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In this section, we are going to study laws governing the behavior of gases. Gases don’t have definite shape
and volume. They tend to fill all the space available to them and take on the shape and volume of the
container. In gases, the molecules are relatively far apart and thus influence each other to a lesser extent
(than they do so in solids and liquids).

Three fundamental measurements that we can perform on any sample of a gas are :

Volume, Pressure and Temperature
Volume :

The volume of any sample of a gas is considered to be the space of the container that it occupies (the space
occupied by the molecules of gas is negligible as compared to the volume of container). The volume is
expressed in liters (or ml) or m3 (or cm3).

1 L  103 ml  103 m3  1 dm3  103 cc
Pressure :
The molecules of gases are in continuous random motion. They frequently collide with each other and with
the walls of the container. The collisions of the molecules with the walls of the container give rise to what is
called as the Pressure. It is measured as force per unit area and is uniform in all the directions. It is measured
by instruments: Manometer and Barometer (for atmospheric pressure). It is expressed in N/m2 or mm of
Hg or atmospheres (atm) or torr.

 5 2 5 21 atm 1.013 10 N / m 1.013 10 Pa 1Pa 1N / m    

1 bar = 105 N/m2

1 atm = 760 mm of Hg column = 76 cm of Hg column = 760 torr = 1.013 bar

Temperature :

The temperature can be discussed in terms of hotness or coldness. The measurement is based on the
expansion of certain material (most often it is mercury) with increasing temperature.

One of the scale to measure the temperature is taken as Celsius (C) scale. The freezing point of water is
taken as 0 C and its boiling point as 100 C.

It was observed by Gay Lussac that the rise in volume of a given mass of gas for each degree rise in
temperature is nearly equal to 1/273 time of the volume of gas at 0 C. If Vo is the volume of gas at 0 C and
VT is the volume of gas at T C, then :

T
TV V 1

273
   
 
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Thus, VT = 0 if T =  273 C i.e., the volume of a given mass of a gas is zero at constant pressure or we can
say that the gas would completely disappear if T =  273 C.
So T = 273 C (or more precisely 273.15 C) is the lowest possible temperature that can be achieved
(since below  273 C, the volume will be negative, which is impossible). This temperature  273.15 C
is called as absolute zero. Now a new scale called as absolute scale or Kelvin scale is defined where
273 C = 0 K (Kelvin).

Note : 0 K = 273 C or 273 K = 0 C or 373 K = 100 C

Also,
9T ( F) 32 T ( C)
5

    [F Fahrenheit]

Standard Temperature and Pressure conditions (S.T.P.) :
For gases, the S.T.P. conditions are 273 K (0 C) and 1 atm pressure. A gas at this temperature is said
to be at S.T.P. (or N.T.P.  Normal Temperature and Pressure) conditions.

Definition of Ideal Gas :
A gas is said to be an ideal gas if it has the following properties :
(a) There is no intermolecular forces between the gas molecules, i.e., gas molecules don’t exert any kind

of force on each other.
(b) Size of the gas molecules is negligible as compared to the volume occupied by the gas (i.e., container

volume).

Note : The concept of Ideal gas is theoretical and no gas exists which satisfy the above requirements at all the
conditions. Thus, all the gases are Real gases but they may behave as ideal under certain conditions of
Pressure, Volume and Temperature.

Gas Laws (For Ideal gases only) :
Boyle’s Law :

At a constant temperature (T), the pressure (P) of a given mass
(or moles (n)) of any gas varies inversely with the volume (V).

Mathematically :  
1P
V

 (for given n and T)

 PV = constant

If P1 is the pressure when volume is V1 and P2 is the pressure when volume is V2 (T is same), then :
P1 V1 = P2 V2

Graphically, it can be represented as shown in the figure. Each line is called as Isotherm.

Note : In the P-V curve, as we move away from origin, each isotherm represents a higher temperature.
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Boyle’s law can also be represented using following graphs :

Charles Law :
At a constant pressure, the volume of a given mass of any gas varies
directly with the absolute temperature.

Mathematically :  V  T (for a given n and P)


V
T = constant

If V1 and V2 are volumes of a gas at temperature T1 and T2 respectively and the pressure is kept constant,
then :


1 2

1 2

V V
T T



Graphically it is expressed as shown in the figure.
Each line is called as Isobar.

Note : In the V-T curve, an isobar with lesser slope will have a higher pressure.

The Combined Gas Law :
For any sample of an ideal gas, the pressure times the volume divided by the absolute temperature is a
constant.

Mathematically :  
PV
T = constant

If at one condition, for a given mass of a gas P1, V1 and T1 are pressure, volume and temperature
respectively and at some other condition P2, V2 and T2 are new pressure, volume and temperature
respectively then :

1 1 2 2

1 2

P V P V
T T


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Gay Lussac’s Law :

The pressure of a given mass of any gas is directly proportional to
the absolute temperature at constant volume.
Mathematically :    P  T (for constant n and V)


P
T = constant

If P1 and P2 are volumes of a gas at temperature T1 and T2 respectively
and the volume is kept constant, then :


1 2

1 2

P P
T T



Graphically it is expressed as follows. Each line is called as Isochor.

Note that slope is greater for lower volume.

Note : In the P-T curve, an isochor with lesser slope will have a higher volume.

Gay Lussac’s Law of Combining Volumes :

When measured at same temperature and pressure, the ratios of volumes of the gases that were reactants
and of gases that were products (in a chemical reaction), were always small whole numbers.

Illustration :
(a) 2 H2 (g)      +     O2 (g)          2 H2O (g)

2 volumes        1 volume   2 volumes      (ratio = 2 : 1 : 2)

(b) N2 (g)         +     O2 (g)           2 NO (g)

1 volume          1 volume         2 volumes      (ratio = 1 : 1 : 2)

(c) CH4 (g)       +     2 O2 (g)        CO2 (g)    +    2 H2O (g)

1 volume          2 volume 1 volume      2 volume       (ratio = 1 : 2 : 1 : 2)

Avogadro’s Law :

It states that equal volume of all gases at same pressure and temperature contain equal number of molecules.

We know that 1 mole contains 6.023 × 1023 molecules (a number called as Avogadro Number). It is
obvious that if two gases contain equal number of molecules, they must also contain the same number of
moles. So, at given temperature and pressure, the volume of any gas is also proportional to the number of
moles.

  V   n (at given T and P) This is also a form of Avogadro’s Law.
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At any given temperature and pressure, there must be some volume that will contain 6.023 × 1023 molecules
or 1 mole of a gas. At S.T.P. (0C and 1 atm), this volume is 22.4 L or 22400 mL. This is known as Molar
volume.

Avogadro’s Law can be used in determination of molecular masses of gases. As 1 mole of any gas at S.T.P.
occupies 22.4 L, we can calculate the molecular weight of a gas as follows :

If Mo be the molecular weight of a gas A weighing gA grams and occupying V L of volume at S.T.P., then :

 
A

L

g 22.4M
V at S.T.P.




