FUNDAMENTALS OF MATHEMATICS

INTRODUCTION TO LOGARITHM

What you already know	What you will learn oduction to logarithm.		
Recap of E	xponents		
Solve for x: 2 [×] = 8	Solve for x: 3 ^x = 81		
Step 1: In 2 [×] = 8, 2 is the base, x is the exponent and 8 is the number.	Step 1: In 3 ^x = 81, 3 is the base, x is the exponent and 81 is the number.		
Step 2: 8 = 2 x 2 x 2 implies 8 = 2 ³ Here 2 is the base, 3 is the exponent and 8 is the number.	Step 2: $81 = 3 \times 3 \times 3 \times 3 \Rightarrow 81 = 3^4$ Here 3 is the base, 4 is the exponent, and 81 is the number.		
Step 3: 2 [×] = 8 ⇒ x = 3 (as 2 ³ = 8)	Step 3: $3^{\times} = 81 \Rightarrow x = 4$ (as $3^4 = 81$)		
Step 4: 2 [×] = 2 ³ (as 8 = 2 ³) ⇒ x = 3	Step 4: 3 ^x = 3 ⁴ (as 81 = 3 ⁴) ⇒ x = 4		

The logarithm of an INPUT 'N' to the BASE 'a'

We calculate the logarithm of a certain quantity with respect to a base. Logarithmic operator on an input 'N' with respect to the base 'a', is denoted by the notation ' log_a (*N*)' which is pronounced as the logarithm of the input 'N' to the base 'a' or log 'N' to the base 'a'.

Relation between log and exponent log_a N = Exponent \Leftrightarrow a^{Exponent} = N, i.e., when base 'a' is raised to the power "exponent", it gives the number "N"

What is the logarithm of 8 to the base 2, i.e. $\log_2 8$?

Let $log_2 8 = x$ Since, $log_a N = Exponent \Leftrightarrow a^{Exponent} = N$ $log_2 8 = x \Rightarrow 2^x = 8$ $2^{x} = 2^{3}$ (as $8 = 2^{3}$) As $2^{3} = 8 \Rightarrow x = 3$

What is the logarithm of 81 to the base 3, i.e. log_3 81?

Let $log_{3} 81 = x$ Since, $log_{a} N = Exponent \Leftrightarrow a^{Exponent} = N$ $log_3 81 = x \Rightarrow 3^x = 81$ $3^{x} = 3^{4}$ (as $81 = 3^{4}$) As $3^4 = 81 \Rightarrow x = 4$

(i) $k \in R$ (ii) a > 0 and $a \neq 1$ (iii) *N* > 0

If a = 0,

 $0^k = 0 = N \Rightarrow \log_0 0 = k$, i.e, ' $\log_0 0$ ' has infinitely many solutions, which is not possible. Moreover, if a = 0, say $log_{0}2 = m \Rightarrow 0^{m} = 2$, which is not possible. Therefore, base a \neq 0.

If a = 1,

 $1^{k} = 1 = N \Rightarrow \log_{1} 1 = k$, i.e., $\log_{1} 1$ has infinitely many solutions, which is not possible. Moreover, if a = 1, then $\log_2 1 = m \Rightarrow 1^m = 2$

If a < 0, for example, a = -2 (say), then $(-2)^{\frac{1}{2}} = N$ (say $k = \frac{1}{2}$) $\Rightarrow \sqrt{-2} = N \Rightarrow N \notin R$, which is not possible. Therefore, base $a \neq 0$.

For valid base (a > 0 and $a \neq 1$), a^k is always positive for k < 0, k = 0 and k > 0. So, $a^k = N > 0$. Therefore, the logarithm of only strictly positive quantities exists. The logarithm of '0' and logarithm of negative quantity do not exist.

 $a^{k} = 1$

Hence Proved

 $log_{a} 1 = 0$

Corollary of Property iii

Corollary means derived from proof of a theorem or property.

