7. ·	RACE # 11 CH		EMICAL BONDING		CHEMISTRY		
ionic	c bond						
1.	State whether the f	following are ionic or covalent	:				
	(i) Na_2S (vi) C_2H_4	(ii) SnCl ₄ (vii) CaCl ₂	(iii) diamond (viii) HCl gas	(iv) CaC_2 (ix) NH_4^+	(v)NaH (x) KBr		
) /•	Indicate whether the following pairs of elements form ionic or covalent compounds and write down the molecula formula of the compound formed.						
	(i) Sodium and chlorine (ii) carbon and sulphur (iii) sulphur and oxygen (iv) calcium and hydrogen						
3.	What type of bonds are present in the following molecules ?						
	(i) MgF ₂ (vi) HNO ₃	(ii) BrCl	(iii) CBr ₄	(iv) H ₂ SO ₄	(v) SO ₂		
1.	Most predominantly ionic compounds are obtained by the combination of elements of the groups :						
	(A) 1 and 7	(B) 2 and 6	(C) 4 and 8	(D) 3 and 5			
5.	Which set have strongest tendency to form anions :						
	(A) Ga, In, Te	(B) Na, Mg, Al	(C) N, O, F	(D) V, Cr, Mn			
6.	Which lewis dot st	ructure for O ²⁻ ion is correct–					
	(A) •••×	$(\mathbf{B})\left[\vdots \vdots \overset{\times}{\overset{\times}{\overset{\times}{\overset{\times}{\overset{\times}{\overset{\times}}}}} \right]^{2-}$	$(\mathbf{C})\left[\bullet \overset{\bullet}{\overset{\bullet}{\overset{\bullet}{\overset{\bullet}{\overset{\bullet}{\overset{\bullet}}}}{\overset{\bullet}{\overset{\bullet}{\overset{\bullet}}}}}\right]^{2-}$	$(D)\left[::: \mathop{\overset{\times\times}{\underset{\times}{}}}_{\times} :: \mathop{\overset{\times\times}{\underset{\times}{}}}_{\times} : :: \mathop{\overset{\times\times}{\underset{\times}{}}}_{\times} : :: \mathop{\overset{\times\times}{\underset{\times}{}}}_{\times} : :: \mathop{\overset{\times\times}{\underset{\times}{}}}_{\times} : : : : : : : : : : : : : : : : : : :$			
7.	Which of the follow	wing bonds is most polar ?					
	(A) O – H	(B) P – H	(C) C – F	(D) S – Cl			
8. Two elements X and Y have following electronic configuration. $X : 1s^2 2s^2 2p^6 3s^2 3p^6 4s^2$ Y : 1 expected compound formed by combination of X and Y will be expressed as-					² 2s ² 2p ⁶ 3s ² 3p ⁵ ,Th		
	$(A) XY_{2}$	$(\mathbf{B}) \mathbf{X}_{5} \mathbf{Y}_{2}$	(C) $X_{2}Y_{5}$	(D) XY ₅			
Э.	The electronegativ	ity of O,F,N, Cl and H are 3.5,	4.0, 3.0, 3.2 and 2.1	respectively. The stronges	t bond will be		
	(A) F – H	(B) H – Cl	(C) N – H	(D) O – H			
10. Ionic bonds are usually formed by combination of elements with							
10.	(A) high ionisation potential and low electron affinity (B) low ionisation potential and high electron affinity						
10.	(A) high ionisation	potential and low electron aff	inity (B) low ionisati	on potential and inglicite	anning		
10.		potential and low electron aff	-		-		
		-	-		-		
Latti	(C) high ionisation ice energy	-	finity(D) low ionisati		-		
Latti	(C) high ionisation ice energy For lattice energy t	potential and high electron af	finity(D) low ionisati lse :		-		
Latti	 (C) high ionisation ice energy For lattice energy t (A) it increases with 	potential and high electron af	finity(D) low ionisati lse :		-		
Latti	 (C) high ionisation ice energy For lattice energy t (A) it increases wit (B) it increases wit 	potential and high electron af the following statements are fai th increase in charge on cation. h increase in charge on anion.	finity(D) low ionisati lse :		-		