Also, Mo = (density in g/L)  22.4

The Ideal Gas Equation :

We know that 
PV
T = constant = K

The constant K depends upon the amount of gas. Now at constant P and T, V depends upon number of
moles of gas (Avogadro Law). This implies that K is directly proportional to the number of moles (n).
 K   n  K = nR R : a constant independent of amount of gas.


PV K nR
T

   PV = nRT

This is called as ideal gas equation. R is same for all gases and is known as universal gas constant.

Values of R :

Note :  
PVR
nT



(i) R = 0.0821 
Latm
mol.K (use this value when P is in atm. and V is in L)

(ii) R = 8.31 
J

mol.K (use this value when P is in N/m2 and V is in m3)    [This is the S.I. unit of R]

(iii) R = 2 
cal

mol.K (4.184 J = 1 cal)

Different forms of Ideal Gas Equation :

(i) P V = n R T

(ii)
gPV RT

M


(iii)  PM0 = d R T (density d = g/V)
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Illustrating the concept :
When 3.2 gm of sulphur is vapourised at 450 C and 723 mm pressure, the vapour occupies a volume
of 780 cm3, what is the formula for the sulphur under these conditions ?

The molecular weight of a poly-atomic element = number of atoms × atomic mass
So let us find the molecular weight of S from the data given.

   
gRT 3.2 0.0821 723M
PV 723 / 760 780 /1000

 
 

  = 256

 Number of atoms = 
256
32  = 8

Hence, molecular formula of sulphur = S8

Vapour Density :
It is defined as the ratio of the mass of the gas (X) occupying a certain volume at a certain temperature and
pressure to the mass of hydrogen occupying the same volume at the same temperature and pressure.

Now, PV = nRT = X
PVMg RT g

M RT



  

     and  2H 2
PV 2g M 2 for H gas

RT 


 

     
2

X X

H

g M vapour density
g 2

 

Thus, it can be seen that vapour density of a gas does not depend on pressure or temperature or volume.

Dalton’s Law of Partial Pressures :
Total pressure of a mixture of number of non-reacting gases is equal to the sum of pressures exerted by
individual gases.

PTotal = p1 + p2 + p3 + p4 +..............

where PTotal : Total pressure of the mixture and p1, p2, p3, p4,... are the partial pressures exerted by  individual
gases in the mixture.
Assumption :  All the gases spread uniformly to occupy the volume of the vessel.

The partial pressure is defined as the pressure a gas would exert if it were alone in the container at the same
temperature of the mixture.
Let p1, p2 be the partial pressures of gases 1 and 2 present in the mixture and n1 and n2 be their respective
moles. Let V be the volume of the container and T be the temperature at which the gases are mixed.

Vidyamandir ClassesStates of Matter
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Then, using Gas Equation, we have : 1 1
RTP n
V

  . . . (i) and 2 2
RTP n
V

  . . . (ii)

Using Dalton’s Law :
PTotal = P1 + P2

 Total 1 2
RT RTP n n
V V

 

or  Total 1 2
RTP n n
V

           . . . (iii)

From (i), (ii) and (iii), it can be seen that :

Total Total
1 2

1 2
1 2 1 2

n nP P and P P
n n n n

 
 

or TotalTotal1 1 2 2
P P and P P   

where 1  and 2  are the mole fractions of gases 1 and 2 respectively..

So in general, Partial pressure of a gas = Its mole fraction ×Total pressure exerted by the mixture
in a mixture              in the mixture

Also, % of a gas in the mixture (by moles) = Its partial pressure 100
Total pressure

  (mole fraction of that gas)100

Illustrating the concept :

A 2.5L flask contains 0.25 mol each of SO2 and CO2 gas at 27C. Calculate the partial pressure
exerted by each gas and total pressure .

Now, Partial pressure of SO2  =  2SO
vessel

RTn
V

    = 
vessel

RT 0.25 0.0821 3000.25 2.46 atm
V 2.5

 
 

and Partial pressure of CO2 =  2CO
vessel

RTn
V

  = 
vessel

RT 0.25 0.0821 3000.25 2.46 atm
V 2.5

 
 

 PTotal = 2.46 + 2.46  = 4.92 atm

Vidyamandir Classes States of Matter
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Application of Dalton’s Law of Partial Pressure

Many gases in the laboratory are collected by the downward displacement of water. The gas collected in this
way also contains molecules of water that have been evaporated into the gas. The pressure exerted by these
molecules depends on the temperature of water. The partial pressure of water in the gas mixture collected is
called the aqueous tension and is equal to the vapour pressure of water at that temperature.

 Pressure of the dry gas obtained  Pdry gas = Pobserved  Aqueous tension

Note : Pressure of air decreases with the increase in altitude (height from the sea level).

Illustrating the concept :

6.52 gm of a sample of oxygen is collected over water at a total pressure of  735.5 torr measured
5.45L at a temperature of  27 C. Find the vapour pressure of water vapours.
Using gas equation, calculate the pressure of the gas and then subtract it from the pressure of the gas
measured (observed).

0

gRT 6.52 0.0821 300P
M V 32 5.45

 
 

  = 0.92 atm. = 699.8 mm of Hg [  1atm. 760 mm of Hg]

Now this is pressure of dry gas, hence
Vapour pressure of water = 735.5  699.8 = 35.7 mm of Hg

Illustrating the concept :

Assume that the air is essentially a mixture of nitrogen and oxygen in mole ratio of  4 : 1 by volume.
Calculate the partial pressures of N2 and O2 on a day when the atmospheric pressure is 750 mm of Hg.
Neglect the pressure of other gases.
From Dalton’s Law of partial pressure, we have :

Partial pressure of nitrogen = 2 2N Np P    and Partial pressure of oxygen = 2 2O Op P  

Now, 2N 4 / 5  , and 2O 1/ 5   ;    P = 750 mm of Hg

 2N
4p 750 600 mm of Hg
5

  

and 2O
1p 750 150 mm of Hg
5

  

Vidyamandir ClassesStates of Matter
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Illustrating the concept :
One of the best rocket fuels is dimethyl hydrazine (an organic compound with molecular formula :
(CH3)2N2H2 ). When mixed with dinitrogen tetroxide, N2O4, it reacts according to the equation :

 3 2 2 2 4 2 2 22CH N H ( ) + 2N O ( ) 3N (g) + 4H O ( ) + 2CO (g)l l l

If 2.5 mol of dimethyl hydrazine reacts completely with N2O4 and if the product gases are collected at
20C in a 250 L vessel, what is the pressure in the vessel?

