{9}$$

$$\Rightarrow e^2 = 1 - \frac{b^2}{a^2} = 1 - \frac{4}{9} = \frac{5}{9}$$

$$\Rightarrow$$
 $e = \frac{\sqrt{5}}{3}$

Foci (± ae, 0) =
$$\left(\pm \frac{\sqrt{5}}{6}, 0\right)$$

- On the ellipse $4x^2 + 9y^2 = 1$, the points at which the tangents are parallel to 8x = 9y are 9.
 - $(1) \left(\frac{2}{5}, \frac{1}{5}\right)$
- (2) $\left(-\frac{2}{5}, \frac{1}{5}\right)$ (3) $\left(-\frac{2}{5}, -\frac{1}{5}\right)$ (4) $\left(\frac{2}{5}, -\frac{1}{5}\right)$

Equation of line parallel to 8x = 9y is $y = \frac{8}{9}x + c$

Condition of tangency,

$$c^2 = a^2 m^2 + b^2$$

$$c^2 = \frac{1}{4} \cdot \frac{64}{81} + \frac{1}{9} \implies c = \pm \frac{5}{9}$$

$$\therefore y = \frac{8}{9}x \pm \frac{5}{9}$$

$$8x - 9y \pm 5 = 0$$

Let point of contact be P(h, k)

 \therefore Equation of tangent at P(h, k)

$$4.x.h + 9.y.k - 1 = 0$$

Line (i) and (ii) are coincident line

$$\frac{4h}{8} = \frac{9k}{-9} = \frac{-1}{+5}$$

$$h = \mp \frac{2}{5}, k = \pm \frac{1}{5}$$

Point of contact $\left(\frac{-2}{5}, \frac{1}{5}\right)$ and $\left(\frac{2}{5}, -\frac{1}{5}\right)$

10. The focal distances of the point $(4\sqrt{3}, 5)$ on the ellipse $25x^2 + 16y^2 = 1600$ may be

Sol. Answer (1, 3)

$$\frac{x^2}{64} + \frac{y^2}{100} = 1$$

$$e^2 = 1 - \frac{b^2}{a^2} = 1 - \frac{64}{100} = \frac{36}{100}$$

$$e = \frac{3}{5}$$

Focal distance = $a \pm ey = 10 \pm \frac{3}{5}(5) = 13, 7$

- 11. Let the ellipse be $\frac{x^2}{9} + \frac{y^2}{4} = 1$ and the circle $x^2 + y^2 = 16$. Then
 - (1) Number of common tangents is zero
 - (2) Number of distinct common normals is two
 - (3) Area of the bounded region is 16 π
 - (4) Angle between the two curves is 60°

Sol. Answer (1, 2)

$$E: \frac{x^2}{9} + \frac{y^2}{4} = 1;$$

$$C: x^2 + y^2 = 16$$

From the figure, it is clear that, no common tangent can be drawn but 2 distinct normals X and Y axes can be drawn.

- (1) Area of ΔPF_1F_2 is $12\sin\theta$
- (3) Co-ordinates of P are (0, 4)

- (2) Area of ΔPF_1F_2 is maximum when $\theta = \frac{\pi}{2}$
- (4) Centre of the ellipse is (1, 2)

Sol. Answer (1, 2, 3)

$$E: \frac{x^2}{25} + \frac{y^2}{16} = 1$$

$$e = \sqrt{1 - \frac{16}{25}} = \frac{3}{5}$$

$$ae = 5 \times \frac{3}{5} = 3$$

Co-ordinates of $P = \left(5 \cdot \cos \frac{\pi}{2}, 4 \sin \frac{\pi}{2}\right)$ = (0.4)

- 13. Tangents are drawn to the ellipse $\frac{x^2}{9} + \frac{y^2}{5} = 1$ at the ends of a latus rectum then
 - (1) Co-ordinates of one end of a latus rectum are $\left(2,\frac{5}{3}\right)$
 - (2) Equation of tangent is $\frac{2}{9}x + \frac{y}{3} = 1$
 - (3) Area of a quadrilateral so formed is 27 sq. units
 - (4) Centre of the ellipse is (2, 3)

Sol. Answer (1, 2, 3)

$$E: \frac{x^2}{9} + \frac{y^2}{5} = 1$$

$$\therefore \quad e - \sqrt{1 - \frac{5}{9}} = \frac{2}{3}$$

$$ae = 3 \times \frac{2}{3} = 2$$

$$\frac{b^2}{a} = \frac{5}{3}$$

$$L \equiv \left(ae, \frac{b^2}{a}\right) \equiv \left(2, \frac{5}{3}\right)$$

Tangent at L is $\frac{xx_1}{9} + \frac{yy_1}{5} = 1$

$$\Rightarrow \frac{2x}{9} + \frac{y}{3} = 1$$

$$\therefore P: \left(\frac{9}{2}, 0\right), Q: (0,3)$$

Area $(\square PQRS) = 4 \times ar(\Delta POQ) = 4 \times \frac{1}{2} \times 3 \times \frac{9}{2} = 27$ sq. units.

14. The equation of common tangent of the curve
$$x^2 + 4y^2 = 8$$
 and $y^2 = 4x$ are

$$(1) x - 2y + 4 = 0$$

$$(2) \quad x + 2y + 4 = 0$$

(3)
$$2x - y + 4 = 0$$

 $P(\frac{9}{2},0)$

$$(4) \quad 2x + y + 4 = 0$$

Sol. Answer (1, 2)

$$E: \frac{x^2}{8} + \frac{y^2}{2} = 1$$

$$P: y^2 = 4x$$

Equations of any tangent to the parabola is

$$y = mx + \frac{a}{m} = mx + \frac{1}{m}$$

...(i)

$$E: \frac{x^2}{8} + \frac{y^2}{2} = 1.$$
; $T: y = mx + \frac{1}{m}$

$$c^2 = a^2m^2 + b^2$$

$$\Rightarrow \frac{1}{m^2} = 8m^2 + 2$$

$$\Rightarrow 8m^4 + 2m^2 - 1 = 0$$

$$\Rightarrow$$
 8 m^4 + 4 m^2 - 2 m^2 - 1 = 0

$$\Rightarrow$$
 4 $m^2(2m^2 + 1) - 1(2m^2 + 1) = 0$

$$\Rightarrow$$
 4 m^2 = 1

$$\Rightarrow m = \pm \frac{1}{2}$$

$$T: y = \pm \frac{1}{2}x \pm 2$$

$$\Rightarrow$$
 2y = ± x ± 4

$$\Rightarrow$$
 $x - 2y + 4 = 0$, $x + 2y + 4 = 0$

- 15. Let the equation of the ellipse be $2x^2 + y^2 = 4$ and the point is (2, 1)
 - (1) Equation of tangent is 4x + y = 4
- (2) Equation of normal is x 4y + 2 = 0

(3) Equation of polar is 4x + y = 4

(4) Equation of diameter is x - 2y = 0

Sol. Answer (1, 2, 3, 4)

$$E: 2x^2 + y^2 = 4$$

$$\Rightarrow \frac{x^2}{2} + \frac{y^2}{4} = 1$$

Tangent at
$$P: \frac{xx_1}{2} + \frac{yy_1}{4} = 1$$

$$\frac{2x}{2} + \frac{y}{4} = 1$$

$$\Rightarrow$$
 4x + y = 4

Normal at
$$P: x - 4y = \lambda$$

It passes through (2, 1), then $\lambda = 2 - 4 = -2$

$$\therefore x - 4y + 2 = 0$$

Polar at
$$P: 4x + y = 4$$

Diameter
$$y = \frac{1}{2}x$$

$$\Rightarrow x-2y=0$$

16. Chord of contact of tangents drawn from the point M(h, k) to the ellipse $x^2 + 4y^2 = 4$ intersects at P & Q, subtends a right angle of the centre 'O'

(1) Locus of *M* is
$$x^2 + 16y^2 = 20$$

(2)
$$\frac{1}{OP^2} + \frac{1}{OQ^2} = \frac{5}{4}$$

- (3) Equation of chord of contact is hx + 4ky = 4
- (4) Equation of normal is 3x + 2y + 5 = 0

Sol. Answer (1, 2, 3)

$$E: x^2 + 4y^2 = 4 \implies \frac{x^2}{4} + \frac{y^2}{1} = 1$$

PQ: chord of contact

$$hx + 4ky = 4$$

$$\Rightarrow \frac{hx + 4ky}{4} = 1$$

Now,
$$x^2 + 4y^2 = 4\left(\frac{hx + 4ky}{4}\right)^2$$

$$\Rightarrow$$
 4(x² + 4y²) = (hx + 4ky)² = h²x² + 16k²y² + 8hkxy

$$\Rightarrow$$
 $(4 - h^2)x^2 + (16 - 16k^2)y^2 + () = 0$

Chord of contact subtends a right angle at the centre, so $4 - h^2 + 16 - 16k^2 = 0$

Locus of *M* is
$$x^2 + 16y^2 = 20$$

$$\Rightarrow h^2 + 16k^2 = 20$$

Let *OP* makes an angle θ with the *x*-axis then *OQ* makes an angle $\frac{\pi}{2} + \theta$

$$\therefore$$
 P: (OPcos θ , OPsin θ)

Q:
$$(-OQ\sin\theta, OQ\cos\theta)$$

Since P & Q lies on the ellipse, so we have

$$OP^2\cos^2\theta + 4.OP^2\sin^2\theta = 4$$

$$\Rightarrow \frac{4}{OP^2} = \cos^2 \theta + 4 \sin^2 \theta$$

Also,
$$OQ^2\sin^2\theta + 4.OQ^2\cos^2\theta = 4$$

$$\Rightarrow \frac{4}{OQ^2} = \sin^2 \theta + 4\cos^2 \theta$$

Now,
$$\frac{4}{OP^2} + \frac{4}{OQ^2} = (\cos^2\theta + 4\sin^2\theta) + (\sin^2\theta + 4\cos^2\theta) = 5(\cos^2\theta + \sin^2\theta) = 5$$

$$\Rightarrow \frac{1}{OP^2} + \frac{1}{OQ^2} = \frac{5}{4}$$

- (1) Equation of the incident ray is 4x 3y 12 = 0
- (2) Equation of the reflection ray is 4x + 3y + 12 = 0
- (3) Angle between the focal radii normal at P is 45°
- (4) Distance between two foci is 6

Sol. Answer (1, 2, 3, 4)

$$E: \frac{x^2}{25} + \frac{y^2}{16} = 1$$

$$\therefore \quad e = \sqrt{1 - \frac{16}{25}} = \frac{3}{5}$$

$$F_1 = (ae, 0)$$

$$= (3, 0)$$

$$F_2 = (-3, 0)$$

$$F_1F_2 = 3 + 3 = 6$$

Equation of the incident ray is

$$y=0=\frac{4}{3}(x-3)$$

$$\Rightarrow$$
 3 $y = 4x - 12$

$$\Rightarrow$$
 4x - 3y = 12

Equation of the reflection ray is

$$y - 0 = -\frac{4}{3}(x+3)$$

$$\Rightarrow$$
 3 $y = -4x - 12$

$$\Rightarrow$$
 4x + 3y + 12 = 0

Angle between the focal radii and normal is 45°.

- 18. If a quadrilateral formed by four tangents to the ellipse $3x^2 + 4y^2 = 12$ is a square, then
 - (1) The vertices of the square lie on $y = \pm x$
- (2) The vertices of the square lie on $x^2 + y^2 = 7^2$
- (3) The area of all such squares is constant
- (4) Only two such squares are possible

Sol. Answer (2, 3)

$$E: 3x^2 + 4y^2 = 12$$

$$\Rightarrow \frac{x^2}{4} + \frac{y^2}{3} = 1$$

Clearly, the vertices of the squares will lie on the director circle of the ellipse

i.e.,
$$x^2 + y^2 = 4 + 3 = 7$$

Area of a square PQRS

$$= 2 (a^2 + b^2)$$

$$= 2(4 + 3)$$

Only one such square is possible.