Latti	 (C) high ionisation ice energy For lattice energy t (A) it increases wit (B) it increases wit (C) it increases wit 	potential and high electron af he following statements are fa th increase in charge on cation. h increase in charge on anion. h decrease in inter ionic distan	finity(D) low ionisati lse : 		-		
Latti 11.	 (C) high ionisation ice energy For lattice energy t (A) it increases wit (B) it increases wit (C) it increases wit (D) it increases wit 	potential and high electron af the following statements are fai th increase in charge on cation. th increase in charge on anion. th decrease in inter ionic distant th increase in size of cations ar	finity(D) low ionisati lse : nce nd anions.	on potential and low elect	-		
Latti 11.	 (C) high ionisation ice energy For lattice energy t (A) it increases wit (B) it increases wit (C) it increases wit (D) it increases wit Which of the follow 	potential and high electron af the following statements are fai th increase in charge on cation. th increase in charge on anion. th decrease in inter ionic distant th increase in size of cations ar wing sequences represents the	finity(D) low ionisati lse : nce nd anions. correct order of lattic	on potential and low elect	-		
	 (C) high ionisation ice energy For lattice energy t (A) it increases wit (B) it increases wit (C) it increases wit (D) it increases wit Which of the follow (A) LiI > LiBr < L 	potential and high electron af the following statements are fai th increase in charge on cation. th increase in charge on anion. th decrease in inter ionic distant th increase in size of cations ar wing sequences represents the iiCl < LiF	finity(D) low ionisati lse : nce nd anions. correct order of lattic (B) KBr < KCl < I	on potential and low elect e energies ? KF < KI	-		
Latti 11. 12.	 (C) high ionisation ice energy For lattice energy t (A) it increases wit (B) it increases wit (C) it increases wit (D) it increases wit (D) it increases wit Which of the follow (A) LiI > LiBr < L (C) NaF < NaCl < 	he following statements are faith increase in charge on cation. The increase in charge on cation. The increase in charge on anion. The decrease in inter ionic distant the increase in size of cations are wing sequences represents the the iccl < LiF NaBr > NaI	finity(D) low ionisati lse : nce nd anions. correct order of lattic (B) KBr < KCl < I (D) LiF > LiCl > I	on potential and low elect e energies ? KF < KI	-		
Latti 11.	 (C) high ionisation ice energy For lattice energy t (A) it increases wit (B) it increases wit (C) it increases wit (D) it increases wit (D) it increases wit Which of the follow (A) LiI > LiBr < L (C) NaF < NaCl < 	he following statements are faith the following statements are faith th increase in charge on cation. Th increase in charge on anion. Th decrease in inter ionic distant th increase in size of cations ar wing sequences represents the tiCl < LiF NaBr > NaI ed order of decreasing lattice e	finity(D) low ionisati lse : nce nd anions. correct order of lattic (B) KBr < KCl < I (D) LiF > LiCl > I	on potential and low elect e energies ? KF < KI LiBr > LiI	-		