From stiochiometry of above reaction : 1 mol  (CH3)2N2H2 3 mol N2  4 mol H2O  2 mol CO2

Moles of N2 formed = 3  2.5 = 7.5

Moles H2O formed = 4  2.5 = 10 [H2O will not exert any pressure at 20C as it will become a liquid]

Moles CO2 formed = 2  2.5 = 5

 PTotal = 
 Total 7.5 5.0 0.0821 293n RT

1.20 atm
V 250

  
 

Illustrating the concept :
When 2 gm of a gaseous substance A is introduced into an initially evacuated flask at 25C, the
pressure is found to be 1 atm. 3 gm of another gaseous substance B is then added to it at the same
temperature and pressure. The final pressure is found to be 1.5 atm. Assuming ideal gas behaviour,
calculate the ratio of the molecular weights of A and B.
Let MA and MB be the molecular weights of A and B.
Using PV = nRT for A, we get :

       A

2 RT
M1

V
 . . . . . . (i)

and using Dalton’s Law : 
 A B

Total
n + n RT

P  =
V

   A B

2 3+ RT
M M

1.5 =
V

 
 
  . . . . . . (ii)

Solving (i) and (ii), we get :  
A

B

M 1
M 3



Graham’s Law of Diffusion :
A gas expands to fill the entire container even if other gas(es) is (are) already present in the container.
This process of spreading of gas is called as diffusion. A gas confined to a container at high pressure
than the surrounding atmosphere will escape from a small hole which is opened in the container until the
pressure outside and inside have been equalized. This process is called as effusion.

Example of effusion: Escaping of air through a punctured tyre.

Note : The process of effusion is always followed by the process of diffusion.

Vidyamandir Classes States of Matter
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According to Graham’s Law :

When compared at the same temperature and pressure, the rates of diffusion (or effusion) of any two gases
are inversely proportional to the square roots of their densities.

1rate
density



Note : This is why lighter gases diffuse faster than the denser gases.

It t1, t2 are the time required for the passage of the same volume, Vm , of two gases with densities d1 and d2
respectively at the same temperature and pressure, through the same orifice, then:

Rate of effusion (r) = 
mVVolume effused

Time taken t



m m

1 2
1 2

V Vr and r
t t

 

By Graham’s Law : 
1 m 1 2 2

2 m 2 1 1

r V / t d M
r V / t d M

   
2 2 2

1 1 1

t d M
t d M

 

(Densities of gases at given temperature and pressure are proportional to molecular weights)

It has been found that the rate of diffusion (r) is also proportional to the pressure of a gas (or number of
molecules) at a given temperature. In that case, the rate of diffusion is given as :

Pr
d



If two gases 1 and 2 at different pressures P1 and P2 respectively are allowed to effuse through a small hole
in a container, then the ratio of rates of diffusion of two gases is given by:

1 1 2 1 2

2 2 1 2 1

r P d P M
r P d P M
 

Note : Rate of effusion (r) can be defined in the following ways (depending on the analysis of a problem):

(i)
Volume effused distance travelled in a tuber =

time taken time taken
 (if the cross sectional area is uniform).

(ii)
moles effusedr =

time taken = 
n
t




(iii)
Drop in Pressure due to effusionr =

time taken = 
P
t




Vidyamandir ClassesStates of Matter
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Illustrating the concept :

As shown in the figure, NH3(g) and HCl (g) are
introduced in a cylindrical container of uniform
crossection. At what distance from NH3 inlet,will
NH4Cl form ?

Using Graham’s law :

 
3

3

NH HCl

HCl NH

r Mx / t 36.5 1.46
r x / t M 17

   


3

3

HCl NH

HCl NH

M M
x 0.59

1 M M

 
   
  

 

Ammonia will diffuse faster than hydrogen chloride gas.

Application of Graham’s Law of diffusion :
 Separation of isotopes and other gaseous mixture is based on this law.

 It provides a method for the determination of molar mass.

Effective molecular weight of the mixture effusing out through a hole:
Let a container A contains 3 moles of He and 2 moles of N2 at some temperature and pressure. Suppose the
container has a hole through which this gaseous mixture is effusing out.

Let us first calculate the effective molecular mass of the mixture present initially in the container.

From the very definition of molecular mass, we have :

Molecular mass is the mass of an element or compound contained in 1 mole of that element or compound.

Now, total mass of 3 moles He and 2 moles N2 (i.e., mass of the gas mixture)

 3  4 + 2  28 = 68 gm.

And the total moles of gas mixture   = 3 + 2 = 5

Thus, molecular mass of the mixture  mix
68M 13.6
5

    gm/mole

We can generalize the above result as :


n

i 1
mix i iM M



 

where i is the mole fraction of the ith gas in the mixture and Mi is the molar mass of the ith gas in that mixture.
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Now, to find the Mmix of the gas mixture effusing out, we have to determine the relative rates of effusion of the
mixture components.


2 2

2 2 2

N NHe He He

N N He N He

M Mr P n
r P M n M

 


2

He

N

r 3 28 3.97
r 2 4

 

 In the mixture effusing out : 2 at t 0

moles He 3.97
moles N 

 
 

 

 Mole fraction of N2 effusing out at t = 0 = 
2

2

moles N
moles N moles He

1 1 0.2
1 3.97 4.97

  


 2N 0.2   and 2He N1 0.8    

 2 2mix He He N NM M M     = 0.8 4 0.2 28 8.8 gm / mole   

At 30°C and 720 mm of Hg, the density of a gas is 1.5 g/L.Calculate molecular mass of the
gas. Also find the number of molecules in 1 cc of the gas at the same temperature.

Now number of molecules = n  NA

   = 
3

A
PV 720 / 760 1 10N
RT 0.0821 303

 
 

  6.023  1023

    = 2.29  1019

SOLUTION :
Assuming ideal behavior and applying ideal gas
equation :

PV = nRT
Another form of gas equation is PMo = dRT


dRT 1.5 0.0821 303M

P 720 / 760
 

 

   (T = 30 + 273 K)
 Mo = 39.38 gm/mol

The pressure exerted by 12 gm of an ideal gas at temperature T in Kelvin in a vessel of
volume V litre is one atm. When the temperature is increased by 10 K at the same volume, the pressure rises
by 10%. Calculate the temperature T and volume V. (Molecular mass of the gas = 120 gm/mole)

Illustration - 2

Illustration - 1
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SOLUTION :

Using Gas equation : PV = nRT
We have,

1 V 0.1 R T                   . . . . . . . (i)

and 1.1 V 0.1 R (T 10)           . . . . . . . (ii)

Using (i) and (ii), we have : 
T 1

T 10 1.1



 T = 100 K

Putting the value of T in (i), we get :
 1  V = 0.1  0.0821  100

V = 0.821 L

An open vessel at 27C is heated until three fifth of the air has been expelled. Assuming
that the volume of the vessel remains constant, find the temperature to which the vessel has been heated.

SOLUTION :

In the given question, volume is constant. Also, as the
vessel is open to atmosphere, the pressure is constant.
This means that the gas equation is simply reduced to the
following form:

nT = constant (Use PV = nRT)
or n1 T1 = n2 T2

Now let n1 = initial moles and n2 = final moles
 n2 = 2/5 × n1

(as 3/5 th of the air has been expelled)

 1 1 1 1
2 1

2 1

n T n T 5T T
n 2 / 5n 2

  

  2
5T 300
2

  = 750 K = 477 C

A spherical balloon of 21 cm diameter is to be filled with H2 at NTP from a cylinder con-
taining the gas at 20 atm at 27C. If the cylinder can hold 2.80L of water, calculate the number of balloons
that can be filled up using pumping.