- 19. Let (α, β) be a point from which two perpendicular tangent can be drawn to the ellipse $4x^2 + 5y^2 = 20$. If $F = 4\alpha + 3\beta$, then
 - (1) Domain of *F* is [-3, 3]

- (2) Range of F is [-15, 15]
- (3) Equation of the director circle is $x^2 + y^2 = 9$
- (4) Maximum value of F is 15

Sol. Answer (1, 2, 3, 4)

$$E: 4x^2 + 5y^2 = 20$$

$$\Rightarrow \frac{x^2}{5} + \frac{y^2}{4} = 1$$

Clearly locus of $P(\alpha, \beta)$ is a director circle

$$x^2 + y^2 = 5 + 4 = 9$$

which is passes through $P(\alpha, \beta)$

$$\therefore \alpha^2 + \beta^2 = 9$$

Now,
$$F = 4\alpha + 3\beta = 4\alpha + 3\sqrt{9 - \alpha^2}$$

 $\Rightarrow D_F = [-3, 3]$
 $R_F = [-15, 15]$

Maximum value of F is 15

20. Equation of a tangent passing through (2, 8) to the hyperbola $5x^2 - y^2 = 5$ is

(1)
$$3x - y + 2 = 0$$

(2)
$$23x - 3y - 22 = 0$$

(2)
$$23x - 3y - 22 = 0$$
 (3) $3x - 23y + 178 = 0$ (4) $3x + y + 14 = 0$

$$(4) \quad 3x + y + 14 = 0$$

Sol. Answer (1, 2)

Equation of a line through (2, 8)

$$y-8=m(x-2)$$

$$y = m.x + 8 - 2 m$$
 ... (i)

Line (i) is a tangent to the hyperbola $\frac{x^2}{1} - \frac{y^2}{5} = 1$

 \therefore Condition of tangency $c^2 = a^2m^2 - b^2$

$$(8-2m)^2 = m^2 - 5$$

$$3m^2 - 32m + 69 = 0$$

Gives
$$m = 3$$
, $m = \frac{23}{3}$

:. Tangents are
$$3x - y + 2 = 0$$
 and $23x - 3y - 22 = 0$

21. The circle $x^2 + y^2 = a^2$ intersects the hyperbola $xy = c^2$ in four points (x_1, y_1) (x_2, y_2) (x_3, y_3) and (x_4, y_4) , then

(1)
$$\sum x_i = 0$$

(2)
$$\sum y_i = 0$$

$$(3) \quad x_1 x_2 x_3 x_4 = c^4$$

$$(4) y_1 y_2 y_3 y_4 = c^4$$

Sol. Answer (1, 2, 3, 4)

$$y = \frac{c^2}{r}$$

put in
$$x^2 + y^2 = a^2$$

$$x^2 + \frac{c^4}{x^2} = a^2$$

$$x^4 - a^2 x^2 + c^4 = 0$$

Let roots are x_1 , x_2 , x_3 , and x_4

$$x_1 \ x_2 \ x_3 \ x_4 = c^4$$

Similarly y_1 y_2 y_3 y_4 = c^4

$$x_1 + x_2 + x_3 + x_4 = 0$$

$$\sum x_i = 0$$

Similarly $\Sigma y_i = 0$

22. Let AB be a double ordinate of hyperbola $\frac{x^2}{a^2} - \frac{y^2}{b^2} = 1$. If O be the centre of the hyperbola and OAB is an equilateral triangle, then which of the following is/are true, if $A(\alpha, \beta)$?

(2) $e > \frac{4}{\sqrt{3}}$

(3) $\alpha^2 = 3\beta^2$

(4) $\alpha^2 > 3\beta^2$

Sol. Answer (1, 3)

$$\tan 30^\circ = \frac{\beta}{\alpha} = \frac{1}{\sqrt{3}}$$

$$3\beta^2 = \alpha^2$$

$$\Rightarrow \frac{\alpha^2}{a^2} - \frac{\beta^2}{b^2} = 1$$

$$\Rightarrow \frac{3\beta^2}{a^2} - \frac{\beta^2}{b^2} = 1$$

$$\Rightarrow \frac{3}{a^2} - \frac{1}{b^2} = \frac{1}{\beta^2}$$

$$\Rightarrow \frac{3}{a^2} - \frac{1}{b^2} > 0$$

$$\Rightarrow \frac{3}{a^2} > \frac{1}{b^2}$$

$$\Rightarrow e > \frac{2}{\sqrt{3}}$$

23. The angle between a pair of tangent drawn from a point P to the parabola $y^2 = 4ax$ is 45°. If locus of point P is hyperbola, then its foci are

$$(2)$$
 $(-7a, 0)$

$$(4) \quad (-4a, 0)$$

Sol. Answer (1, 2)

$$y = mx + \frac{a}{m}$$

$$k = mh + \frac{a}{m}$$

$$m^2h - km + a = 0$$

$$\Rightarrow \tan 45 = \frac{m_1 - m_2}{1 + m_1 m_2}$$

$$\Rightarrow 1 = \frac{\sqrt{\left(\frac{k}{h}\right)^2 - 4\frac{a}{h}}}{1 + \frac{a}{h}} = \frac{\sqrt{k^2 - 4ah}}{h + a}$$

$$\Rightarrow k^2 - 4ah = h^2 + a^2 + 2ah$$

$$x^2 + 6ax - y^2 + a^2 = 0$$

$$(x + 3a)^2 - y^2 = 8a^2$$

Its centre is (-3a, 0)

Distance of focus from centre is = $2\sqrt{2}a \cdot \sqrt{2}$ = 4 a

Hence focii are (a, 0), (-7a, 0)

- 24. Which of the following is/are true for locus represented by $x = \frac{1}{2}a\left(t + \frac{1}{t}\right)$, $y = \frac{1}{2}a\left(t \frac{1}{t}\right)$
 - (1) Locus is ellipse

(2) Locus is hyperbola

(3) Directrix are $x = \pm \frac{a}{\sqrt{2}}$

(4) Directrix are $x = \pm a\sqrt{2}$

Sol. Answer (2, 3)

$$x^{2}-y^{2}=\frac{1}{4}a^{2}\left(t^{2}+\frac{1}{t^{2}}+2-t^{2}-\frac{1}{t^{2}}+2\right)$$

$$x^2 - y^2 = a^2$$

Its directrices are $x = \pm \frac{a}{\sqrt{2}}$

- 25. If line joining point (0, 3) and (5, -2) is tangent to curve $y = \frac{1}{x+c}$, then value of c is/are
 - (1) -5

(2) -

(3) 5

(4) 1

Sol. Answer (1, 2)

Equation of line is

$$y-3=\frac{-2-3}{5-0}(x-0)$$

$$x + y = 3$$

Since it is tangent

$$(3-x)(x+c)=1$$

$$3x + 3c - x^2 - xc = 1$$

$$x^2 + (c - 3)x + 1 - 3c = 0$$

$$(c-3)^2 - 4(1-3c) = 0$$

$$c^2 + 9 - 6c - 4 + 12c = 0$$

$$c^2 + 6c + 5 = 0$$

$$(c + 5) (c + 1) = 0$$

$$c = -5, -1$$

- Tangents at any point P is drawn to hyperbola $\frac{x^2}{a^2} \frac{y^2}{b^2} = 1$ intersects asymptotes at Q and R, if O is the centre of hyperbola then
 - (1) Area of triangle OQR is ab
 - (3) P is mid-point of QR
- **Sol.** Answer (1, 3)

Tangent at P is
$$\frac{x - \sec \theta}{a} - \frac{y \tan \theta}{b} = 1$$

Equation of asymptotes are $y = \pm \frac{b}{a}x$

$$Q(a(\sec\theta + \tan\theta), b(\sec\theta + \tan\theta))$$

$$R(a(\sec\theta - \tan\theta), b(\sec\theta - \tan\theta))$$

Area of OQR is = ab, P is mid-point of QR

- Area of triangle OQR is 2ab
- (4)P trisect QR

- (3) $e = \frac{\sqrt{a^4 b^4}}{a^2}$ (4) $e = \frac{\sqrt{a^4 + b^4}}{a^2}$ The locus of a point whose chord of contact touches the circle described on the straight line joining the foci of the hyperbola $\frac{x^2}{a^2} - \frac{y^2}{h^2} = 1$ as diameter is/has
 - (1) Hyperbola
- (2)

Sol. Answer (2, 3)

Given circle is

$$(x - ae)(x + ae) + y^2 = 0$$

$$x^2 + y^2 = a^2e^2 = a^2 + b^2$$

Chord of contact is

$$\frac{xh}{a^2} - \frac{yk}{b^2} = 1$$

$$\frac{-1}{\sqrt{\frac{h^2}{a^4} + \frac{k^2}{h^4}}} = \sqrt{a^2 + b^2}$$

Locus is
$$\frac{x^2}{a^4} + \frac{y^2}{b^4} = \frac{1}{a^2 + b^2}$$

Its eccentricity

$$\frac{b^4}{a^2+b^2} = \frac{a^4}{a^2+b^2} (1-e^2)$$

$$\Rightarrow e^2 = 1 - \frac{b^4}{a^4} = \frac{a^4 - b^4}{a^4}$$

$$\Rightarrow e = \frac{\sqrt{a^4 - b^4}}{a^2}$$

- 28. The normal to the hyperbola $\frac{x^2}{a^2} \frac{y^2}{b^2} = 1$ meets the axes in M and N, and lines MP and NP are drawn at right angle to the axes then locus of P is a hyperbola with eccentricity e', if eccentricity of $\frac{x^2}{a^2} \frac{y^2}{b^2} = 1$ is e, then
 - (1) e' is eccentricity of conjugate of $\frac{x^2}{a^2} \frac{y^2}{b^2} = 1$

(2)
$$\frac{1}{e^2} + \frac{1}{e'^2} = 1$$

(3)
$$e^2 + e'^2 = 3$$

(4)
$$e^2 + e'^2 = 4$$

Sol. Answer (1, 2)

$$\frac{ax}{\sec \theta} + \frac{by}{\tan \theta} = a^2 + b^2$$

$$M\left(\frac{(a^2+b^2)}{a}\sec\theta,0\right)$$

$$N\left(0,\frac{(a^2+b^2)}{b}\tan\theta\right)$$

Locus is
$$a^2x^2 - b^2y^2 = (a^2 + b^2)^2$$

$$\Rightarrow a^2 = b^2(e'^2 - 1)$$

which is same as conjugate hyperbola.

- 29. If the axis of a varying central hyperbola $\frac{x^2}{a^2} \frac{y^2}{b^2} = 1$ be fixed in magnitude and position, then locus of point of contact of a tangent drawn to it from a fixed point on *x*-axis is
 - (1) Parabola
- (2) Ellipse
- Hyperbola
- (4) Straight line

Sol. Answer (3, 4)

Points of contact is
$$\left(\frac{-a^2m}{\sqrt{a^2m^2-b^2}}, \frac{-b^2}{\sqrt{a^2m^2-b^2}}\right)$$

If tangents are drawn from $(\alpha, 0)$, then

$$0 = m\alpha + \sqrt{a^2m^2 - b^2}$$

$$\Rightarrow m = \frac{b^2}{a^2 - \alpha^2}$$

$$h = -\frac{a}{\alpha}$$

$$k = \frac{-b(a^2 - \alpha^2)}{\alpha^2}$$

Hence locus may be straight line or hyperbola.