Corollary 1 property - iii (valid for finitely many inputs)

 $log_{a} (m_{1}) + log_{a} (m_{2}) + ... + log_{a} (m_{r}) =$ $log_{a} (m_{1} \times m_{2} \times \times m_{r}),$ where m_{1}, m_{2}, ..., m_{r} > 0 and a > 0 & a \neq 1

Corollary 2

 $log_{a}(m) + log_{a}(n) = log_{a}(mn),$ where m, n > 0 and a > 0 & a ≠ 1 If m = n, then log_{a}(m) + log_{a}(m) = log_{a}(m^{2}) 2log_{a}(m) = log_{a}(m^{2}) \Rightarrow log_{a}(m^{2}) = 2log_{a}(m)

Evaluate:
$$\log_{11} \left(1 - \frac{1}{3}\right) + \log_{11} \left(1 - \frac{1}{4}\right) + \log_{11} \left(1 - \frac{1}{5}\right) + \dots + \log_{11} \left(1 - \frac{1}{242}\right)$$

(a) -2 (b) -1 (c) 1 (d) 2
Solution:
 $\log_{a}m_{1} + \log_{a}m_{2} + \dots + \log_{a}m_{r} = \log_{a}(m_{1} \times m_{2} \times \dots \times m_{r})$
LHS = $\log_{11} \left(1 - \frac{1}{3}\right) \times \left(1 - \frac{1}{4}\right) \times \left(1 - \frac{1}{5}\right) \times \dots \times \left(1 - \frac{1}{242}\right)$
 $= \log_{11} \left(\frac{2}{3} \times \frac{3}{4} \times \frac{4}{5} \times \dots \times \frac{241}{242}\right)$
 $= \log_{11} \left(\frac{2}{121}\right) = 2 \log_{11}(11^{-2})$
 $= \log_{11} \left(\frac{1}{11^{2}}\right) = -2 \times 1$
 $= \log_{11} \left(\frac{1}{11^{2}}\right) = -2$

 $\Rightarrow \log_{5} a \times \frac{\log_{5} x}{\log_{5} a} = 2$ $\Rightarrow \log_{5} x = 2 \Rightarrow 5^{2} = x$ ⇒ x = 25

Self-Assessment

1. Express $6^3 = 216$ in logarithm form.

2.
$$\frac{\log \sqrt{8}}{\log 8}$$
 is equal to
(a) $\frac{1}{\sqrt{8}}$ (b) $\frac{1}{4}$ (c) $\frac{1}{2}$ (d) $\frac{1}{8}$
3. If $\log 9 = a$, then $\log(\frac{1}{90})$ is equal to
(a) - (1 + a) (b) (1 + a)⁻¹ (c) $\frac{a}{10}$ (d) $\frac{1}{10a}$

= - (a + 1)

FUNDAMENTALS OF MATHEMATICS

LOGARITHMIC FUNCTION

					-			
	f(x)	0	1	2	-1	-2		÷
ľ							i.	
							1	
							1	

Graph	log ₂ x
 $\begin{array}{c} 2 \\ 1 \\ \frac{1}{42} \end{array}$	
0 1 1 2 10 1 1 11 2 10 1 11 2 10 1 11 2	4

The following points	can be inferred from the graph
1. $f(x) = \log_a(x) \in \mathbb{R}$ iff $x > 0$. $\log_a(0) \notin \mathbb{R}$ and $\log_a(-ve) \notin \mathbb{R}$	2. f(x) = log _a (x) with a > 1 is a continuous function.
 Graph intersects the X-axis only at x = 1, i. 	e. $\log_{a}(x) = 0 \Leftrightarrow x = 1$

The following points can be inferred from the graph

1. $f(x) = \log_a(x) \in \mathbb{R}$ iff x > 0. $\log_a(0) \notin \mathbb{R}$ and $\log_a(-ve) \notin \mathbb{R}$

2. $f(x) = \log_a(x)$ with 0 < a < 1 is a continuous function

3. Graph intersects the x-axis only at x = 1, i.e. $\log_a(x) = 0 \Leftrightarrow x = 1$

Properties for $f(x) = \log_a(x)$, (When base a > 1)