SOLUTION :

The capacity of cylinder = 2.80 L

Let n = moles of hydrogen contained in cylinder and no =
moles of hydrogen required to fill one balloon.

PV 20 2.80n
RT 0.0821 300


 


= 2.273

volume of balloonn
22400 

(Note: the balloons are being filled at NTP)

no  =  33 4 / 3×3.14× 10.54 / 3πr =
22400 22400

= 0.216

 Number of balloons that can be filled

  = n 10.50
n

  10

Illustration - 4

Illustration - 3
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A 672 mL of a mixture of oxygen-ozone at N.T.P. were found to be weigh 1 gm. Calculate
the volume of ozone in the mixture.

SOLUTION :

Let V mL of ozone are there in the mixture

 volume of oxygen = (672  V) mL

Mass of ozone at N.T.P. = 
V

22400   48

Mass of oxygen at N.T.P. = 
672 V
22400


  32


V 672 V48 32 1

22400 22400


   

 On solving we get : V = 56 ml

Two flasks of equal volume connected by a narrow tube (of negligible volume) are at 27C
and contain 0.70 mole of H2 at 0.5 atm pressure. One of the flask is then immersed into a bath kept at 127C,
while the other remains at 27C. Calculate the final pressure and the number of moles of H2 in each flask.

SOLUTION :

Moles of H2 initially = 0.7 = 2no   . . . . . (i)
 n1 + n2 = 2no   . . . . . (ii)

Flask A :  PoVo = no RTo (Initially)

P1Vo = n1RT1 (Finally)


1 1 1

P n T
P n T
                   . . . . (iii)

Flask B : PoVo = noRTo (Initially)

and P1Vo = n2RTo (Finally)


1 2

P n
P n
                . . . . .(iv)

Solve to get :
n1 = 0.3  ;  n2 = 0.4
Using (iv),

2
1

P n 0.4P 0.5 atm 0.56 atm
n 0.35



   

1 gm of an alloy of Al and Mg reacts with excess HCl to form AlCl3, MgCl2 and H2. The
evolved H2 collected over mercury at 27C occupied 1200 mL at 684 mm Hg. What is the composition of
alloy?

SOLUTION :

3 2
3Al 3HCl AlCl H
2

            . . . . . (i)

Also,  2

684 1.2PV 760Moles of H 0.044
RT 0.0821 300


  



          2 2Mg 2HCl MgCl H    . . . . . (ii)

Let mass of Al be x gm

 Mass of Mg will be (1  x) gm
From stoichiometry of reactions (i) & (ii) ;


 

2
13Moles H 1 0.044

2 27 24
xx 

    

 0.0555 x + 0.0416 +  (1  x) = 0.044

 0.0139x = 2.4  10–3  x = 0.172 gm

Thus, % Al = 17.2 %  and  % Mg = 82.8 %

Illustration - 7

Illustration - 6

Illustration - 5

States of Matter
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  EUDIOMETRY              Section - 2

Application of Gay Lussac’s Law of combining Volumes

It is a method used to analyze the gaseous mixtures of hydrocarbons and to determine their molecular
formulae.

Here, the combustible gases (i.e., hydrocarbons) are exploded in a tube with the excess of O2 so that C and
H in the gas are converted to CO2(g) and H2O(g) respectively. After cooling and contraction, the volume of
contents of the tube are measured (this does not include H2O as it condenses). At this stage, the contents
include CO2 (g), unused O2 (if any left) and N2 (if any in the air).

Now NaOH is used to separate out CO2  (2 NaOH + CO2    Na2CO3 + H2O). As a result a further
contraction in volume takes place. After this, the unused O2 is left which is generally absorbed by the pyro-
gallol solution. In general after cooling, the contraction in volume is given as :

V = VR  VP (VR: volume of reactants, VP: volume of products after cooling)

Note : NaOH also absorbs Cl2, apart from CO2

From the measurements made, and applying Gay Lussac’s Law of combining volumes, we can calculate molecular
formulae and compositions of gaseous mixtures. Please read the given Illustrations on the next page carefully to
understand the application of law.

8.4 mL of a gaseous hydrocarbon (A) was burnt with 50 ml of O2 in an eudiometer tube.
The volume of the products after cooling to room temperature was 37.4 mL, when reacted with NaOH, the
volume contracted to 3.8 ml. What is the molecular formula of A?

SOLUTION :

Let CxHy (g) be the hydrocarbon.

         x y(g) 2(g) 2(g) 2 (g)
y yC H x O xCO H O
4 2

     
 

         [Remember this balanced combustion equation
for CxHy]

From Gay Lussac’s Law of combining volume, we get :

          1 vol. of CxHy = 2
yx vol. of O
4

  
 

 2 2x vol. of CO y / 2 vol. of H O 

Contraction in volume

       = VR  VP = (8.4 + 50)  (37.4)  = 21 ml

From equation, we have, the contraction

       = 1 + (x + y/4)  (x + 0)

(Note: Vol. of water is not taken as it has condensed)

 Contraction = 1 + y/4

 For 8.4 mL of CxHy, the contraction

        = 8.4 (1 + y/4)

 8.4 (1 + y/4) = 21  y = 6

Illustration - 8
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After treating with NaOH, there is a contraction of
(37.4  3.8) = 33.6 mL, which is equal to the volume
of CO2 produced.
Volume of CO2 produced by 8.4 ml of hydrocarbon
= 8.4 x
  8.4 x = 33.6   x = 4

Another method to calculate y:
After NaOH treatment, the volume is reduced to 3.8 ml,
this corresponds to the volume of O2 unused.
Volume of O2 unused = 50  8.4 (x + y/4) = 3.8
Solve to get : y = 6
Hence hydrocarbon is C4H6.

15 ml of gaseous hydrocarbon required for complete combustion 357 ml of air (21 % of O2
by volume) and the gaseous products occupied 327 ml (all volumes being measured at S.T.P.). What is the
formula of hydrocarbon ?

SOLUTION :

Let CxHy (g) be the hydrocarbon.

       x y(g) 2(g) 2(g) 2 (g)
y yC H x O x CO H O
4 2

     
 

From Gay Lussac’s Law of combining volume, we get :
1 vol. of Cx Hy

 
yx
4

  
 

 vol. of O2  x vol. of CO2


y
2 vol. of H2O

From equation, we have, the contraction
= 1 + (x + y/4)  (x + 0) = 1 + y/4

 For 15 mL gas, contraction = 15(1 + y/4)
Also contraction = VR  VP= (15 + 357)  (327) = 45
 y = 8

The gaseous products after contraction = 327 ml
This includes volume of CO2 plus volume of N2 in the
air (O2 is completely used up). So let us calculate the
volume of N2 in the air.