30. If e_1 and e_2 are the eccentricity of hyperbola $xy = c^2$ and $x^2 - y^2 = c^2$, then

$$(1) \quad \frac{1}{e_1^2} + \frac{1}{e_2^2} = 1$$

(2)
$$e_1^2 + e_2^2 = 1$$
 (3) $e_1^2 - e_2^2 = 0$

(3)
$$e_1^2 - e_2^2 = 0$$

(4)
$$e_1 \cdot e_2 = 2$$

Sol. Answer (1, 3, 4)

Eccentricity of rectangular hyperbola is constant and it is equal to $\sqrt{2}$

31. If equation of hyperbola is xy + 3x - 2y - 10, then

(1) Eccentricity =
$$\sqrt{2}$$

(2) Centre =
$$(2, -3)$$

(3) Lengths of latus rectum =
$$4\sqrt{2}$$

(4) Asymptotes are
$$x = 2$$
 and $y = -3$

Sol. Answer (1, 2, 3, 4)

Given equation
$$xy + 3x - 2y - 10 = 0$$

$$x(y + 3) - 2y - 6 + 6 - 10 = 0$$

$$x(y + 3) - 2(y + 3) - 4 = 0$$

$$(x-2)(y+3)=4$$

Length of latus rectum =
$$\frac{2b^2}{a} = 2a$$

And
$$c^2 = \frac{a^2}{2} = 4 \Rightarrow a = 2\sqrt{2}$$

- \therefore Length of latus rectum = $4\sqrt{2}$
- 32. If (5, 12) and (24, 7) are the focii of a conic passing through the origin, then eccentricity of conic is

(1)
$$\frac{\sqrt{386}}{12}$$

(2)
$$\frac{\sqrt{386}}{13}$$

$$(3) \quad \frac{\sqrt{386}}{38}$$

Sol. Answer (1, 3)

Conic may be ellipse or hyperbola

Case -I: If conic is ellipse, then

$$SP + S'P = 2a$$
 and $2ae = SS'$

Where S and S' are the focii and e is the eccentricity

Let P is origin

Now,
$$SP + S'P = \sqrt{5^2 + 12^2} + \sqrt{24^2 + 7^2} = 13 + 25 = 38$$

$$\therefore \quad 2ae = SS' = \sqrt{386}$$

$$\Rightarrow$$
 $e = \frac{\sqrt{386}}{38}$

Case-II: If conic is hyperbola, then

$$|SP - S'P| = 2a$$
 and $2ae = SS'$

$$|SP - S'P| = |13 - 25| = 12$$

$$|SP - S'P| = |13 - 25| = 12$$

Now,
$$e = \frac{SS'}{2a} = \frac{\sqrt{386}}{12}$$

- 33. If equation of hyperbola is $2x^2 + 5xy + 2y^2 11x 7y 4 = 0$ then
 - (1) Conjugate hyperbola is $2x^2 + 5xy + 2y^2 11x 7y + 4 = 0$
 - (2) Conjugate hyperbola is $2x^2 + 5xy + 2y^2 11x 7y + 14 = 0$
 - (3) Asymptotes is $2x^2 + 5xy + 2y^2 11x 7y + 5 = 0$
 - (4) Asymptotes is $2x^2 + 5xy + 2y^2 11x 7y 5 = 0$

Sol. Answer (2, 3)

Given equation of hyperbola is $2x^2 + 5xy + 2y^2 - 11x - 7y - 4 = 0$

Then equation of asymptotes $2x^2 + 5xy + 2y^2 - 11x - 7y + \lambda = 0$

It will represent two straight line, then $\Delta = 0$

$$\therefore$$
 $a = 2, b = 2, c = \lambda, f = \frac{-7}{2}, g = \frac{-11}{2}$ and $h = \frac{5}{2}$

$$\Rightarrow \ \ 2\times 2\times \lambda + 2\bigg(\frac{-7}{2}\bigg)\bigg(\frac{-11}{2}\bigg)\frac{5}{2} - 2\bigg(\frac{-7}{2}\bigg)^2 - 2\bigg(\frac{-11}{2}\bigg)^2 - \lambda\bigg(\frac{5}{2}\bigg)^2 = 0$$

$$\Rightarrow \lambda = 5$$

Then equation of asymptotes is $2x^2 + 5xy + 2y^2 - 11x - 7y + 5 = 0$

For conjugate hyperbola

H+C.H = 2ASM

Conjugate hyperbola
$$2(2x^2 + 5xy + 2y^2 - 11x - 7y + 5) - (2x^2 + 5xy + 2y^2 - 11x - 7y - 4) = 0$$

$$\Rightarrow 2x^2 + 5xy + 2y^2 - 11x - 7y + 14 = 0$$

$$\Rightarrow$$
 2x² + 5xy + 2y² - 11x - 7y + 14 = 0

- 34. For the equation of rectangular hyperbola xy = 18
 - (1) Length of transverse axis = length of conjugate axis = 12
 - (2) Vertices are $(3\sqrt{2}, 3\sqrt{2})$ or $(-3\sqrt{2}, -3\sqrt{2})$
 - (3) Focii are (6, + 6), (-6, -6)
 - (4) Equation of tangent with slope 1 cannot be possible

Sol. Answer (1, 2, 3, 4)

(1) Equation of rectangular hyperbola $xy = \frac{a^2}{2}$

By comparing with given hyperbola $\frac{a^2}{2} = 18 \Rightarrow a = 6$

 \therefore Length of transverse axis = 2a = 12

And length of transverse axis = length of conjugate axis

(2) Vertices are
$$\left(\frac{+a}{\sqrt{2}}, \frac{a}{\sqrt{2}}\right)$$
 or $\left(\frac{-a}{\sqrt{2}}, \frac{-a}{\sqrt{2}}\right)$

$$\Rightarrow$$
 $(+3\sqrt{2}, 3\sqrt{2})$ or $(-3\sqrt{2}, -3\sqrt{2})$

(3) Focii are (a, a) or (-a, -a)

$$\Rightarrow$$
 (6, 6) or (-6, -6)

(4) If m < 0, then tangent can possible to the hyperbola.

- 35. If the normals at (x_i, y_i) , i = 1, 2, 3, 4 on the rectangular hyperbola $xy = c^2$ meet at the point (α, β) , then
 - (1) $\Sigma x_i = \alpha$
- (2) $\Sigma y_i = \beta$
- (3) $\Sigma x_i^2 = \alpha^2$
- (4) $\Sigma y_i^2 = \beta^2$

Sol. Answer (1, 2, 3, 4)

Let $(x_i, y_i) = \left(ct_i, \frac{c}{t_i}\right)$, i = 1, 2, 3, 4 are the points on the rectangular hyperbola $xy = c^2$,

Equation of normal to the hyperbola $xy = c^2$ at $\left(ct, \frac{c}{t}\right)$ is

$$ct^4 - t^3x + ty - c = 0$$

It passes through (α, β) , then

$$ct^4 - t^3\alpha + t\beta - c = 0$$

Its biquadratic equation int. Let the roots of equation are $t_{\rm 1},\,t_{\rm 2},\,t_{\rm 3},\,t_{\rm 4},$ then

$$\Sigma t_1 = \frac{\alpha}{c}, \Sigma t_1 t_2 = 0, \Sigma t_1 t_2 t_3 = \frac{-\beta}{c}, t_1 t_2 t_3 t_4 = -1$$

- (1) $\Sigma x_i = \Sigma ct_i = c\Sigma t_i = c\left(\frac{\alpha}{c}\right) = \alpha$
- (2) $\Sigma y_i = \Sigma \frac{c}{t_i} = c\Sigma \frac{1}{t_i} = \frac{c\Sigma t_1 t_2 t_3}{t_1 t_2 t_3 t_4} = \frac{c\left(\frac{-B}{C}\right)}{-1} = B$
- (3) $\Sigma x_i^2 = (\Sigma x_i)^2 2\Sigma x_i x_2 = \alpha^2 0 = \alpha^2$
- (4) $\Sigma y_i^2 = (\Sigma y_i)^2 2\Sigma y_1 y_2 = \beta^2 0 = \beta^2$
- 36. The feet of the normals to $\frac{x^2}{a^2} \frac{y^2}{b^2} = 1$ from (h, k) lie on

(1)
$$a^2y(x-h) + b^2x(y-k) = 0$$

(2)
$$b^2x(x-h) + a^2y(y-k) = 0$$

(3)
$$(a^2 + b^2)xy - a^2hy - b^2xk = 0$$

(4) None of these

Sol. Answer (1, 3)

Let $P(x_1, y_1)$, $Q(x_2, y_2)$, $R(x_3, y_3)$ and $S(x_4, y_4)$ be co-normal points so that normals drawn from them meet in T(h, k). The equation of normal at $p(x_1, y_1)$

$$\frac{a^2x}{x_1} + \frac{b^2y}{y_1} = a^2 + b^2$$

Or
$$a^2xy_1 + b^2yx_1 = (a^2 + b^2)x_1y_1$$

Or
$$(a^2 + b^2)x_1y_1 - a^2xy_1 - b^2yx_1 = 0$$

The point T(h, k) lies on it

$$(a^2 + b^2)x_1y_1 - a^2hy_1 - b^2x_1k = 0$$

Similarly, for points Q, R and S are

$$(a^2 + b^2)x_2y_2 - a^2hy_2 - b^2x_2k = 0$$

$$(a^2 + b^2)x_3y_3 - a^2hy_3 - b^2x_3k = 0$$

$$(a^2 + b^2)x_4y_4 - a^2hy_4 - b^2x_4k = 0$$

Hence P, Q, R, S lie on the curve

$$(a^2 + b^2)xy - a^2hy - b^2xk = 0$$

Or
$$a^2y(x-h) + b^2x(y-k) = 0$$

- 37. The equation of the asymptotes of a hyperbola are 4x 3y + 8 = 0 and 3x + 4y 7 = 0, then
 - (1) Eccentricity is $\sqrt{2}$
 - (2) Centre is $\left(\frac{-11}{25}, \frac{52}{25}\right)$
 - (3) Centre is $\left(\frac{11}{25}, \frac{-52}{25}\right)$
 - (4) Equation of axes are x 7y + 15 = 0 and 7x + y + 1 = 0

Sol. Answer (1, 2, 4)

(1) Asymptotes are perpendicular, then hyperbola is rectangular hyperbola

$$\therefore e = \sqrt{2}$$

(2) Centre of rectangular hyperbola is the point of intersection of asymptotes

$$\therefore$$
 4x - 3y + 8 = 0 and 3x + 4y - 7 = 0

(4) Axes are along the bisector of angles between the asymptotes

Then equation of axes are

$$\frac{4x - 3y + 8}{\sqrt{4^2 + (-3)^2}} = \pm \frac{3x + 4y - 7}{\sqrt{3^2 + 4^2}}$$

$$\therefore x - 7y + 15 = 0 \text{ and } 7x + y + 1 = 0$$

If the tangent at the point ($a \sec \alpha$, $b \tan \alpha$) to the hyperbola $\frac{x^2}{a^2} - \frac{y^2}{b^2} = 1$ meets the transverse axis at T. Then the distance of T form a focus of the hyperbola is

(1)
$$a(e - \cos \alpha)$$

(2)
$$b(e + \cos\alpha)$$

(3)
$$a(e + \cos\alpha)$$

(2)
$$b(e + \cos\alpha)$$

(4) $\sqrt{a^2e^2 + b^2\cot^2\alpha}$

Sol. Answer (1, 3)

Equation of tangent at $(a\sec\alpha, b\tan\alpha)$ to the hyperbola $\frac{x^2}{a^2} - \frac{y^2}{b^2} = 1$ is $\frac{x}{a}\sec\alpha - \frac{y}{b}\tan\alpha = 1$ which meets

the transverse axis y = 0 at the point $T(a\cos\alpha, 0)$ whose distance from the focus ae = 0 is $ae - a\cos\alpha$ and from the focus (-ae, 0) is ($ae + a\cos\alpha$)

Note that $ae > a\cos\alpha$

Since e > 1

- 39. If ax + by + c = 0 is the normal to the hyperbola xy + 1 = 0, then
 - (1) a > 0, b > 0

(2)
$$a < 0, b > 0$$

(3) a > 0, b < 0

(4) a < 0, b < 0

Sol. Answer (1, 4)

Slope of normal =
$$-\frac{a}{b}$$

And
$$xy = -1 \Rightarrow y = -\frac{1}{x}$$

$$\Rightarrow \frac{dy}{dx} = +\frac{1}{x^2}$$

Slope of normal = $-x^2 = -\frac{a}{b}$ (given)

$$\frac{a}{b} > 0$$

It can be possible if a and b are same sign.