- 14. Which of the following is the right order of lattice energy
 - (A) $Na_2 O < Al_2O_3 < MgO$ (B) $MgO < Al_2O_3 < Na_2O$ (C) $Al_2O_3 < MgO < Na_2O$ (D) $Na_2O < MgO < Al_2O_3$

15. If it is known that on heating a ionic compound of a polyhalide with a cation it decomposes into more stable halide of that cation due to high lattice energy, for example $CsI_3 \xrightarrow{\Delta} CsI + I_2$

The complex compound Rb[IBrCl] after strong heating will

(A) RbI + BrCl (B) RbCl + IBr (C) RbBr + ICl (D) None

Hydration energy

•	0.						
16.	Find the correct ionic mobility order-						
	(A) $F^{-}(aq) > Cl^{-}(aq)$	(B) $Li^{+}(aq) > Be^{2+}(aq)$	(C) $Ca^{2+}(aq) > Ba^{2+}(aq)$	(D) $Li^+(aq) < Al^{3+}(aq)$			
17.							
	(A) $F_{(aq.)}^{\Theta} > Cl_{(aq.)}^{\Theta} > Br_{(aq.)}^{\Theta} > I_{(aq.)}^{\Theta}$		(B) $Rb^{\oplus}_{(aq.)} > K^{\oplus}_{(aq.)} > Na^{\oplus}_{(aq.)} > Li^{\oplus}_{(aq.)}$				
(C) $\operatorname{Na}_{(aq.)}^{\oplus} > \operatorname{Mg}_{(aq.)}^{2+} > \operatorname{Al}_{(aq.)}^{3+}$ (D) $\operatorname{Be}_{(aq.)}^{2+} > \operatorname{Mg}_{(aq.)}^{2+} > \operatorname{Mg}_{(aq.)}^{2+}$			(D) $Be_{(aq.)}^{2+} > Mg_{(aq.)}^{2+}$	$g_{(aq.)}^{2+} > Ca_{(aq.)}^{2+} > Sr_{(aq.)}^{2+}$			
18.	Find the INCORRECT	Γ ionic mobility order from	he following options-				
	(A) $Be^{2+}_{(aq.)} < Li^{+}_{(aq.)}$	(B) $Mg^{2+}_{(aq.)} < Sr^{2+}_{(aq.)}$	(C) $Fe^{2+}_{(aq.)} < Fe^{3+}_{(aq.)}$	(D) $Br_{(aq.)}^- < I_{(aq.)}^-$			
Pola	risation (Fajan's rule)						
19.	Polarisibility of halide ions increases in the order						
	(A) F ⁻ , I ⁻ , Br ⁻ , Cl ⁻	(B) Cl ⁻ , Br ⁻ , I ⁻ , F ⁻	(C) I [−] , Br [−] , Cl [−] , F [−]	(D) F [−] , Cl [−] , Br [−] , I [−]			
20.	Which of the following is most covalent ?						
	(A) AIF_3	$(B) AlCl_3$	(C) AlBr ₃	(D) All ₃			
21.	Among LiCl, BeCl ₂ , BCl ₃ and CCl ₄ , the covalent bond character follows the order -						
	(A) $\text{LiCl} < \text{BeCl}_2 > \text{BCl}_3 > \text{CCl}_4$		(B) $LiCl > BeCl_2 < BCl_2$	$l_3 < CCl_4$			
	(C) $\text{LiCl} < \text{BeCl}_2 < \text{BCl}_3 < \text{CCl}_4$		(D) $\text{LiCl} > \text{BeCl}_2 > \text{BCl}_3 > \text{CCl}_4$				
22.	Which has maximum covalent character ?						
	(A) NaCl	(B) SiCl ₄	(C) AlCl ₃	(D) MgCl ₂			
23.	Choose the correct stat	tement					
	(A) A cation with pseudo noble gas configuration is more polarising than the cation with noble gas configuration.						
	(B) Small cation has minimum capacity to polarise an anion.						
	(C) Small anion has maximum polarizability.						
	(D) None of these						
24.	Magnesium cation has	plarisation power close to	that of :-				
	(A) Li ⁺	(B) Na ⁺	(C) K ⁺	(D) Cs ⁺			
25.	Which of the following combination of ion will have highest polarisation :-						
	(A) Fe ²⁺ , Br ⁻	(B) Ni ⁴⁺ , Br ⁻	(C) Ni ²⁺ , Br ⁻	(D) Fe, Br [_]			
26.	An ion without pseudo	o-inert gas configuration is	:				
	$(A) Ag^+$	(B) Cd ²⁺	(C) Zn^{2+}	(D) Fe^{3+}			
Simi	lar questions belongs to	NCERT Text Book Proble	em - 4.1, 4.2, 4.3				
Exce	ercise - 4.4, 4.5, 4.6, 4.12	2, 4.19, 4.20					

Answers

RACE # 11

1. (i) $Na_2S \rightarrow ionic$, (ii) $SnCl_4 \rightarrow ionic$, (iii) Diamond $\rightarrow covalent$, (iv) $CaC_2 \rightarrow ionic$ (v) $NaH \rightarrow ionic$, (vi) $C_2H_4 \rightarrow covalent$, (vii) $CaCl_2 \rightarrow ionic$, (viii) $HCl(g) \rightarrow covalent$ (ix) $NH_4^+ \rightarrow covalent$, (x) KBr $\rightarrow ionic$

2. (i) ionic \rightarrow NaCl, (ii) Covalent \rightarrow CS₂, (iii) Covalent \rightarrow SO₂, (iv) ionic \rightarrow CaH₂

- 3. (i) ionic, (ii) covalent, (iii) covalent, (iv) covalent, (v) covalent, (vi) covalent
- 4. (A) **5.** (B) 7. (C) **8.** (C) 6. (A) **9.** (A) **10.** (B) **11.** (D) **12.** (D) **13.** (A) 14. (D) 15. (B) 16. (B) 17. (B) **18.** (C) **19.** (D) **20.** (D) **21.** (C) **22.** 23. (B) (A) 24. (A) **25.** (B) 26. (D)