Property I

 $\log_{2}(x) > 0$ iff x > 1

Property III

 $log_a(x) = 0$ iff x = 1

Property V

 $\log_{a}(x) > 1$ iff x > a

Property VII

 $\log_{a}(x) < 0$ iff 0 < x < 1

Property II $\log_{a}(x) < 0$ iff 0 < x < 1

Property IV $log_{a}(x) = 1$ iff x = a

Property VI $0 < \log_{a}(x) < 1$ iff 1 < x < a

Property VIII $\log_a(x) > k \Leftrightarrow x > a^k$

Properties for $f(x) = \log_a(x)$, (When base 0 < a < 1)

Property I $\log_{a}(x) > 0$ iff 0 < x < 1

Property III log_a(x) = 0 iff x = 1

Property V $\log_{a}(x) > 1$ iff 0 < x < a

Property VII $log_x(x) < 0$ iff x > 1 Property II log_a(x) < 0 iff x > 1

Property IV $\log_{a}(x) = 1$ iff x = a

Property VI 0 < log_a(x) < 1 iff a < x < 1

Property VIII log_(x) > k $\Leftrightarrow 0 < x < a^k$

For $f(x) = \log_a(x), \forall x \in R^+$

Domain = $(0, \infty) = R^+$ Range = R Continuous in its domain

Graph intersects x-axis at (1, 0)log_ax = 0 has only one solution (x = 1)

$$log_{\frac{1}{5}}(x-3) > 2, then solve for x.$$
Solution:
We have $log_{\frac{1}{5}}(x-3) > 2$
 $0 < x - 3 < (\frac{1}{5})^2$ $[log_a x > k \Leftrightarrow 0 < x < a^k]$
 $3 < x < 3 + (\frac{1}{5})^2$
 $3 < x < 3 + \frac{1}{25}$
 $3 < x < \frac{76}{25}$
 \therefore Solution set: $x \in (3, \frac{76}{25})$
Solve for x, if $log_{(x^2 + 3)}(2 > 1)$
Solution:
Now $x^2 \ge 0 \forall x \in \mathbb{R}$
 $\Rightarrow x^2 + 3 \ge 3 \forall x \in \mathbb{R}$
 $\Rightarrow x^2 + 3 \ge 3 \forall x \in \mathbb{R}$
 $blog_a x > 1 \Leftrightarrow x > a; a > 1$
 $\therefore log_{(x^2 + 3)}(2 > 1)$
 $\Rightarrow 2 > x^2 + 3$
 $\Rightarrow x^2 < -1$
(Not possible for any $x \in \mathbb{R}$)
 \therefore No solution

Concept Check

- 1. Find the value of x, if $\log_3 (2 x) > 4$
- 2. Solve for $x : \log_x (6 x) > 2$
- 3. If x > 0 and $\log_{\left(\frac{x}{x+1}\right)} x^2 \ge \log_{\left(\frac{x}{x+1}\right)} (2x + 3)$, then how many integral values of x exist? (a) 0 (b) 1 (c) 2 (d) 3

Summary Sheet

Key Takeaways

Logarithmic function: $f(x) = \log_a x : x \in R^+$, a > 0 a $\neq 1$

 $f(x) = \log_a x \ \forall \ x \in \mathbb{R}^+ \text{ and } a > 1$ $f(x) = \log_a x \ \forall \ x \in \mathbb{R}^+ \text{ and } 0 < a < 1$ (i) Continuous function(i) Continuous function(ii) Strictly increasing function(ii) Strictly decreasing function(iii) $\log_a x = 0 \Leftrightarrow x = 1$ (iii) $\log_a x = 0 \Leftrightarrow x = 1$ (iv) If $x_2 > x_1$, $\Leftrightarrow \log_a (x_2) > \log_a (x_1)$ (IV) If $x_2 > x_1$, $\Leftrightarrow \log_a (x_2) < \log_a (x_1)$

Key Results

1. For $f(x) = \log_{a}(x)$, a > 1

- $\log_a(x) > 0$ (strictly positive) if x > 1
- $\log_{a}(x) < 0$ (strictly negative) if 0 < x < 1
- log_a(x) > 1 iff x > a
- 0 < log_a(x) < 1 iff 1 < x < a
- $\log_a(x) > k \Leftrightarrow x > a^k$