40. If equation of hyperbola is $4(2y - x - 3)^2 - 9(2x + y - 1)^2 = 80$, then

- (1) Eccentricity is $\frac{\sqrt{13}}{3}$
- (3) Transverse axis is 2x + y 1 = 0
- (2) Centre of hyperbola is $\left(-\frac{1}{5}, -\frac{7}{5}\right)$
- (4) Conjugate axis is x 2y + 3 = 0

Sol. Answer (1, 2, 3, 4)

$$4.5\left(\frac{2y-x-3}{\sqrt{5}}\right)^2 - 9.5\left(\frac{2x+y-1}{\sqrt{5}}\right)^2 = 80$$

$$\Rightarrow 20x^2 - 9.5y^2 = 80$$

$$\Rightarrow \frac{x^2}{4} - \frac{y^2}{\left(\frac{16}{9}\right)} = 1$$

(1) Eccentricity =
$$\sqrt{1 + \frac{b^2}{a^2}} = \sqrt{1 + \frac{16}{9.(4)}} = \frac{\sqrt{13}}{3}$$

- (2) Centre: 2y x 3 = 0And 2x + y - 1 = 0
- (3) Transverse axis : Y = 0
- (4) Conjugate axis : X = 0

SECTION - C

Linked Comprehension Type Questions

Comprehension-I

Let $C: y = x^2 - 3$, $D: y = kx^2$ be two parabolas and $L_1: x = a$, $L_2: x = 1$ ($a \ne 0$) be two straight lines.

1. If C and D intersect at a point A on the line L_1 , then the equation of the tangent line L at A to the parabola D is

(1)
$$2(a^3 - 3)x - ay + (a^3 - 3a) = 0$$

(2)
$$2(a^2 - 3)x - ay - a^3 + 3a = 0$$

(3)
$$(a^3 - 3)x - 2ay - 2a^3 + 6a = 0$$

Sol. Answer (2)

Put x = a on both parabolas $y = a^2 - 3$ and $y = ka^2$

$$a^2 - 3 = ka^2$$

$$k = \frac{a^2 - 3}{a^2}$$

Point of intersection $A(a, a^2 - 3)$

∴ Equation of tangent *L* to the curve

$$y = k \cdot x^2$$
 at A

$$\frac{1}{2}(y+a^2-3)=k.x.a$$

$$\frac{1}{2}(y+a^2-3) = \left(\frac{a^2-3}{a^2}\right).xa$$

$$a(y + a^2 - 3) = 2(a^2 - 3)x$$

$$2(a^2 - 3)x - ay - a^3 + 3a = 0$$

2. If the line L meets the parabola C at a point B on the line L_2 , other than A, then a may be equal to

$$(1) -3$$

$$(2)$$
 -2

(4) None of these

Sol. Answer (2)

On
$$L_2$$
, $x = 1$

$$C: y_2 = x^2 - 3 = 1 - 3 = -2$$

$$B(1, -2)$$

$$B(1, -2)$$
 lie on L

$$2(a^2 - 3) + 2a - a^3 + 3a = 0$$

$$a^3 - 2a^2 - 5a + 6 = 0$$

$$(a-1)(a+2)(a-3)=0$$

$$a = 1, -2, 3$$

3. If a > 0, the angle subtended by the chord AB at the vertex of the parabola C is

(1)
$$\tan^{-1}\left(\frac{5}{7}\right)$$

(2)
$$\tan^{-1}\left(\frac{1}{2}\right)$$

(3)
$$tan^{-1}$$
 (2)

(4) $\tan^{-1}\left(\frac{1}{8}\right)$

Sol. Answer (2)

$$a > 0$$
, a may be 1 or 3

$$a = 3$$
, [$a \ne 1$, if $a = 1$, A and B coincidence]

$$A(3, 6), B(1, -2)$$

Vertex of
$$e(0, -3)$$

Slope of
$$AC = \frac{6+3}{3} = 3 = m_1$$
 say

Slope of
$$BC = \frac{1}{1} = 1 = m_2 \text{say}$$

$$\tan\theta = \left| \frac{m_1 - m_2}{1 + m_1 m_2} \right| = \left| \frac{3 - 1}{1 + 3} \right| = \frac{2}{4}$$

$$\theta = \tan^{-1} \left(\frac{1}{2} \right)$$

Comprehension-II

Let $P_1: y^2 = 4ax$ and $P_2: y^2 = -4ax$ be two parabolas and L: y = x be a straight line.

If a = 4, then the equation of the ellipse having the line segment joining the foci of the parabolas P_1 and P_2 as the major axis and eccentricity equal to $\frac{1}{2}$ is

(1)
$$\frac{x^2}{4} + \frac{y^2}{3} = 1$$

(2)
$$\frac{x^2}{3} + \frac{y^2}{4} = 1$$

(1)
$$\frac{x^2}{4} + \frac{y^2}{3} = 1$$
 (2) $\frac{x^2}{3} + \frac{y^2}{4} = 1$ (3) $\frac{x^2}{16} + \frac{y^2}{12} = 1$ (4) $\frac{x^2}{12} + \frac{y^2}{16} = 1$

(4)
$$\frac{x^2}{12} + \frac{y^2}{16} = \frac{1}{16}$$

Sol. Answer (3)

Foci $P_1(4, 0)$ and $P_2(4, 0)$

$$2a = 8 \Rightarrow a = 4$$

$$b^2 = a^2(1 - e^2) = 16\left(1 - \frac{1}{4}\right) = 12$$

Equation of ellipse $\frac{x^2}{16} + \frac{y^2}{12} = 1$

Equation of the tangent at the point on the parabola P_1 where the line L meets the parabola is 2.

(1)
$$x - 2y + 4a = 0$$

(2)
$$x + 2y - 4a = 0$$

(3)
$$x + 2y - 8a = 0$$

(4)
$$x - 2v + 8a = 0$$

Sol. Answer (1)

Solve equations y = x and $y^2 = 4ax$

Points of intersections are O(0, 0) and A(4a, 4a)

Equation of tangent at O(0, 0) is x = 0

and equation of tangent at A(4a, 4a) y.4a = 2a(x + 4a)

$$y.4a = 2a(x + 4a)$$

$$x - 2y + 4a = 0$$

3. The co-ordinates of the other extremity of a focal chord of the parabola P_2 , one of whose extremity is the point of intersection of L and P_2 is

(2)
$$\left(-\frac{a}{4}, a\right)$$

(2)
$$\left(-\frac{a}{4}, a\right)$$
 (3) $\left(-\frac{a}{4}, -a\right)$ (4) $\left(-a, -2a\right)$

Sol. Answer (2)

Solve equation y = x and $y^2 = -4ax$

Let B,
$$B(-at_1^2, -2at_1)$$

Focal chord again intersect parabola at t_2 where $t_2 = -\frac{1}{t}$

$$\Rightarrow B'\left(-\frac{a}{4},a\right)$$

Comprehension-III

The equation of the curve represented by

$$C = 9x^2 - 24xy + 16y^2 - 20x - 15y - 60 = 0$$
, then

- The locus of curve C given in the above statement is
 - (1) Circle
 - (3) Parabola
- 2. The equation of axis of curve C is
 - (1) x = 4y
 - (3) 3x + 4y = 0
- The equation of directrix of curve C is 3.
 - (1) 16x + 9y = 53
 - (3) 16x + 12y = 53
- 4. The length of latus rectum of curve C is
 - (1) 1
 - (3) 4
- 1. Answer (3)
- 2. Answer (4)
- 3. Answer (2)
- Answer (1) 4.

Solution of Comprehension-III

Comparing given equation with

$$ax^2 + 2hxy + by^2 + 2gx + 2fy + c = 0$$
, we get

$$a = 9$$
, $b = 16$, $c = -60$, $h = -12$, $g = -10$, $f = -\frac{15}{2}$

$$\Rightarrow \Delta = abc + 2fgh - af^2 - bg^2 - ch^2$$

And
$$h^2 - ab = 144 - 144 = 0$$

So, c represents a parabola

Pair of straight line

(4) Ellipse

(2)

- (2)3x = y
- 3x = 4y

$$(2) \quad 16x + 12y + 53 = 0$$

(4)
$$16x + v = 53$$

$$= -8640 - 1800 - 0.9 \left\{ \frac{225}{4} \right\} - 16\{1000\} + 8640$$

Now, $9x^2 - 24xy + 16y^2 - 20x - 15y - 60 = 0$

$$\Rightarrow$$
 {3x - 4y}² = 5{4x + 3y + 12}

$$\Rightarrow \left\{ \frac{3x - 4y}{\sqrt{3^2 + 4^2}} \right\}^2 = \frac{4x + 3y + 12}{\sqrt{4^2 + 3^2}}$$

Let
$$\frac{3x-4y}{\sqrt{3^2+4^2}} = Y$$
 and $\frac{4x+3y+12}{\sqrt{4^2+3^2}} = X$

 \therefore Equation reduces to, $Y^2 = X$

Comparing $Y^2 = X$ with $y^2 = 4ax$, we get

$$4a = 1 \Rightarrow a = \frac{1}{4}$$

So, axis of parabola is y = 0

$$\Rightarrow$$
 3x - 4y = 0

Directrix of parabola is $X = -\frac{1}{4}$

$$\Rightarrow \frac{4x + 3y + 12}{\sqrt{3^2 + 4^2}} = -\frac{1}{4}$$

$$\Rightarrow 4x + 3y + \frac{53}{4} = 0 \Rightarrow 16x + 12y + 53 = 0$$

Hence, length of latus rectum = 4a = 1

Comprehension-IV

Let $C: x^2 + y^2 = 9$, $E: \frac{x^2}{9} + \frac{y^2}{4} = 1$ and L: y = 2x be three curves. P be a point on C and PL be the perpendicular to the major axis of ellipse E. PL cuts the ellipse at point M.

(1) $\frac{1}{3}$

(2) $\frac{2}{3}$

(3) $\frac{1}{2}$

(4) 1

Sol. Answer (2)

 $M(3\cos\theta, 2\sin\theta)$

 $P(3\cos\theta, 3\sin\theta)$

 $L(3\cos\theta, 0)$

 $ML = 2\sin\theta$

 $PL = 3\sin\theta$

 $\frac{ML}{DI} = \frac{2}{3}$

- 2. If equation of normal to C at point P be L: y = 2x then the equation of the tangent at M to the ellipse E is
 - (1) $x+3v\pm 3\sqrt{5}=0$
- (2) $4x+3y\pm\sqrt{5}=0$ (3) $x+y\pm3=0$
- None of these

Sol. Answer (1)

OP is a normal

∴ $P(3 \cos\theta, 3\sin\theta)$ lie on y = 2x

 $3\sin\theta = 2 \cdot 3\cos\theta$

$$\frac{\sin \theta}{2} = \frac{\cos \theta}{1} = \frac{\sqrt{\sin^2 \theta + \cos^2 \theta}}{\pm \sqrt{4 + 1}} = \frac{1}{\pm \sqrt{5}}$$

$$\therefore \sin\theta = \pm \frac{2}{\sqrt{5}} \text{ and } \cos\theta = \pm \frac{1}{\sqrt{5}}$$

Equation of tangent at M

$$\frac{x}{3}.\cos\theta + \frac{y}{2}.\sin\theta = 1$$

$$\frac{x}{3} \cdot \frac{1}{\pm \sqrt{5}} + \frac{y}{2} \cdot \frac{2}{\pm \sqrt{5}} = 1$$

$$x + 3y \pm 3\sqrt{5} = 0$$

- If R is the point of intersection of the line L with the line x = 1, then

 (1) R lies inside both C and E(3) R lies on both C and E3.