Vol. of O2 = 0.21 × 357 = 75 ml

 Vol. of N2 = 357  75 = 282 ml

Now, Vol. of N2 + Vol. of CO2 = 327 ml

 Vol. of CO2 = 327  282 = 45ml

The volume of CO2 produced = 15 x

  15x = 45          x = 3

Hence the hydrocarbon is C3H8

60 ml of a mixture of equal volumes of Cl2 and an oxide of chlorine were heated and then
cooled back to the original temperature. The resulting gas mixture was found to have a volume of 75 ml. On
treatment with caustic soda, the volume was contracted to 15 ml. Assuming that all measurements were
made at the same temperature and pressure, deduce the simplest formula of the oxide of Cl2. (The oxide of
chlorine on heating decomposes quantitative to O2 and Cl2).

Illustration - 10

Illustration - 9
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SOLUTION :
Let ClxOy be the oxide.

ClxOy     x/2 Cl2   +   y/2 O2

1 vol.           x/2 vol.       y/2 vol.

 Volume of ClxOy = volume of Cl2 = 30 ml
After cooling volume = 75 ml

This corresponds to vol. of Cl2 initially plus vol. of Cl2
produced and O2 produced.
 V(Cl2) + V(Cl2 produced) + V(O2) = 75
 V(Cl2 produced) + V(O2) = 75  30 = 45 ml

(vol. of Cl2 initially = 30 ml)

NaOH apart from CO2 also absorbs Cl2. So after NaOH
treatment, the residual volume corresponds to the volume
of  O2 = 15 ml

 Vol. of Cl2 = 45  15 = 30 ml

Now from equation :

Vol. of Cl2 = 30 (x/2) = 30  x = 2

Vol. of O2  = 30 (y/2) = 15  y = 1

Hence formula of chloride is Cl2O

Illustration - 11 20 ml of a mixture of ethane (C2H6), ethylene (C2H4) and CO2 are heated with O2. After the
explosion there was a contraction of 28 ml and after treatment with KOH there was a further contraction of
32 ml. What is the composition of the mixture ?

SOLUTION :
Let volume of ethane = a ml
and volume of ethylene = b ml
 Volume of CO2 = (20  a  b) mL
Now contraction after cooling = 28
 VR  VP = 28
VR = volume of ethane + volume of ethylene + volume of
          CO2 + volume of O2 used for combustion
VP = volume of CO2 produced (volume of H2O is not
          taken as it condenses)
Considering combustion of gases :

1. C2H6   + 7/2 O2         2 CO2 + 3 H2O
a vol.       (7/2)a vol.              2a vol.

2. C2H4     +   3 O2        2 CO2  + 2 H2O
b vol.         3b vol.                 2b vol.

3. CO2         CO2 (no reaction)
(20  a  b) volume

 VR = (a + 7/2 a) + (b + 3b) + (20  a  b)

and VP = (2a + 2b) + (20  a  b)

 VR  VP = 5/2 a + 2b = 28


5a
2  + 2b = 28  or  5a + 4b = 56      . . . . . . (i)

Also there is a further contraction of  32 mL on treatment
with KOH.
 Volume of CO2 produced + Vol. of CO2 origi-

nal = 32

 (2a + 2b) + (20  a  b) = 32

 a + b = 12                     . . . . . . (ii)
On solving (i) and (ii), we get :

a = 8  Vol. of ethane = 8 ml

b = 4   Vol. of ethylene = 4 ml

  Volume of CO2  = 8 ml
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9 volumes of gaseous mixture consisting of gaseous organic compound A and just
sufficient amount of O2 required for complete combustion yielded on burning 4 volumes of CO2, 6 volumes of
water vapour and 2 volumes of N2 all volumes measured at the same temperature and pressure. If the
compound A contained only C, H and N,
(a) How many volumes of O2 required for complete combustion ?
(b) What is the molecular formula of the compound A ?

SOLUTION :
Let the molecular formula of A be x y zC H N

x y z 2 2 2 2
y y zC H N x O xCO H O N
4 2 2

      
 

x y z 2 2
y1volC H N x vol of O x volCO
4

    
 

          2 2
y zvol of H O vol N
2 3

 

Let a volumes of Cx Hy Nz were taken.

Volume of O2 = 
ya x 9 a
4

    
 

 Volume of CO2 = ax = 4

Volume of H2O = 
ya 6
2

 

So, 14 12 9 a
4

   

 7 = 9 – a        a = 2

Volume of N2 = 
za 2
2

 

Thus, x = 2, y = 6, z = 2
 Molecular formula of A  C2H6N2

and O2 used = 9  a = 7 volumes.

  KINETIC MOLECULAR MODEL OF A GAS                        Section - 3

In the previous sections, we have studied the macroscopic properties of gases and their relationships in the
form of gas laws. Now, we know that for a given amount of gas, volume is directly proportional to the
absolute temperature but gas laws do not provide any reason for this.

To understand the underlying principles, a theory based on a model is proposed. If the theoretical results on
the basis of this particular model agree with the experimental observations, it indicates that the model is
realistic. The theory that provides an explanation for the various experimental observations about a gas is
based on the Kinetic Molecular Model.
Maxwell proposed the postulates for the behavior of gas molecules known as Kinetic Theory of gases.
The postulates of this model are :

 Each gas is made up of a large number of identical and small (tiny) particles known as molecules (i.e.,
the dimensions of these molecules are very-very small as compared to the space between them).

 The volume of a molecule is so small that it may be neglected in comparison to the total volume
occupied by the gas.

Illustration - 12
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 There are practically no attractive forces between the molecules. Thus, the molecules move indepen
dently.

 The molecules are never in stationary state but are believed to be in random motion in a straight line
motion in all possible directions with altogether different but constant velocities. The direction of   motion
is changed only when it collides with the walls of container or with other molecules.

 The molecules are perfectly elastic and bear no change in energy during collisions.

 The effect of gravity on molecular motion is negligible.

 The temperature of gas is the measure of its kinetic energy. K.E. of molecules is proportional to
absolute temperature of the gas.

 The pressure of the gas is due to the continuous collision of molecules on the walls of container.

Consider a container of volume V occupied by a gas.

Let m = mass of the gas in the container and N = number of molecules in the container

If mo is the mass of one molecule    m = moN

If No is the Avogadro number and M is the molecular weight of the gas,

 M = moNo

Root mean Square (Crms) speed :

It is defined as :    
2 2 2 2

2 1 2 3 N
rms

c c c .......... cc c
N

   
 

[where bar    represents average     2c  = Average of c2 values]

Since the distribution is continuous, we can write :
2

c2 2 B
rms

c dN 3k T 3RTc c
N m M

   

Where Mo = Mol. mass of the gas (in Kg)

 rms
3RTc
M



Note : Derivation of the above integrals is not required.
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Illustrating the concept:

The escape velocity, the velocity required by an object to escape from the gravitational field of earth,

is given by ec 2gr  where r = 6400 km for earth. At what temperature will the crms of an H2

molecule attain escape  velocity ? (g = 10 ms2)

                  3 1
ec 2 10 6400 10 11313.7 ms    

 crms 3
3RT 3 8.314 T
M 2 10

 
 

 [Note : 
2

3
HM 2 10 kg  ]

As crms = ce  T = 10263.8 K

Average speed (cavg) :

This is defined as : 1 2 3 N
avg

c c c ..... cc c
N

   
 

For a continuous distribution, it can be written as : 
c

avg
cdN 8RTc
N M

 




Note : This is actually “average speed”. Since, the molecule move randomly, average velocity of the gas is
zero.