- 2. For $f(x) = \log_a(x)$, 0 < a < 1
 - $\log_a(x) > 0$ (strictly positive) if 0 < x < 1
 - $\log_a(x) < 0$ (strictly negative) if x > 1
 - log_a(x) > 1 iff 0 < x < a
 - $0 < \log_{a}(x) < 1$ iff a < x < 1
 - $\log_a(x) \ge k \Leftrightarrow 0 < x < a^k$

- 1. What values of x satisfy the following inequality? $log_3(3x + 4) > log_3(4x)$
- 2. What are the values satisfying the given inequality? $log_{\frac{1}{2}}(x + 2) > log_{\frac{1}{4}}(x^{2})$
- 3. Find the values of x satisfying the following inequality.

$$\log_{(x^2+2)}(12-3x) < 1$$

log_ax > k iff x < a^k; a < 1

 $\therefore \log_x (6 - x) \ge 2$ $\Rightarrow 6 - x < x^2$ $\Rightarrow x^2 + x - 6 \ge 0$ $\Rightarrow (x - 2) (x + 3) \ge 0$ $\Rightarrow x \in \Phi (\because 0 < x < 1)$

 \therefore Case I \cup Case II:

(1, 2) ∪ Φ = (1, 2)

- \therefore Solution set: $x \in (1, 2)$
- 3. Firstly, $x > 0 \Rightarrow x + 1 > 0$

$$\therefore 0 < \frac{x}{x+1} < 1$$

$$\Rightarrow 0 < Base < 1$$

 $f(x) = \log_{a} x: 0 < a < 1 \text{ is a strictly decreasing function}$ $log_{a} x_{1} \ge \log_{a} x_{2}$ $\Rightarrow x_{1} \le x_{2}$

$$\therefore \log_{\frac{x}{x+1}} (x^2) \ge \log_{\frac{x}{x+1}} (2x+3)$$

$$\Rightarrow x^2 \le 2x+3$$

$$\Rightarrow x^2 - 2x - 3 \le 0$$

$$\Rightarrow (x-3) (x+1) \le 0$$

$$\Rightarrow x \in (0, 3] = \text{Final solution set}$$

$$\Rightarrow x = 1, 2, 3$$

Self-Assessment

1. For the inequation to be valid,

$$3x + 4 > 0 \text{ and } 4x > 0$$

$$\Rightarrow x > \frac{-4}{3} \text{ and } x > 0$$

$$\therefore x > 0 \Rightarrow x \in (0, \infty)$$

$$\therefore \text{ Base is 3 which is > 1.}$$

$$\Rightarrow (3x + 4) > 4x \text{ (as log}_a x_1 > \log_a x_2 \Leftrightarrow x_1 > x_2 \text{ for a > 1)}$$

$$\Rightarrow 4x - 3x < 4 \Rightarrow x < 4$$

$$\therefore x \in (-\infty, 4)$$

$$\therefore \text{ Final solution is } (0, \infty) \cap (-\infty, 4)$$

2. Given $\log_{\frac{1}{2}}(x+2) > \log_{\frac{1}{4}}(x^2)$ This inequation is valid only when, $x+2 > 0 \& x^2 > 0$ $\Rightarrow x > -2$ and $x \neq 0 \Rightarrow x \in (-2, \infty) - \{0\} \rightarrow (1)$ Now $\log_{\frac{1}{2}}(x+2) > \log_{(\frac{1}{2})^2}(x^2) \Rightarrow \log_{\frac{1}{2}}(x+2) > \frac{2}{2}\log_{\frac{1}{2}}|x|$ (As $|x|^2 = x^2$) $\Rightarrow \log_{\frac{1}{2}}(x+2) > \log_{\frac{1}{2}}|x|$ $\Rightarrow x+2 < |x|$ (As for 0 < a < 1; $\log_a x_1 > \log_a x_2 \Rightarrow x_1 < x_2$) For x > 0; |x| = x $\Rightarrow x+2 < x \Rightarrow x \in \varphi$ For -2 < x < 0; |x| = -x $\Rightarrow x+2 < -x \Rightarrow 2x < -2 \Rightarrow x < -1$ $\Rightarrow x \in (-2, -1)$