R lies outside both C and E

R lies inside C but outside E

Sol. Answer (4)

Put
$$x = 1$$
 in $y = 2x$

$$\therefore$$
 $R(1, 2)$

$$C \equiv 1 + 4 - 9 < 0$$

$$E \equiv \frac{1}{9} + \frac{4}{4} - 1 > 0$$

.. R lies inside C and outside E.

Comprehension-V

An ellipse has its centre C(1, 3) focus at S(6, 3) and passing through the point P(4, 7) then

- The product of the lengths of perpendicular segments from the focii on tangent at point P is
 - (1) 20

(2)45

(3) 40

Cannot be determined (4)

Sol. Answer (1)

Equation of ellipse will be assumed as

$$\frac{(x-1)^2}{a^2} + \frac{(y-3)^2}{b^2} = 1$$

$$ae = \sqrt{(6-1)^2 + 0} = 5$$

P(4,7) lies on ellipse, hence $\frac{9}{a^2} + \frac{16}{b^2} = 1$

Hence,
$$e = \frac{\sqrt{5}}{3}$$

$$a^2 = 45$$

$$b^2 = 20$$

Since product of length of perpendicular segments from the foci on tangents at P is b^2

2. The point of the lines joining each focus to the foot of the perpendicular from the other focus upon the tangent at point *P* is

$$(1) \quad \left(\frac{5}{3}, 5\right)$$

$$(2) \quad \left(\frac{4}{3},3\right)$$

$$(3)$$
 $\left(\frac{8}{3},3\right)$

$$(4) \quad \left(\frac{10}{3}, 5\right)$$

Sol. Answer (4)

Lines joining each focus to the foot of perpendicular to other focus bisects the normal at P, hence required point is mid-point of normal PG. Equation of normals at P(4, 7) is

$$3x - y - 5 = 0$$

Point
$$G\left(\frac{8}{3},3\right)$$

Required point is $\left(\frac{10}{3}, 5\right)$

3. If the normal at a variable point on the ellipse meets its axes in Q and R then the locus of the mid-point of QR is a conic with an eccentricity(e') then

(1)
$$e' = \frac{3}{\sqrt{10}}$$

(2)
$$e' = \frac{\sqrt{5}}{3}$$

(3)
$$e' = \frac{3}{\sqrt{5}}$$

(4)
$$e' = \frac{\sqrt{10}}{3}$$

Sol. Answer (2)

Locus of mid-point of QR will be ellipse of same eccentricity $e' = \frac{\sqrt{5}}{3}$

Comprehension-VI

Equation of chord of ellipse $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$ can be written as $T = S_1$ if its mid point is (x_1, y_1) which is

$$\frac{xx_1}{a^2} + \frac{yy_1}{b^2} = \frac{x_1^2}{a^2} + \frac{y_1^2}{b^2}$$

1. Tangents drawn from any point on circle $x^2 + y^2 = c^2$ to the ellipse $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$, then locus of mid point of chord of contact is

(1)
$$x^2 - y^2 = c^2 \left(\frac{x^2}{a^2} - \frac{y^2}{b^2} \right)$$

(2)
$$x^2 + y^2 = c^2 \left(\frac{x^2}{a^2} + \frac{y^2}{b^2} \right)$$

(3)
$$c^2(x^2-y^2) = \frac{x^2}{a^2} - \frac{y^2}{b^2}$$

(4)
$$c^2(x^2+y^2) = \frac{x^2}{a^2} + \frac{y^2}{b^2}$$

Sol. Answer (2)

Equation of chord of contact is

$$\frac{xc\cos\theta}{a^2} + \frac{yc\sin\theta}{b^2} = 1$$

which is same as

$$\frac{xh}{a^2} + \frac{yk}{b^2} = \frac{h^2}{a^2} + \frac{k^2}{b^2}$$
 mid point is (h, k)

$$\frac{c\cos\theta}{\frac{a^{2}}{a^{2}}} = \frac{c\sin\theta}{\frac{b^{2}}{b^{2}}} = \frac{1}{\frac{h^{2}}{a^{2}} + \frac{k^{2}}{b^{2}}}$$

$$c\cos\theta = \frac{h}{\frac{h^2}{a^2} + \frac{k^2}{b^2}}$$
 $c\sin\theta = \frac{k}{\frac{h^2}{a^2} + \frac{k^2}{b^2}}$

$$c^{2} = \frac{h^{2} + k^{2}}{\frac{h^{2}}{a^{2}} + \frac{k^{2}}{b^{2}}}$$

$$x^2 + y^2 = c^2 \left(\frac{x^2}{a^2} + \frac{y^2}{b^2} \right)$$

2. Locus of mid-point of chord if it subtend right angle at origin

(1)
$$\frac{x^2}{a^4} + \frac{y^2}{b^4} = \left(\frac{x^2}{a^2} + \frac{y^2}{b^4}\right)^2 \left(\frac{1}{a^2} + \frac{1}{b^2}\right)$$

(2)
$$\frac{x^2}{a^4} + \frac{y^2}{b^4} = \left(\frac{x^2}{a^2} + \frac{y^2}{b^2}\right) \left(\frac{1}{a^2} + \frac{1}{b^2}\right)$$

(3)
$$\frac{x^2}{a^4} + \frac{y^2}{b^4} = \frac{x^2}{a^2} - \frac{y^2}{b^2}$$

(4)
$$\frac{x^2}{a^4} - \frac{y^2}{b^4} = \frac{x^2}{a^2} - \frac{y^2}{b^2}$$

Sol. Answer (1)

$$\frac{xh}{a^2} + \frac{yk}{b^2} = \frac{h^2}{a^2} + \frac{k^2}{b^2}$$

$$\frac{x^2}{a^2} + \frac{y^2}{b^2} = \frac{\frac{xh}{a^2} + \frac{yk}{b^2}}{\left(\frac{h^2}{a^2} + \frac{k^2}{b^2}\right)^2}$$

$$\left(\frac{h^2}{a^2} + \frac{k^2}{b^2}\right)^2 \left(\frac{x^2}{a^2} + \frac{y^2}{b^2}\right) = \left(\frac{xh}{a^2} + \frac{yk}{b^2}\right)^2$$

For 90°,

$$\frac{1}{a^2} \left(\frac{h^2}{a^2} + \frac{k^2}{b^2} \right)^2 - \frac{h^2}{a^4} + \left(\frac{h^2}{a^2} + \frac{k^2}{b^2} \right)^2 \frac{1}{b^2} - \frac{k^2}{b^4} = 0$$

$$\frac{x^2}{a^4} + \frac{y^2}{b^4} = \left(\frac{x^2}{a^2} + \frac{y^2}{b^2}\right)^2 \left(\frac{1}{a^2} + \frac{1}{b^2}\right)$$

- 3. If $\left(\frac{1}{2}, \frac{2}{5}\right)$ be the mid point of the chord of the ellipse $\frac{x^2}{25} + \frac{y^2}{16} = 1$, then its length is
 - (1) $7\sqrt{41}$
- (2) $\frac{7}{5}\sqrt{41}$
- (3) $\frac{7}{10}\sqrt{41}$
- (4) $\frac{7}{15}\sqrt{41}$

Sol. Answer (2)

The chord whose mid-point is $\left(\frac{1}{2}, \frac{2}{5}\right)$

Chord is 4x + 5y = 4

Solving with ellipse we get points

$$\left(4,\frac{-12}{5}\right)$$
 and $\left(-3,\frac{16}{5}\right)$

Length =
$$\frac{7}{5}\sqrt{41}$$

Comprehension-VII

Two tangents can be drawn from any external point on ellipse $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$, which can be observed by equation $y = mx + \sqrt{a^2m^2 + b^2}$, since this is quadratic.

- The equation of tangent from the point (2, 2) to the ellipse $4x^2 + 9y^2 = 36$ (1) y = 0 (2) x = 2 (3) 8x + 5y = 26
- (3) 8x + 5v = 26
- $(4) \quad 8x + 5y = 13$

Sol. Answer (3)

$$\frac{x^2}{9} + \frac{y^2}{4} = 1$$

$$y = mx + \sqrt{9m^2 + 4}$$

$$2 = 2m + \sqrt{9m^2 + 4}$$

$$4 + 4m^2 - 8m = 9m^2 + 4$$

$$5m^2 + 8m = 0, m = 0, -\frac{8}{5}$$

Tangents are y = 2

$$8x + 5y = 26$$

2. The equation of the locus of a point from which two tangents can be drawn to the ellipse making angles θ_1 , θ_2 with the major axis such that $\tan^2\theta_1 + \tan^2\theta_2 = 0$

(1)
$$2x^2y^2 = (x^2 - a^2)(y^2 - b^2)$$

(2)
$$x^2y^2 = (x^2 - a^2)(y^2 - b^2)$$

(3)
$$2x^2y^2 = (x^2 + a^2)(y^2 + b^2)$$

(4)
$$x^2y^2 = (x^2 + a^2)(y^2 + b^2)$$

Sol. Answer (1)

$$y = mx + \sqrt{a^2 + m^2 + b^2}$$

$$(y - mx)^2 = a^2m^2 + b^2$$

$$k^2 + m^2h^2 - 2hkm = a^2m^2 + b^2$$

$$m^2(h^2 - a^2) - 2khm + k^2 - b^2 = 0$$

$$m_1^2 + m_2^2 = c$$

$$(m_1 + m_2)^2 - 2m_1m_2 = c$$

$$\left(\frac{2kh}{h^2 - a^2}\right)^2 - 2\frac{k^2 - b^2}{h^2 - a^2} = 0$$

$$2x^2y^2 = (x^2 - a^2)(y^2 - b^2)$$

3. The equation of the locus of a points from which two tangents can be drawn to the ellipse making angles θ_1 , θ_2 with the major axis such that $\theta_1 + \theta_2 = 2\alpha(\text{constant})$

(1)
$$x^2 + y^2 - 2xy\cot 2\alpha = a^2 - b^2$$

(2)
$$x^2 - y^2 - 2xy \cot 2\alpha = a^2 - b^2$$

(3)
$$x^2 - y^2 + 2xy \cot 2\alpha = a^2 - b^2$$

(4)
$$x^2 - y^2 + 2xy\cot 2\alpha = a^2 + b^2$$

Sol. Answer (2)

$$\theta_1 + \theta_2 = 2\alpha$$

$$tan(\theta_1 + \theta_2) = tan2\alpha$$

$$\frac{\tan\theta_1 + \tan\theta_2}{1 - \tan\theta_1 \tan\theta_2} = \tan 2\alpha$$

$$\frac{m_1 + m_2}{1 - m_1 m_2} = \tan 2\alpha$$

$$\frac{\frac{2kh}{h^2 - a^2}}{1 - \frac{k^2 - b^2}{h^2 - a^2}} = \tan 2\alpha$$

$$\frac{2kh}{h^2-k^2+b^2-a^2}=\tan 2\alpha$$

$$\cot 2\alpha$$
. $2xy = x^2 - y^2 + b^2 - a^2$

$$x^2 - y^2 - 2xy \cot 2\alpha = a^2 - b^2$$

Comprehension-VIII

Rectangular hyperbola is the hyperbola whose asymptotes are perpendicular hence its equation is $x^2 - y^2 = a^2$, if axes are rotated by 45° in clockwise direction then its equation becomes $xy = c^2$.