Illustrating the concept:
The average speed of a gas molecule is 400 m/s. Calculate its rms velocity at the same temperature.

rms avg
3RT 8RTc and c
M M

 


 1 1
rms

3c 400 ms 434.24 ms
8

 
  

Most Probable speed (CMP) :

A very small fraction of molecules occupy either very small or very high speeds. The speed occupied by
majority of molecules is known as most probable speed.

It is given by : MP
2RTc
M


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Illustrating the concept:

For a gas consisting of only six molecular having speeds as 1 1 1 1 1 12ms , 3ms , 3ms , 3ms , 4 ms , 5ms ,     

find crms, cavg  and  cMP.
N

i
i 1 11 2 N

avg.

c
c c . . . c 2 3 3 3 4 5c c 3.33ms

N N 6
        

    



 

N
2

i 2 2 2 2 2 2 2 2 2i 12 11 2 N
rms

c
c c . . . c 2 3 3 3 4 5c c 3.46 ms

N N 6
        

    



MP
1c 3ms  (Since maximum numbers of molecules are having a speed of 3 ms–1)

Note :

(i) cMP < cavg. < crms

    MP avg rms
8c : c : c : : 2 : : 3


1     :   1.128    :   1.224
     Also, cavg = crms  0.9215

(ii) cavg and crms values lie in the vicinities of cMP values.
(iii) The numerical values of cMP , cavg , crms increases with increase in temperature.
(iv) Also, it is important to note that the average translational kinetic energy of a gas molecule is given by :

2 2
avg rms avg

1 1K.E m c m c
2 2  

If in a gas, there are N molecules, their total K.E. is :

2 2 2
Total 1 2 N 1 2 N

1 1 1K.E K.E K.E . . . K.E m c m c . . . m c
2 2 2         

Thus, average kinetic energy of each molecule
2 2 2
1 2 N

1 1 1m c m c . . . . m c
2 2 2

N

    


2 2 2
1 2 Nc c . . . . c1 m

2 N
   

   
 

2
rms

1 m c
2 

(v) The sharpness of maximum in curves decreases with increase in temperature which reveals that number of
molecules having speeds in the vicinities of cMP increase.
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Kinetic Energy of Gas
The pressure exerted by the gas is :

2
rms

m N1P c
3 V

      or    2
rms

1P c
3

     where  = density of gas = 
m N

V


Using the above relation and gas laws, a relation between the average translational kinetic energy 2
rms

1 m c
2 

 
 
 

of a molecule at the temperature, T of the gas can be derived.
Using PV = nRT


2
rms

m N1 Nc V RT
3 V N




       

20
rms

m N1Using P C
3 V

   
Note :

22 2 2
2 2 1 2 N 1 2 N

avg. rms avg
c c . . . c c c . . . c1 1K.E m c m c

2 2 N N 
            

   


or
2
rms

1 1m c RT
3 N





2
rms B

1 3 RT 3m c k T
2 2 N 2


 

 Average Translational K.E. of a molecule is directly proportional to the temperature of the gas.

K.Eavg = B
3 k T
2 [where B

Rk
N

  is known as Boltzmann constant]

Also, K.E./mole = 
3 3PV RT
2 2



Illustration - 13 Find the temperature at which methane and ethane will have the same rms speed as car-
bon dioxide at 400C. Also calculate the mean velocity and most probable velocity of methane molecules at
400C.

SOLUTION :

rms
3RTc
M



Let 1: CO2 and 2: Methane

For crms to be same for 1 and 2


1 2

1 2

T T
M M



(a) 4CH
673T 16 244.73K
44

  

(b) 2 6C H
673T 30 458.86K
44

  

           3
4

8RT 8 8.31 673Mean speed
M 3.14 16 10CH




 
 

  

      = 943.68 m/s

           3
4

2RT 2 8.31 673Most probable speed
M 16 10CH




 
 



                 = 836.11 m/s
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Illustration - 14 A gas bulb of 1 L capacity contains 2.0  1021 molecules of nitrogen exerting a pressure of
7.57  103 Nm2. Calculate the root mean square (rms) speed and the temperature of the gas molecules. The
ratio of the most probable speed to the root mean square speed is 0.82, calculate the most probable speed for
these molecules at this temperature.

SOLUTION :

rms
3RTc
M

    T = ?

Using, PV = nRT

 T = 
PV
nR =

3 3

21

23

7.57 10 1 10
2.0 10 8.314

6.023 10

  






= 274.2 K

rms 3
3 8.314 274.2c 494.22 m / s

28 10
 

 


Most probable speed (cMP) = 
1 494.22

1.224


        = 403.77 m/s

Illustration - 15 Two gases A and B have the same magnitude of most probable speed at 298 K for A and

150 K for B. Calculate the ratio of their molor masses A

B

M
M

 
 
 

.

(A) 2 : 1 (B) 1 : 0.75 (C) 1 : 2 (D) 3 : 1

SOLUTION : (A)

Most Probable 
1/22RT

M
   
 

According to the problem A B

A B

T T
M M




A A

B B

M T 298 2
M T 150

  

 A BM : M 2 :1

Illustration - 16 What is the ratio of kinetic energy per mole of Argon at 27°C and Helium at 127°C ?
(A) 0.75 : 1 (B) 1 : 1 (C) 1 : 0.67 (D) 1 : 1.25

SOLUTION : (A)

Kinetic energy (K.E) 
3 RT
2



Ar Ar
3KE = RT
2

He He
3KE = RT
2

300 3
400 4

Ar Ar

He He

KE T
KE T

  

HeArKE : KE is 0.75 : 1
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   REAL GAS ANALYSIS                                                      Section - 4

Equation of state describes the variables of a gas (P, V, T) in a single equation completely. The gas equation
PV = nRT is an equation of state which is followed only by ideal gases. This equation is not always applicable
for a real gas (especially at high pressure and low temperature). There are many equation of states which can
be used to represent a real gas but the most commonly used equation is van der Waal’s Equation and is given
by :

 
2

2
anP V nb nRT
V

 
    

 
         . . . . . . (i)

where P = Real Gas Pressure ; V = Volume occupied by the Gas ( Container Volume)
T = Gas temperature ; R = Universal Gas Constant       ; n = Moles of Gas

     a, b = Characteristic constants for a gas independent of the temperature but depends on the nature of the
gas.