- Solution Set : $x \in (-2, -1)$
- 3. Given $\log_{x^{2}+2}(12-3x) < 1$ We know that $x^{2} \ge 0 \Rightarrow x^{2}+2 \ge \forall x \in \mathbb{R}$ Therefore, $base \ge 2 \forall x \in \mathbb{R}$ Also 12-3x > 0 $\Rightarrow 3x < 12$ $\Rightarrow x < 4 \rightarrow (1)$ Now $\log_{x^{2}+2}(12-3x) < 1$ $\Rightarrow 12-3x < x^{2}+2$ $\Rightarrow x^{2}+3x-10 > 0$ $\Rightarrow (x+5)(x-2) > 0$ $\Rightarrow x \in (-\infty, -5) \cup (2, \infty) \rightarrow (2)$ From(1) and (2) Solution Set : $(-\infty, -5) \cup (2, 4)$

FUNDAMENTALS OF MATHEMATICS

CHARACTERISTIC AND MANTISSA

What you will learn

- Characteristic and mantissa
- Applications of characteristic and mantissa
- Finding number of digits in aⁿ

What you already know

0

Logarithm

- Properties of logarithm
- Logarithmic function
- Properties of logarithmic function

Relation Between Natural and Common Logarithm

We know that, the natural log is given by \log_x and the common log is given by $\log_{10} x$.

log_10 ≅ 2.303 = 2.3 And $\log_{10}e = \frac{1}{\log_{e} 10} = 0.43$ [Using the change of base rule] $\log_{10} n = (\log_{e} n) \times (0.43)$

Characteristic and Mantissa

 $log_{10}N$, i.e. common logarithm of the valid input N > 0 always has an integral part (I) and a fractional part (F). Hence, we can write: $log_{10}N = I + F$, where $I \in Z$ and $F \in (0, 1)$. I and F are known as the characteristic and mantissa of $log_{10}N$, respectively.

log ₁₀ N	Characteristic	Mantissa	
5.799 (5 + 0.799)	5	0.799	
0.4481 (0 + 0.4481)	0	0.4481	
13 (13 + 0)	13	0	
-0.5 (-1 + 0.5)	-1	0.5	
- 3.81 (-4 + 0.19)	-4	0.19	

The integral part (I) can be 0 or any positive/negative integer, whereas the fractional part (F) is always a non-negative proper fraction, means F = 0 or 0 < F < 1.

Note: For $\log_{10} N$ with input n = 1, $\log_{10} 1 = 0 = 0 + 0$, where 0 is the characteristic I and 0 is also the mantissa F.

Characteristic of log_{10} N for N > 1

If N = 58.34, then what is the characteristic of log_{10} (58.34)?

 $log_{10} 1 = 0$ $log_{10} 10^{1} = 1$ $log_{10} 10^{2} = 2$ $log_{10} 10^{3} = 3$

 $10^{1} \le 58.34 < 10^{2}$ $\log_{10} 10^{1} \le \log_{10} 58.34 < \log_{10} 10^{2}$ $1 \le \log_{10} 58.34 < 2$

So, \log_{10} (58.34) = 1.(something) = 1 + 0.(something), where 1 is the characteristic and 0.(something) is the mantissa. Therefore, the characteristic of \log_{10} (58.34) is 1.

In general,

If the integral part of N contains k digits, $10^{k\cdot 1} \le N < 10^{k}$ Taking log with base 10 on both sides, $\Rightarrow k - 1 \le \log_{10} N < k$ \therefore Characteristic of $\log_{10} N = k - 1$

Number of Digits in aⁿ

Logarithm can be extremely useful to calculate the number of digits in large numbers. A number will have precisely k digits if and only if it is in the range $R = [10^{k-1}, 10^k - 1]$ For instance, the number 4,000,000, has 7 digits and is in the range $[10^6, 10^7 - 1] = [1,000,000, 9,999,999]$.