- 1. Focus of hyperbola xy = 16, is
 - (1) $(4\sqrt{2}, 4\sqrt{2})$
- (2) $(4\sqrt{2},0)$
- (3) $(0, 4\sqrt{2})$
- (4) (4, 0)

Sol. Answer (1)

a = distance of vertex from centre

$$= 4\sqrt{2}$$

$$e = \sqrt{2}$$

$$ae = 4\sqrt{2} \cdot \sqrt{2} = 8$$

Distance of focii from centre = 8

Hence its coordinates are

$$x^2 + x^2 = 8^2$$

$$2x^2 = 64$$

$$x = 4\sqrt{2}$$

2. Directrix of hyperbola xy = 16 are

(1)
$$x + y = 4\sqrt{2}$$

$$(2) x - y = 4\sqrt{2}$$

Sol. Answer (1)

Distance of direction from centre = $\frac{a}{e} = \frac{4\sqrt{2}}{\sqrt{2}} = 4$

Equation of directrix is $x + y = \pm \lambda$

$$\frac{\pm \lambda}{\sqrt{2}} = 4$$

$$\lambda = \pm 4\sqrt{2}$$

$$x + y = \pm 4\sqrt{2}$$

3. Length of minor axis of hyperbola xy = 16 is

(1)
$$4\sqrt{2}$$

(3)
$$8\sqrt{2}$$

Sol. Answer (3)

Length of minor axis is same as major axis in rectangular hyperbola

$$L = 8\sqrt{2}$$

Comprehension-IX

If P is a variable point and F_1 and F_2 are two fixed points such that $(PF_1 - PF_2) = 2a$. Then the locus of the point P is a hyperbola with points F_1 and F_2 as the two focii $(F_1F_2 > 2a)$. If $\frac{x^2}{a^2} - \frac{y^2}{b^2} = 1$ is a hyperbola, then its conjugate hyperbola is $\frac{x^2}{a^2} - \frac{y^2}{b^2} = 1$. Let P(x, y) is a variable point such that

$$|\sqrt{(x-1)^2+(y-2)^2}-\sqrt{(x-5)^2+(y-5)^2}|=3$$

- If the locus of the point P represents a hyperbola of eccentricity e, then the eccentricity e' of the corresponding conjugate hyperbola is
 - (1) $\frac{5}{3}$

(3)

Sol. Answer (3)

$$2a = 3$$

$$e = \frac{5}{3}$$

$$b^2 = \frac{9}{4} \left(\frac{25}{9} - 1 \right) = 4$$

For eccentricity of conjugate hyperbola

$$\frac{1}{e^2} + \frac{1}{e'^2} = 1$$

$$\frac{1}{\frac{25}{9}} + \frac{1}{e'^2} = 1$$

$$e' = \frac{5}{4}$$

Locus of intersection of two perpendicular tangent to the given hyperbola is 2.

(1)
$$(x-3)^2 + \left(y-\frac{7}{2}\right)^2 = \frac{55}{4}$$

(2)
$$(x-3)^2 + \left(y-\frac{7}{2}\right)^2 = \frac{25}{4}$$

(3)
$$(x-3)^2 + \left(y-\frac{7}{2}\right)^2 = \frac{7}{4}$$

None of these

Sol. Answer (4)

Equation of directrix circle will be

$$(x-3)^2 + \left(y - \frac{7}{2}\right)^2 = a^2 - b^2$$

= $\frac{9}{4} - 4$ = negative

Hence, no points.

- If origin is shifted to point $\left(3, \frac{7}{2}\right)$ and the axes are rotated through an angle θ in anticlockwise sense so that equation of given hyperbola changes to the standard form $\frac{x^2}{a^2} - \frac{y^2}{h^2} = 1$. Then θ is
 - (1) $\tan^{-1} \left(\frac{4}{3} \right)$
- $\tan^{-1}\left(\frac{3}{4}\right)$ (2)
- (3) $\tan^{-1} \left(\frac{5}{3} \right)$ (4) $\tan^{-1} \left(\frac{3}{5} \right)$

Sol. Answer (2)

Rotation must be equal to slope of major axis.

Slope =
$$\frac{5-2}{5-1} = \frac{3}{4}$$

$$\tan\theta = \frac{3}{4}$$

SECTION - D

Matrix-Match Type Questions

Normals are drawn at points P, Q and R lying on the parabola $y^2 = 4x$, which intersect at (3, 0). Then 1.

Column-I

(A) Area of $\triangle PQR$

- (B) Radius of circumcircle of ΔPQR
- (C) Centroid of $\triangle PQR$
- (D) Circumcentre of ΔPQR

Sol. Answer : A(p), B(q), C(s), D(r)

Equation of normal at (at2, 2at)

$$y + tx = 2at + at^3$$
 Put $a = 1$

 \therefore Normal at $(t^2, 2t)$

 $y + tx = 2t + t^3$ passes through (3, 0)

$$3t = 2t + t^3$$

$$t^3 = t$$
 gives $t = 0, 1, -1$

$$P(0, 0)$$
 $Q(1, 2)$ $R(1, -2)$

Area of
$$\triangle PQR = \frac{1}{2} \begin{vmatrix} 0 & 0 & 1 \\ 1 & 2 & 1 \\ 1 & -2 & 1 \end{vmatrix} = \left| \frac{1}{2} (-4) \right| = 2 \text{ sq. unit}$$

Let c(a, b) be the circumcentre of ΔPQR

$$\therefore CP^2 = CQ^2 = CR^2$$

$$a^2 + b^2 = (a - 1)^2 + (b - 2)^2 = (a - 1)^2 + (b + 2)^2$$

$$\therefore b = 0, a = \frac{5}{2}$$

Centroid of
$$\triangle PQR = \left(\frac{2}{3}, 0\right)$$

Column-II

- 2 (p)
- (q) $\frac{5}{2}$
- (r) $\left(\frac{5}{2}, 0\right)$
- (s) $\left(\frac{2}{3}, 0\right)$

Circumcentre $c\left(\frac{5}{2},0\right)$ Circum radius = $CP = \sqrt{\frac{25}{4}} = \frac{5}{2}$

219

2. Match column I to column II according to the given condition.

Column I

Column II

(A) Tangents at the ends of focal chord for a parabola

- (p) Meet at directrix
- (B) Let *P* is a point on the parabola and tangent at *P* meets the directrix at *Q*. If *S* is the focus of parabola then *SP* and *SQ*
- (q) Meet at an angle of 90°
- (C) If $A(at_1^2, 2at_1)$ and $B(at_2^2, 2at_2)$ are the ends of a focal chord of $y^2 = 4ax$ then
- (r) $t_1 t_2 = -1$
- (D) If the normal at $(at_1^2, 2at_1)$ meets the parabola $y^2 = 4ax$ again at $(at_2^2, 2at_2)$ then
- (s) $t_2 = -t_1 \frac{2}{t_1}$

Sol. Answer : A(p, q), B(q), C(r), D(s, t)

- (t) $t_1t_2 + t_1^2 + 2 = 0$
- (A) Tangent at the each of focal chord meet at 90° and meet at directrix
- (B) The angle between SP and SQ is 90°
- (C) Condition for focal chord $t_1t_2 = -1$
- (D) Condition for normal chord

$$t_2 = -t_1 - \frac{2}{t_1}$$
 $\Rightarrow t_1 t_2 = -t_1^2 - 2$, $t_1 t_2 + t_1^2 + 2 = 0$

3. Match the following

Column I

Column II

- (A) Product of the perpendicular from foci of any tangent to the ellipse (p) $x = \pm \frac{16}{\sqrt{7}}$
 - $\frac{x^2}{9} + \frac{y^2}{4} = 1$ is
- (B) The equation $\frac{x^2}{3-a} + \frac{y^2}{2-a} = 1$ represents an ellipse, then the value of a is
- (C) The common tangent of $x^2 + y^2 = 4$ and $x^2 + 2y^2 = 2$ is
- (r) 4

(D) Polar of the focus to the ellipse $\frac{x^2}{16} + \frac{y^2}{9} = 1$ is

- (s) Not defined
- (t) 2x 3y + 4 = 0

Sol. Answer A(r), B(q), C(s), D(p)

(A)
$$E: \frac{x^2}{9} + \frac{y^2}{4} = 1$$

Product of the perpendicular from the foci of any tangent to an ellipse

= square of the semi-minor axis

(B)
$$3 - a > 0$$
, $2 - a > 0$

$$\Rightarrow$$
 a < 3, a < 2 \Rightarrow a \in (- ∞ , 2)

(C)
$$C: x^2 + y^2 = 4$$
, $E: ax^2 + 2y^2 = 2$

$$\Rightarrow \frac{x^2}{2} = \frac{y^2}{1} = 1$$

(D)
$$E: \frac{x^2}{16} + \frac{y^2}{9} = 1$$

$$\therefore \quad e = \sqrt{1 - \frac{9}{16}} = \frac{\sqrt{7}}{4}$$

$$F: (ae,0) = \left(4 \cdot \frac{\sqrt{7}}{4}, 0\right) = (\sqrt{7}, 0)$$

Polar of the focus $(\sqrt{7},0)$ is

$$\frac{xx_1}{16} + \frac{yy_1}{9} = 1$$

$$\Rightarrow \frac{x}{16} \times \sqrt{7} + 0 = 1$$

$$\Rightarrow x = \frac{16}{\sqrt{7}}$$

condition.

Column I

$$(p) \frac{1}{\sqrt{2}}$$

Column II

(A) The eccentricity of the ellipse is

(B) The length of latus rectum

- $\sqrt{2}$
- (C) The area of parallelogram formed by the tangents at the end of conjugate diameters is always greater than
- (D) The sum of squares of two semi-conjugate diameters is greater than
- $2\sqrt{2}$ (s)

2

(t)

Sol. Answer: A(p), B(q), C(p, q, r, s, t), D(p, q, s, t)

The given ellipse can be written as

$$\frac{(x-2)^2}{2} + \frac{(y-1)^2}{1} = 1$$

$$\Rightarrow a^2 = 2, b^2 = 1$$

(A) Eccentricity =
$$e = \sqrt{1 - \frac{1}{2}} = \frac{1}{\sqrt{2}}$$

(B) The length of latus rectum =
$$\frac{2b^2}{a} = \frac{2 \times 1}{\sqrt{2}} = \sqrt{2}$$

(C) Area =
$$4ab = 4\sqrt{2}$$

(D) Sum =
$$a^2 + b^2 = 2 + 1 = 3$$

5. Match the following

> Column I Column II

- (A) Angle between the pair of tangents drawn from the point (1, 2) to the ellipse $2x^2 + 3y^2 = 6$ is
- (B) If the locus of a point p to the ellipse $3x^2 + 4y^2 = 12$ is $x^2 + y^2 = 7$, then the angle between the tangents drawn at p is
- (C) If θ and ϕ are the eccentric angles of the extremities of two conjugate diameters then $\theta - \phi$ is
- (D) If the angle between the focal radii of an ellipse at a point is 90°, then the angle between a normal and focal radii at Nedica of that point is

(s)

(t)

90°

120°

(p)

Sol. Answer A(s), B(s), C(s), D(r)

(A) E:
$$2x^2 + 3y^2 = 6$$

$$\Rightarrow \frac{x^2}{3} = \frac{y^2}{2} = 1$$

Any tangent to the ellipse be

$$y = mx + \sqrt{a^2m^2 + b^2}$$

$$\Rightarrow$$
 $y = mx + \sqrt{3m^2 + 2}$

Which is passing through (1, 2)

$$\therefore \quad 2 = m + \sqrt{3m^2 + 2}$$

$$\Rightarrow$$
 $(2-m)^2 = 3m^2 + 2$

$$\Rightarrow$$
 4 - 4m + m² - 3m² - 2 = 0

$$\Rightarrow -2m^2 - 4m + 2 = 0$$

$$\Rightarrow m^2 + 2m - 1 = 0$$

$$m_1, m_2$$

$$\therefore m_1 m_2 = -1$$

(B)
$$E: 3x^2 + 4y^2 = 12$$

$$\Rightarrow \frac{x^2}{4} + \frac{y^2}{3} = 1$$

Equation of D.C. is $x^2 + y^2 = 7$

⇒ Angle between them is 90°

(C)
$$\theta - \phi = 90^{\circ}$$

- (D) The tangent and normal at any point of an ellipse bisects the angles between the focal radii of that point
 - ∴ Angle is 45°

Match the following 6.