Note : (i) Units of 
2

2
L atm La ; b

molmol
 

(ii) a  Relates to the forces interacting between the gas molecules and modifies the pressure term.
(‘a’ is high if the gas molecules have more attractive forces)

(iii) b  Relates to the volume occupied by the gas molecules and takes into account the fact that the space
actually occupied by the molecules themselves is unavailable for the molecules to move in and is given
by :
b = 4  volume of 1 mol of gas molecules.

(iv) For a given gas Van der Waal’s constant ‘a’ is always greater than ‘b’.

(v) The gas having higher values of ‘a’ can be liquefied easily. (to be discussed later)

Equation (i) is similar to the ideal gas equation with some correction factors taking into account the factors
responsible for a gas to deviate from the ideal gas behaviour.
Equation (i)  is written in a more familiar form by dividing it by “n” :

  m2
m

aP V b RT
V

 
    

 
. . . . . .(ii)

where m
VV
n

  = Molar volume (volume occupied by 1 mole gas)
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Pressure correction  :

The term 2
m

a
V

 is known as Pressure correction. The pressure exerted by a real gas is always less than

that by an ideal gas. So, this has to be added to the real gas pressure such that : ideal real 2
m

aP P
V

 

Note : realP is the pressure exerted by the real gas and has been denoted by ‘P’ in the van der Waal’s equation.

Volume correction  :
The term ‘nb’ is known as volume correction (also known as co-volume or excluded volume). The volume
of the gas molecules is not zero and hence the actual compressible volume is less thanV m and thus has to be
subtracted from Vm

We can also write a Universal Equation of state for any gas as :
PV = Z (nRT) . . . . . .(iii)
where Z = compressibility factor

Note : (i) For ideal gas, PV = nRT  Z = 1 at all conditions of P, V, T.
(ii) For real gas, PV = ZnRT
It should be clear that “Z” represents a quantitative deviation of real gas from ideal gas behaviour.

Explanation for deviation from Ideal Gas Behavior :
The deviation from ideal gas behavior is mainly due to two assumptions made while formulating the kinetic
molecular  theory :
(i) Molecules were considered as point masses. However all real molecules have definite volume which

cannot be neglected when the volume occupied by the gas is small.
(ii) It was assumed that there are no intermolecular forces and molecules move independently. This cannot

be true as otherwise gases could not condense into liquid.
If we assume that gas molecules are hard spheres of radius say, 2  10–10 m, the volume of one mole of gas
molecules = (volume of each molecule)  No

=  38 23 34 2 10 6 10 cm
3

     = 2.01  10–2 L

and volume of the gas at P = 1atm and T = 0C is nearly 22.4 L
 % volume occupied by gas molecules  0.09%

It can be shown that at P = 10 atm and T = 0C, volume of the gas is nearly 2.24 L
% volume occupied by gas molecules  0.9%

Thus, as pressure increases, space available for gas molecules for free movement decreases.
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With an increase in pressure, the average distance between the gas molecules decreases, then the molecular
interactions start operating. Thus, the number of molecular collisions with the walls of the container gets
affected resulting in smaller values of pressure than what actually would have been in the absence of intermo-
lecular interaction.

Let us plot the variation of Z as a function of P.
We can, theoretically, describe the above behaviour
by using van der Waal’s equation :
This equation  is a  cubic in Vm.  Thus,  verification for
the variation of Z versus P from this equation, directly,
is difficult. Instead, the whole variation can be divided
into three regions.

Region : I Low Pressure : This region is represented by that portion of the graph where m mV b V  ,
i.e., Vm >> b or when the gas has a large molar volume or very small pressure.

Thus, we have :  m2
m

aP V RT
V

 
   

 

 2m m

RT aP
V V

   [Here, both P and 2
m

a
V

 are small numbers. So, 2
m

aP P
V

  ]


m

m

PV aZ 1
RT RTV

   . . . . . . (iv)

 In the region I, Vm is large  Z < 1 but Z 1

Thus, as P increases (Vm decreases), Z decreases [see equation (iv)]

Region : III High Pressure : This region is represented by that portion of the graph where

 m m2
m

aP P V b V
V

   

 Van der Waal’s equation reduces to :    mP V b RT 

  PVm = Pb + RT            mPV PbZ 1
RT RT

         [Note : Z vs P is linear here]

Thus, as P increases, Z increases and Z  > 1.

Region : III Intermediate Pressure :
In this region, neither of the two approximations are valid, i.e.,

m mV b V    and   2
m

aP P
V

 

So, the direct analysis is difficult.
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Observations from the graph :
(i) In the low pressure Region-I and in most of the Intermediate Pressure Region-II : Z < 1

 Gas is more compressible. Thus, attractive forces dominate between the gas molecules

(ii) In the high Pressure Region-III, Z  > 1
 Gas is less compressible. Thus, repulsive forces dominate between the gas molecules.

The graph () shows the variation of Z vs P for different gases
and following can be observed :

(i) H2 and He gases have very low attractive forces between
the gas molecules and we can assume their van der waal’s
gas constant ‘a’  0.

  mP V b RT 

[For H2 and He even at low Pressures we can assume

[ 2
m

aP P
V

  ]

(ii) Z < 1 (as for CH4, CO2) can be attributed to the predominance of attractive forces among the mol-
ecules of these gases at the temperature of experimentation whereas Z > 1 can be attributed to the
dominance of strong repulsive forces among the molecules.

(iii) All gases at sufficiently high pressure (i.e., when sizes of the molecules are comparable to the volume
of the gas) will have Z > 1.

Variation of Z vs Temperature (T) :

In the low pressure region :
m

aZ 1
RTV

  (Z < 1)

 As T increases  Z increases and reaches close to 1.

In the high pressure region : PbZ 1
RT

  (Z > 1)

 As T increases    Z decreases and reaches close to 1.

It can be seen that Z approaches 1 as T increases and Z approaches 1 as P approaches 0.

Thus, a real gas behaves more closely to ideal gas at low pressure and high temperature.

Note : Large value of  “a” denotes a larger dip in Z in the intermediate pressure region.

3 2NH Na a as NH3 molecules exerts attractive forces due to Hydrogen Bonding but in N2 there are only
Van der Waal’s forces of attraction between the molecules which is actually small.

3 2NH Nb b as N2 molecule is larger as compared to NH3 molecule.

All isotherms in the above graph will have a common point of intersection ‘A’.
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Illustrating the concept :

 Find the temperature at which 3 mole of SO2 obeying van der Waal’s equation occupies a

volumes of 10 L at a pressure of 15 atm.  2 2a 6.71 L atm / mol , b 0.0564 L / mol 

Using van der Waal’s equation of state :  
2

2
n aP V nb nRT
V

 
    

 

we get,
2

2
3 6.7115

10

 
  

 
 (10 – 3  0.0564) = 3  0.0821  T  T = 349.8C

 The compressibility factor for 1 mole of a van der Waal’s gas at 0C and 100 atm pressure is
found to be 0.5. Assuming that the volume of gas molecular is negligible, calculate the van der
Waal’s constant ‘a’.