Given an integer aⁿ, one can determine k and the number of digits in aⁿ, by working with the inequality $a^n \in R = [10^{k-1}, 10^k - 1] \Rightarrow 10^{k-1} \le a^n \le 10^k - 1$ Taking log with base 10

 $\Rightarrow (k - 1) \log 10 \le \log a^n \le \log (10^k - 1) \Rightarrow k - 1 \le \log a^n \le k \quad (::10^k - 1 \le 10^k \Rightarrow \log(10^k - 1) \le \log 10^k)$

Here, k - 1 is nothing but the characteristic of $log_{10}a^n$.

Find the number of digits in 2¹⁰⁰. ($\log_{10} 2 = 0.3010$). Let N = 2¹⁰⁰ $\Rightarrow \log_{10} N = \log_{10} 2^{100}$ $\Rightarrow \log_{10} N = 100 \times \log_{10} 2$ $= 100 \times 0.3010$ = 30.10 Here, the characteristic is 30 and number of digits is (characteristic + 1). $\Rightarrow \log_{10} N = 30 + 0.10$ \therefore Number of digits in 2¹⁰⁰ = 30 + 1 = 31

Characteristic of $\log_{10} N$ for 0 < N < 1

$\log_{10} 1 = 0.$	1	N = 0.0093
$\log_{10}^{10} 0.1 = -1$		0. 001 ≤ 0.0093 < 0.01
$\log_{10}^{10} 0.01 = -2$	i i	10 ⁻³ ≤ 0.0093 < 10 ⁻²
$\log_{10}^{10} 0.001 = -3$		$\log_{10} 10^{-3} \le \log_{10} 0.0093 < \log_{10} 10^{-2}$
$\log_{10}^{10} 0.0001 = -4$	1	-3 ≤ log ₁₀ 0.0093 < -2

So,

 log_{10} (0.0093) = -2.(something) = -3 + 0.(something), where -3 is the characteristic and 0. (something) is the mantissa. Therefore, the characteristic of log_{10} (0.0093) is -3.

In general

If the number of zeroes between the decimal and the first non-zero (significant) digit in 'N' is 'k', then the characteristic of $\log_{10} N = -(k + 1)$.

Another way to solve is:

N = 0.0093 = $\frac{93}{10000} = \frac{93}{10^4} = \frac{93}{10} \times 10^{-3} = 9.3 \times 10^{-3}$

Taking log with base 10 on both sides,

 $\log_{10} N = \log_{10} (9.3 \times 10^{-3}) = \log_{10} (10^{-3}) + \log_{10} (9.3)$

 $= -3 + \log_{10} (9.3) = -3 + 0.$ (something)

-3 is the characteristic and 0.(something) = \log_{10} (9.3) is the mantissa.

$$\begin{array}{c} \textcircled{P} \\ \end{matrix} \end{matrix}$$

Solution:

(i) For inequality to be defined, the input of $\log \frac{|x^2 - 4x| + 3}{|x^2 - 4x| |x - 5|} > 0$ $|x^2 - 4x|$ is always $\ge 0 \Rightarrow |x^2 - 4x| + 3 > 0$ $x^2 \ge 0$ and $|x - 5| \ge 0 \Rightarrow x^2 + |x - 5| > 0$ \therefore Input $\frac{|x^2 - 4x| + 3}{|x^2 + |x - 5|}$ is always ≥ 0 $\Rightarrow x \in R = A$

(ii) $\log_3(\text{input}) \ge 0 \Rightarrow \text{input} \ge 1$

$$\Rightarrow \frac{|x^{2} - 4x| + 3}{|x^{2} + |x - 5|} \ge 1 \Rightarrow \frac{|x(x - 4)| + 3}{|x^{2} + |x - 5|} \ge 1 \Rightarrow \frac{|x||(x - 4)| + 3}{|x^{2} + |x - 5|} \ge 1 \Rightarrow |x||(x - 4)| + 3 \ge x^{2} + |x - 5| \dots (1)$$