Column I

(A) Equation of the diameter passes through (0, 0) w.r.t.

an ellipse
$$\frac{x^2}{25} + \frac{y^2}{16} = 1$$
 is

a tangent to the curve is

(B) For all real value of m, the straight line $y = mx + \sqrt{9m^2 + 4}$ is

(C) Equation of common tangents to the ellipse
$$\frac{x^2}{16} + \frac{y^2}{9} = 1$$

and the circle $x^2 + y^2 = 9$ are

(D) From a point
$$P(3, 2)$$
 tangents are drawn to the ellipse

$$\frac{x^2}{9} + \frac{y^2}{4} = 1$$
 and intersects the ellipse at Q & R. Then the locus of P is

 $(p) \qquad \frac{x^2}{q} + \frac{y^2}{4} = 1$

(q)
$$v = 3$$

(q)

- (r) 2x + 3y = 6

(t)
$$y = -3$$

Sol. Answer A(s), B(p), C(q, t), D(r)

(A) Equation of diameter w.r.t.

An ellipse
$$\frac{x^2}{25} + \frac{y^2}{16} = 1$$
 is

$$y = -\frac{b^2x}{a^2m} = -\frac{16}{25m}x$$

(B) T:
$$y = mx + \sqrt{9m^2 + 4}$$

$$E : \frac{x^2}{9} + \frac{y^2}{4} = 1$$

(D) Locus of P is a chord of contact

$$\therefore \frac{x}{3} + \frac{y}{2} = 1$$

$$\Rightarrow$$
 2x + 3y = 6

7. Match the following

Column-I

- (A) Locus of point of intersection of $x = at^2$, y = 2at
- (B) Director circle of $x^2 + y^2 = a^2$
- (C) Locus of point of intersection of the lines $x \cos\theta = y \cot\theta = a$
- (D) The locus of mid point of the chords of the circle $x^2 + y^2 2ax = 0$ passing through the origin

Sol. Answer: A(q), B(p), C(s), D(r)

(A) $x = at^2$ and y = 2at eliminate t

$$\therefore x = a \cdot \left(\frac{y}{2a}\right)^2 \implies 4ax = y^2$$

(B) Director circle of $x^2 + y^2 = r^2$ is $x^2 + y^2 = 2r^2$.

(C)
$$\cos \theta = \frac{a}{x}$$
, $\cot \theta = \frac{a}{v}$

$$\sec \theta = \frac{x}{a}$$
, $\tan \theta = \frac{y}{a}$

w.r.t.
$$\sec^2 \theta - \tan^2 \theta = 1$$

$$\frac{x^2}{a^2} - \frac{y^2}{a^2} = 1$$

$$x^2 - y^2 = a^2$$
 locus

Column-II

- (p) $x^2 + y^2 = 2a^2$
- (q) $y^2 = 4ax$
- (r) $x^2 + y^2 = ax$
- (s) $x^2 y^2 = a^2$

(D) Let P(h, k) be mid-point of chord AB.

Equal of chord $T = S_1$

$$x \cdot h + y \cdot k - a(x+h) = h^2 + k^2 - 2ah$$

Chord passes through (0, 0).

$$\therefore$$
 $-a(h) = h^2 + k^2 - 2ab$

$$\therefore$$
 Locus of $P(h, k)$

$$x^2 + y^2 = ax$$

$$S = x^2 + y^2 + x - y - z = 0$$

SECTION - E

Assertion-Reason Type Questions

STATEMENT-1: If the parabola $y = (a - b)x^2 + (b - c)x + (c - a)$ touches the x-axes in the interval (0, 1) then the line ax + by + c = 0 always passes through a fixed point.

and

STATEMENT-2: The equation L_1 + λL_2 = 0 or μL_1 + νL_2 = 0 represents a line passing through intersection of lines L_1 = 0 and L_2 = 0 which is a fixed point, when λ , μ , ν are constants.

Sol. Answer (1)

If $x \in (0, 1)$, a linear equation in a, b and c will be obtained

- \therefore ax + by + c = 0 will pass through a fixed point.
- STATEMENT-1: Two tangents are drawn from the point $(\sqrt{24}, 1)$ to $\frac{x^2}{16} + \frac{y^2}{9} = 1$, then they must be 2. perpendicular.

and STATEMENT-2 : The equation of the director circle to $\frac{x^2}{16} + \frac{y^2}{9} = 1$ is given by $x^2 + y^2 = 25$.

Sol. Answer (1)

Pair of tangents from any point on director circle are perpendicular to each other.

3. STATEMENT-1: A hyperbola and its conjugate hyperbola have the same asymptotes.

and

STATEMENT-2: In a second degree curve, equation of asymptotes, if exists differ by constant only.

Sol. Answer (1)

 $ax^2 + 2hxy + by^2 + 2gx + 2fy + c = 0$ on fixing a, b, h, g and f can be give unique pair of lines for single value of c.

4. STATEMENT-1: The line 3x + 4y = 5 intersects the hyperbola $9x^2 - 16y^2 = 144$ only at one point.

and

STATEMENT-2: Given line is parallel to an asymptotes of the hyperbola.

Sol. Answer (1)

Line parallel to asymptote intersect hyperbola at unique point.

5. STATEMENT-1 : If lines $y = m_1 x$ and $y = m_2 x$ are the conjugate diameter of the hyperbola $xy = c^2$, then $m_1 + m_2 = 0$.

and

STATEMENT-2: Two lines are called conjugate diameter of hyperbola if they bisect the chords parallel to each other.

Sol. Answer (1)

Let a diameter of $xy = c^2$ has slope m.

$$T = S_1 \implies \frac{kx + hy}{2} = \frac{hk}{2}$$

$$\Rightarrow m = \frac{-k}{h}$$

Diameter \Rightarrow y = -mx

- \therefore Slope of conjugate diameter $\equiv -m$
- $\Rightarrow m m = 0 \Rightarrow$ statement-1 is true and statement-2 is correct explanation.

SECTION - F

Integer Answer Type Questions

1. A trapezium is inscribed in parabola $y^2 = 4x$ such that its diagonal pass through the point (1, 0) and each has length $\frac{25}{4}$. If area of trapezium be P then $\frac{4P}{25}$ equals ____.

Sol. Answer (3)

Focus of parabola, $y^2 = 4x$ is (1, 0)

So, diagonals are focal chord

$$AS = 1 + t^2 = c$$
 (say)

$$\therefore \frac{1}{c} + \frac{1}{\frac{25}{4} - c} = 1 \left\{ \because \frac{1}{AS} + \frac{1}{CS} = \frac{1}{a} \right\}$$

$$\Rightarrow 4c^2 - 25c + 25 = 0 \Rightarrow c = \frac{5}{4}, 5$$

For
$$c = \frac{5}{4}$$
, $1 + t^2 = \frac{5}{4} \Rightarrow t^2 = \frac{1}{4} \Rightarrow t = \pm \frac{1}{2}$

For
$$c = 5$$
, $1 + t^2 = 5 \Rightarrow t = \pm 2$

$$\therefore A \equiv \left(\frac{1}{4}, 1\right), B \equiv (4, 4), C \equiv (4, -4) \text{ and } D \equiv \left(\frac{1}{4}, -1\right)$$

AD = 2 and BC = 8, distance between AD and $BC = \frac{15}{4}$

- \therefore Area of trapezium, $P = \frac{1}{2}(2+8) \cdot \frac{15}{4} = \frac{75}{4} \Rightarrow \frac{4P}{25} = 3$
- 2. Three normals drawn from any point to parabola $y^2 = 4ax$ cut the line x = 2a in points whose ordinates are in AP. If slopes of normals be m_1 , m_2 and m_3 then $\left(\frac{m_1}{m_2}\right)\left(\frac{m_3}{m_2}\right)$ equals _____.

Sol. Answer (1)

Equation of parabola $\rightarrow y^2 = 4 \ ax$.

If feet of normals passing through a point be $(am_1^2, -2am_1), (am_2^2, -2am_2)$ and $(am_3^1 - 2am_3)$

 \therefore Equation of normal at $(am_1^2, -2am_1)$ is $y = m_1x - 2am_1 - am_1^3$

Solving with line x = 2a, we get point of intersection as $(2a, m_1^3)$ similarly solving with other normals the ordinates of points of intersection with x = 2a are $-am_2^2$ and $-am_3^2$.

.. According to the question,

$$-\{am_1^3 + am_3^3\} = -2am_2^2$$

...(i)

But $m_1 + m_3 = -m_2$

...(ii)

$$\therefore 2m_2^3 = (m_1 + m_3)\{m_1^2 + m_3^2 - m_1m_3\} = 2m_2^2$$

$$\therefore 2m_2^3 = (m_1^2 - m_3^2 + m_1 m_3)$$

...(iii) {using (ii)}

Also
$$m_2^2 = m_1^2 + m_3^2 + 2m_1m_3$$

...(iv

(iv) - (iii)
$$\Rightarrow 3m_2^2 = 3m_1, m_3 \Rightarrow \left\{\frac{m_1}{m_2}\right\} \left\{\frac{m_3}{m_2}\right\} = 1$$

3. A chord is drawn from a point P(1, t) to parabola $y^2 = 4x$ which cuts the parabola at A and B. If PA.PB = 3|t|, then maximum value of 't' equals

Sol. Answer (4)

Let equation of line passing through P(1, t) be

$$\frac{x-1}{\cos\theta} = \frac{y-t}{\sin\theta} = r$$

$$x = r\cos\theta = 1$$

$$y = r \sin\theta + t$$

Line meets parabola at A and B

$$\Rightarrow$$
 { $r\sin\theta + t$ }² = 4{ $r\cos\theta + 1$ }

$$r^2\sin^2\theta + 2r\{t\sin\theta - 2\cos\theta\} + t^2 - 4 = 0$$

$$\therefore PA \cdot PB = \frac{t^2 - 4}{\sin^2 \theta} = 3 |t|$$

$$\Rightarrow \left| \frac{t^2 - 4}{3t} \right| = \sin^2 \theta \le 1 \Rightarrow \frac{|t^2 - 4|}{3|t|} \le 1$$

$$\Rightarrow t^2 - 3|t| - 4 \le 0$$

$$\Rightarrow$$
 $(|t| + 1) (|t| - 4) \le 0$

 \Rightarrow $|t| \le 4 \Rightarrow$ maximum value of it is 4

4. If the locus of the feet of perpendicular from the foci on any tangent to an ellipse $\frac{x^2}{4} + \frac{y^2}{2} = 1$ is $x^2 + y^2 = k$, then the value of k is _____.

Sol. Answer (4)

The general equation of tangent of slop m is

$$v = mx \pm \sqrt{a^2 m^2 + b^2} \qquad \dots (i)$$

Equation of perpendicular is

$$y - 0 = -\frac{1}{m}(x - ae)$$
 (let focus is (ae, 0))

$$ym + x - ae = 0$$

$$my + x = ae$$

...(ii)

Locus of point of intersection of (i) and (ii) is obtained by eliminating m between (i) and (ii)

That is given by

$$(y - xm)^2 + (my + x)^2 = a^2m^2 + b^2 + a^2e^2$$

$$\Rightarrow$$
 $(1 + m^2)(x^2 + y^2) = a^2m^2 + (a^2 - a^2e^2) + a^2e^2$

$$\Rightarrow x^2 + y^2 = a^2$$

Here
$$a^2 = 4 \Rightarrow k = 4$$

5. The number of points on the ellipse $\frac{x^2}{50} + \frac{y^2}{20} = 1$ from which pair of perpendicular tangents are drawn to ellipse $\frac{x^2}{16} + \frac{y^2}{9} = 1$, is _____.

Sol. Answer (4)

For ellipse, $\frac{x^2}{16} + \frac{y^2}{9} = 1$, equation of director circle is $x^2 + y^2 = 25$

This director circle will cut the ellipse $\frac{x^2}{50} + \frac{y^2}{20} = 1$ at 4 points.

6. If any two chords be drawn through two points on major axis of an ellipse equidistant from centre, then $\tan\left(\frac{\alpha}{2}\right)\tan\left(\frac{\beta}{2}\right)\tan\left(\frac{\gamma}{2}\right)\tan\left(\frac{\delta}{2}\right) = \underline{\qquad}, \text{ (where } \alpha, \ \beta, \ \gamma, \ \delta \text{ are ecentric angles of extremities of chords)}$

Sol. Answer (1)

From figure,

$$PQ = \frac{x}{a}\cos\left(\frac{\alpha+\beta}{2}\right) + \frac{y}{b}\sin\left(\frac{\alpha+\beta}{2}\right) = \cos\left(\frac{\alpha-\beta}{2}\right)$$

If passes through $(x_1, 0)$ so $\frac{x_1}{a} = \frac{\cos\left(\frac{\alpha - \beta}{2}\right)}{\cos\left(\frac{\alpha + \beta}{2}\right)}$

Similarly for RS, which passes through (-x, 0)

$$\frac{-x_1}{a} = \frac{\cos\left(\frac{\gamma - \delta}{2}\right)}{\cos\left(\frac{\gamma + \delta}{2}\right)} \qquad \dots \text{(ii)}$$

From (i) and (ii),

$$\frac{\cos\left(\frac{\alpha-\beta}{2}\right)}{\cos\left(\frac{\alpha+\beta}{2}\right)} = -\frac{\cos\left(\frac{\gamma-\delta}{2}\right)}{\cos\left(\frac{\gamma+\delta}{2}\right)}$$

Using componendo and dividendo and solving, we get

$$\frac{2\cos\frac{\alpha}{\beta}\cos\frac{\beta}{2}}{2\sin\frac{\alpha}{2}\sin\frac{\beta}{2}} = \frac{2\sin\frac{\gamma}{2}\sin\frac{\delta}{2}}{2\cos\frac{\gamma}{2}\cos\frac{\delta}{2}} \Rightarrow \tan\frac{\alpha}{2}\tan\frac{\beta}{2}\tan\frac{\gamma}{2}\tan\frac{\delta}{2} = 1$$

7. If M_1 and M_2 are feet of perpendiculars from foci S_1 and S_2 of ellipse $\frac{x^2}{9} + \frac{y^2}{16} = 1$ on the tangent at any point P an ellipse, then $\sqrt{(S_1M_1)(S_2M_2)}$ equals _____

Sol. Answer (4)

We know that product of perpendicular drawn from two foci S_1 and S_2 of an ellipse $\frac{x^2}{9} + \frac{y^2}{16} = 1$ on the tangent at any point P on ellipse is equal to square of semi-minor axis

i.e.,
$$\sqrt{(S_1M_1)(S_2M_2)} = \sqrt{16} = 4$$

8. An ellipse intersects the hyperbola $2x^2 - 2y^2 = 1$ orthogonally. The eccentricity of the ellipse is reciprocal of that of the hyperbola. If the axes of the ellipse are along the coordinate axes and the equation of the ellipse is $x^2 + ky^2 = k$ then the value of k is _____.

Sol. Answer (2)

Let the equation of ellipse is

$$\frac{x^{2}}{a^{2}} + \frac{y^{2}}{b^{2}} = 1, a > b$$
...(i)
$$e_{1} = \sqrt{1 - \frac{b^{2}}{a^{2}}}$$

$$x^{2} - y^{2} = \frac{1}{2}$$
...(ii)

$$\boldsymbol{e}_2 = \sqrt{1 + \frac{1}{1}} = \sqrt{2}$$

But
$$e_2 = \frac{1}{e_1}$$

$$\Rightarrow \frac{1}{\sqrt{2}} = \sqrt{1 - \frac{b^2}{a^2}} \Rightarrow \frac{1}{2} = 1 - \frac{b^2}{a^2} \Rightarrow \frac{b^2}{a^2} = \frac{1}{2}$$

$$a = b\sqrt{2}$$

by (i)
$$\frac{2x}{a^2} + \frac{2y}{b^2} \frac{dy}{dx} = 0$$

$$\frac{dy}{dx} = \left(\frac{-\frac{x}{a^2}}{\frac{y}{b^2}}\right) = -\frac{b^2}{a^2} \cdot \frac{x}{y} = -\frac{x}{2y} \qquad \dots (iv)$$

(ii)
$$2x - 2y \frac{dy}{dx} = 0$$

$$\frac{dy}{dx} = \frac{x}{y}$$

by but
$$\left(\frac{x}{y}\right)\left(-\frac{x}{2y}\right) = -1$$

$$\Rightarrow x^2 = 2y^2$$

by (ii) and (vi)

$$y^2 = \frac{1}{2}$$

$$x^2 = 1$$

Putting
$$x^2 = 1$$
, $y^2 = \frac{1}{2}$ in (i)

$$\frac{1}{a^2} + \frac{1}{2b^2} = 1$$

by (iii) and (vii),

$$a^2 = 2$$
, $b^2 = 1$

Hence the equation of ellipse

$$\frac{x^2}{2} + \frac{y^2}{1} = 1$$
, $x^2 + 2y^2 = 2$ \Rightarrow $k = 2$

9. The equation of directrix of a hyperbola is 3x + 4y + 8 = 0. The focus of the hyperbola is (1, 1). If eccentricity of the hyperbola is 2 and the length of conjugate axis is k then [k], where [] represents the greatest integer function, is equal to _____.

...(iii)

...(v)

Sol. Answer (6)

The distance between focus and directrix is $= \left| \frac{3 \times 1 + 4 \times 1 + 8}{\sqrt{9 + 16}} \right| = 3$

e = eccentricity, 2a = transverse axis,

2b = conjugate axis

Then
$$\left| \frac{a}{e} - ae \right| = 3$$

$$\Rightarrow ae - \frac{a}{e} = 3$$

$$\Rightarrow ae - \frac{a}{e} = 3 \qquad \Rightarrow a\left(2 - \frac{1}{2}\right) = 3$$

$$\Rightarrow a\left(\frac{3}{2}\right) = 3$$
,

Between know that $e^2 = 1 + \frac{b^2}{a^2}$

$$\Rightarrow 4 = 1 + \frac{b^2}{4} \qquad \Rightarrow b^2 = 12,$$

$$\Rightarrow b^2 = 12,$$

$$b = 2\sqrt{3}$$

$$k = 2b = 4\sqrt{3}$$

$$[k] = 6$$

- 10. Consider the hyperbola $\frac{x^2}{9} \frac{y^2}{4} = 1$. If the locus of middle point of segment of any normal intercepted between the coordinate axis is $36x^2 - 16y^2 = k$, then the value of $\frac{k}{169}$, is ____
- Sol. Answer (1)

Equation of normal

$$ax \cos \theta - by \cot \theta = a^2 + b^2$$

$$\Rightarrow$$
 3x cos θ – 2y cot θ = 13

at
$$y = 0$$
, $x = \frac{13}{3\cos\theta}$

at
$$x = 0$$
, $y = -\frac{13}{2\cot\theta}$

Let middle point of (h, k) is

$$h = \frac{13}{6\cos\theta}$$

$$k = -\frac{13}{4 \cot \theta}$$

$$\Rightarrow \cos \theta = \frac{13}{6h} \Rightarrow \sec \theta = \frac{6h}{13}$$

$$\Rightarrow \cot \theta = -\frac{13}{4k} \Rightarrow \tan \theta = -\frac{4k}{13}$$

For locus of (h, k), we use

$$1 + \tan^2 \theta = \sec^2 \theta$$

$$\Rightarrow 1 + \frac{16k^2}{169} = \frac{36h^2}{169}$$

$$\Rightarrow$$
 36 $h^2 - 16y^2 = 169$

$$\Rightarrow k = 169 \Rightarrow \frac{k}{169} = 1$$

- 11. The area of the triangle formed by any arbitrary tangents of the hyperbola xy = 4, with the coordinate axis is ____ units.
- Sol. Answer (8)

Let any tangent $\frac{x}{t} + yt = 4$

Area of $\Delta = \frac{1}{2} \times \frac{4}{t} \times 4t = 8$ units

- 12. If the circle $x^2 + y^2 = 4$ intersects the hyperbola xy = 4 in four points (x_i, y_i) , i = 1, 2, 3, 4, then value of $\frac{x_1x_2x_3x_4}{4}$ is _____.
- Sol. Answer (4)

Solving circle and hyperbola, we get

$$x^2 + \frac{16}{x^2} = 4 \Rightarrow x^4 - 4x^2 + 16 = 0$$

Let its root be x_1 , x_2 , x_3 and x_4

$$x_1 x_2 x_3 x_4 = 16$$

$$\Rightarrow \frac{x_1 x_2 x_3 x_4}{4} = 4$$

- 13. The locus of the point of intersection of two perpendicular tangents of the ellipse $\frac{x^2}{25} + \frac{y^2}{16} = 1$ is a circle of radius R, then [R] equals _____. (where $[\cdot]$ represents greatest integer function)
- Sol. Answer (6)

Required circle is directs circle, hence it's equation is $x^2 + y^2 = 25 + 16$

$$\Rightarrow R = \sqrt{41}$$

$$\Rightarrow$$
 [R] = 6

- 14. The minimum area of the triangle formed by the tangent to the ellipse $\frac{x^2}{16} + \frac{y^2}{9} = 1$ and the coordinate axes is k units, then $\frac{k}{2}$ equals _____.
- Sol. Answer (6)

Tangent at point P is $\frac{x}{4}\cos\theta + \frac{x}{4}\sin\theta = 1$

Area of triangle $OAB = \frac{1}{2} \times 4 \sec \theta \times 3 \cos \theta$

$$=\frac{12}{\sin 2\theta}$$

for minimum $\sin 2\theta = 1$

$$\Rightarrow$$
 (Area)_{min} = 12 = k

$$\Rightarrow \frac{k}{2} = 6$$

15. The number of integral values of k for which $\frac{x^2}{12-k} + \frac{y^2}{8-k} = 1$ represents hyperbola is _____.

Sol. Answer (3)

For hyperbola,

$$12 - k > 0$$
 and $8 - k < 0$

- \Rightarrow k < 12 and k > 8
- $\Rightarrow k \in (8, 12)$

Number of integral values 9, 10, 11 = 3 values