Case I: $x \le 0$ $\Rightarrow |x| = -x$ $\Rightarrow |x - 4| = -(x - 4)$ $\Rightarrow |x - 5| = -(x - 5)$ $\therefore 1) \text{ becomes:}$ $(-x) (-(x - 4)) + 3 \ge x^2 - (x - 5)$ $\Rightarrow x (x - 4) + 3 \ge x^2 - (x + 5)$ $\Rightarrow x^2 - 4x + 3 - x^2 + x - 5 \ge 0$ $\Rightarrow -3x - 2 \ge 0$ $\Rightarrow x \le -\frac{2}{3} \Rightarrow x \in \left(-\infty, -\frac{2}{3}\right]$ Case II: $0 < x \le 4$

 $\Rightarrow |x| = x$ $\Rightarrow |x - 4| = -(x - 4)$ $\Rightarrow |x - 5| = -(x - 5)$ ∴ 1) becomes: (x) (-(x - 4)) + 3 ≥ x² - (x - 5) $\Rightarrow -x^{2} + 4x + 3 - x^{2} + x - 5 ≥ 0$ $\Rightarrow -2x^{2} + 5x - 2 ≥ 0$ $\Rightarrow 2x^{2} - 5x + 2 ≤ 0$ $\Rightarrow (2x - 1) (x - 2) ≤ 0$ +

Case III: $4 < x \le 5$ $\Rightarrow |x| = x$ $\Rightarrow |x - 4| = |x - 4| = x - 4$ $\Rightarrow |x - 5| = -(x - 5)$ $\therefore 1) \text{ becomes:}$ $x(x - 4) + 3 \ge x^{2} - (x - 5)$ $\Rightarrow x^{2} - 4x + 3 - x^{2} + x - 5 \ge 0$ $\Rightarrow -3x - 2 \ge 0$ $\Rightarrow 3x + 2 \le 0$ $\Rightarrow x \le -\frac{2}{3} \rightarrow \text{ Not possible } \therefore x \in \Phi$

Now,

B = (Case I) U (Case II) U (Case III) U (Case IV)

 $= \left(-\infty, -\frac{2}{3}\right] \cup \left[\frac{1}{2}, 2\right] \cup \Phi \cup \Phi$ $= \left(-\infty, -\frac{2}{3}\right] \cup \left[\frac{1}{2}, 2\right]$

And, the final solution set = $A \cap B$

 $= R \cap B$ = B $= \left[-\infty, -\frac{2}{3}\right] \cup \left[\frac{1}{2}, 2\right]$

Therefore, option (a) is the solution.

Case IV: x > 5

 $\Rightarrow |x| = x$ $\Rightarrow |x - 4| = x - 4$ $\Rightarrow |x - 5| = x - 5$ $\therefore 1) \text{ becomes:}$ $x(x - 4) + 3 \ge x^2 + x - 5$ $\Rightarrow x^2 - 4x + 3 \ge x^2 + x - 5$ $\Rightarrow x^2 - 4x + 3 - x^2 - x + 5 \ge 0$ $\Rightarrow -5x + 8 \ge 0$ $\Rightarrow x \le \frac{8}{5} \Rightarrow \text{ Not possible } \therefore x \in \Phi$

Final solution set = (Case I) ∪ (Case II)

= (0, 1) ∪ (2, ∞)

Hence, option (c) is the correct answer.

Consider,

$$\log_{3} x - \log_{x} 27 < 2$$

$$\Rightarrow \log_{3} x - \log_{x} 3^{3} < 2$$

$$\Rightarrow \log_{3} x - 3 \log_{x} 3 < 2$$

$$\Rightarrow \log_{3} x - 3 \left(\frac{1}{\log_{2} x}\right) < 2$$

$$\Rightarrow \left(\frac{(\log_{3} x)^{2} - 3}{\log_{3} x}\right) < 2$$
Let $\log_{3} x = t$

$$\Rightarrow \frac{(t)^{2} - 3}{t} < 2$$

$$\Rightarrow \frac{(t)^{2} - 3}{t} < 2 < 0$$

$$\Rightarrow \frac{(t)^{2} - 3 - 2t}{t} < 0$$

$$\Rightarrow \frac{t^{2} - 2t - 3}{t} < 0$$

$$\Rightarrow \frac{t^{2} - 2t - 3}{t} < 0$$

$$\Rightarrow \log_{3} x < -1 \text{ or } 0 < \log_{3} x < 3$$

$$\Rightarrow 0 < x < \frac{1}{3} \text{ or } 1 < x < 3^{3}$$

$$\therefore x \in \left(0, \frac{1}{3}\right) \cup (1, 27)$$

 $\begin{array}{c|c} - & + & - & + \\ \hline & -1 & 0 & 3 \end{array}$

 $\Rightarrow t \in (-\infty, -1) \cup (0, 3)$

Therefore, option (c) is the correct answer.

$$\begin{array}{c} & \text{If } (\log_{2x} 2) (\log_{x} 2) (\log_{2} 4x) > 1. \text{ then find the range of } x. \\ (a) (1, 2^{\sqrt{2}}) (b) (1, \infty) - \{2^{\sqrt{2}}\} (c) \left(2^{\sqrt{2}}, \frac{1}{2}\right) \cup (1, 2^{\sqrt{2}}) (d) (0, 2^{\sqrt{2}}) \end{array} \\ \hline \\ & \text{Solution:} \\ & \text{We have, } (\log_{2x} 2) (\log_{x} 2) (\log_{2} 4x) > 1 \\ & \text{Clearly, } x > 0 \& x \neq 1, \frac{1}{2} \\ & \text{Then, } (\log_{2x} 2) (\log_{x} 2) (\log_{2} 4x) > 1 \\ & \downarrow & \downarrow \\ (\frac{1}{\log_{2} 2x}) \left(\frac{1}{\log_{2} x}\right) \\ & \left(\frac{1}{\log_{2} x}\right) (\log_{2} 4x) > 1 \end{array}$$

Hence, option (c) is the correct answer.

- respectively.
- If the integral part of N (for n > 1) contains k digits, characteristic of $log_{10} N = k 1$.
- If the number of zeroes between the decimal and the first non-zero (significant) digit in 'N' (for 0 < N < 1) is 'k', then the characteristic of $\log_{10} N = -(k + 1)$.

Key Results

- log₁₀ n = (log_e n) × (0.43)
- The fractional part (F) of log of a number is always a non-negative proper fraction, means F = 0 or 0 < F < 1
- If characteristic of $log_{10} N = k$, then, the number of digits in N = k + 1.

Self-Assessment

- 1. If $\log 2 = 0.3010$, then find the characteristic and mantissa of $\log 400$.
- 2. Find the characteristic of 0.000943.
- 3. Find the total number of digits in 18^{100} . Given, log 2 = 0.3010 and log 3 = 0.4771

Answers

Self-Assessment

Α

```
1. \log 400 = \log (4 \times 100) = \log 4 + \log 100
            = \log 2^2 + \log 10^2 = 2\log 2 + 2\log 10
            = 2 × 0. 3010 + 2× 1 = 0.6020 + 2
            = 2.6020
  : Characteristic = 2 and mantissa = 0.6020
  Characteristic = k - 1, where k is the number of digits in 'n'.
  Here, n = 400 \text{ k} = 3
  : Characteristic = k - 1 = 3 - 1 = 2
2. n = 0.000943
   \Rightarrow 0 < n < 1
   \therefore k = number of zeroes between decimal and first non-zero digit = 3
   \therefore Characteristic = -(k + 1)
   = -(3 + 1) = -4
3. n = 18<sup>100</sup>
  Taking log on both sides,
  \log n = \log (18^{100})
        = 100 \times \log 18
        = 100 × log (2 × 3<sup>2</sup>)
        = 100 \times [\log 2 + 2\log 3]
        = 100 × [0.3010 + 2 × 0.4771]
        = 100 × [0.3010 + 0.9542]
         = 100 × 1.2552 = 125.52
   : Characteristic = 125
  Number of digits in 18^{100} = characteristic + 1
                                = 125 + 1 = 126
```