Using van der Waal’s equation of state :   m2
m

aP V b RT
V

 
    

 

Now : Vm – b  Vm (given)

 The equation is reduced to : m2
m

aP V RT
V

 
   

 
     or    m

m

PV aZ 1
RT RTV

  

Also, m
m

100 V0.5 V 0.112 L
0.0821 273


  



Substitute the values of Vm and T :    a = 1.25 L2 atm mol2

Illustrating the concept:

 Calculate the pressure exerted by 5 mole of CO2 in 1 L vessel at 47C using van der waal’s
equation. Also report the pressure of gas if it behaves ideally in nature.
(a = 3.592 atm L2/ mol2, b = 0.0427 L/mol)

Using van der Waal’s equation of state :

 
2

2
n aP V nb nRT
V

 
    

 
Substituting the given values, we get :

2

2
5 3.592P

1

 
  

 
 (1 – 5  0.0427) = 5  0.0821  320

 P = 77.218 atm
If the gas behaves ideally, then using :     PV = nRT


5 0.0821 320P atm

1
 

 = 131.36 atm.



Section 4 29

Vidyamandir Classes States of Matter

 Van der Waal’s constant b of Ar is 3.22  10–5 m3 mol1. Calculate molecular diameter of Ar.
Use, b = 4  volume occupied by the molecules in 1 mol of a gas


34b 4 N r

3
     
 

5 23 34 223.22 10 4 6.023 10 r
3 7

      

1/35
9

23
3.22 10 3 7r 0.1472 10 m 0.1472 nm

4 6.023 10 4 22


   

    
     

d = 2r = 0.2944 nm.

Critical phenomenon and Liquefaction of gases :
The phenomenon of converting a gas into liquid is known as liquefaction. The liquefaction of gas is achieved
by controlling P and T as follows :
 Increasing pressure : An increase in pressure results in increase in attraction among molecules.
 Decreasing temperature : A decrease in temperature results in decrease in kinetic energy of molecules.
 The temperature of gas must be lower than its critical temperature TC.

Note :
(i) Condition for a real gas to get liquefied is :

Low Temperature : Molecules don’t have sufficient energy to overcome the attractive forces between the
gas molecules.

High Pressure : Molecules are close to each other so that they can exert sufficient attraction on each
other required for the liquefication of the gas.

(ii) An ideal gas can never be liquefied whatever be the temperature and pressure conditions due to the absence
of the attractive forces between its gas molecules.

Critical temperature (TC ) :
It is defined as the characteristic temperature for a given gas below which a continuous increase in pressure
will bring liquefaction of gas and above which no liquefaction is noticed although pressure may be increased
For example :   TC for CO2 is 31.2C.

Critical pressure (PC ) :
It is defined as the minimum pressure applied on 1 mol of gas placed at critical temperature, to just liquefy the
gas.



Section 430

Vidyamandir ClassesStates of Matter

Critical Volume (Vm,C) :
The volume occupied by 1 mol of gas placed at critical conditions.
(i.e. P = PC and T = TC ).

Note : (i) PC, Vm,C ,TC are characteristic values for each gas.
(ii) The numerical values of critical constants derived from Van der Waal’s equation are:

C C m, C2
8a aT ; P ; V 3b

27 Rb 27 b
      [a, b are the van der Waal’s gas constants]

(iii) The gas having its temperature much lower than its critical temperature, less pressure is sufficient to
liquefy it.

(iv) The numerical value of  C

C m, C

RT 8
P V 3

   (on substituting TC, PC, Vm, C ). Thus one can write that the

value of RT/PV at critical conditions is 8/3 of normal conditions.

i.e., C

C m, C

RT 8 8 RT RT 1
P V 3 3 PV PV

    
 


 At critical conditions, C m, C

C

P V 3Z
RT 8

 

Boyle’s Temperature (TB)

It is that temperature at which a real gas behaves ideally over a large pressure range as shown :

TB is given by :  
a

Rb  where a, b are van der Waals gas constant

Note : Boyle’s temperature of a gas is always higher than its critical temperature (TC ).
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Collision Frequency and Mean Free Path

The collision rate (i.e., the number of collisions taking place in unit time per unit volume) is called collision
frequency (z) and is given by

2 2
avgn c

z
2

 


The average of distances traveled by a molecule between successive collisions is called mean free path
().

2
1

2 n
 

 
where n is the number of molecules per unit molar volume.

23
36.02 10n m

0.0224




cavg , average velocity, the collision diameter i.e., the minimum distance between the centres of two
molecules when at the point of collision.

Also based on kinetic theory of gases, mean free path 
T
P

  . Thus,

 Larger the size of the molecules, smaller the mean free path.
 Greater the number of molecules per unit volume, smaller the mean free path.
 Larger the temperature, larger the mean free path.
 Larger the pressure, smaller the mean free path.
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MORE ILLUSTRATIONS

Illustration - 17 A mixture containing 1.12L of H2 and 1.12L of D2 (deuterium) at S.T.P., is taken inside a
bulb connected to another bulb by a stop-cock with a small opening. The second bulb is fully evacuated. The
stop-cock is opened for a certain time and then closed. The first bulb is found to contain 0.05 gm of H2.
Determine the percentage composition by weight of the gases in the second bulb.

SOLUTION :

In the first bulb :

Initial moles of H2 = 
1.12 1
22.4 20



Initial moles of D2 = 
1.12 1
22.4 20



Now after opening of stop-cock, mass of H2 left in the
first bulb = 0.05

  Moles of H2 = 
0.05 1

2 40


  Moles of H2 effused into second bulb

       = 
1 1 1
20 40 40

 

Let n be number of moles of D2 effused.

From Graham’s Law :

n 2
1/ 40 4




2n

80
  = moles of D2 in second bulb.

In the second bulb:

The mass of H2 gas = 
1 2 0.05gm
40

 

The mass of D2 gas = 
2 4 0.07 gm

80
 

 Total mass = 0.05 + 0.07 = 0.12 gm.

 % of H2 = 
0.05 100 41.67%
0.12

 

and % of D2 = 
0.07 100 58.33%
0.12

 

Illustration - 18 A mixture of ethane and ethene occupies 40 L at 1.0 atm and 400K. The mixture reacts
completely with 130 gm of O2 to produce CO2 and H2O, Assuming ideal gas behaviour, calculate the mole
fractions of C2H4 and C2H6 in the mixture.

SOLUTION :

Let x = moles of C2H6 and y = moles of C2H4

C2H6 + 7/2 O2  2CO2 + 3H2O

C2H4  + 3O2  2CO2 + 2H2O

 moles of O2 used = 
7 3
2
x y  

 

and moles of O2 available = 
130
32

 
7 1303
2 32
x y         3.5x + 3y = 4.06

Also,  x + y = 
PV 1 40
RT 0.0821 400





 = 1.218

Solving for x and y, we get :

 x = 0.812 and y = 0.406


2 6C H

0.812 0.67
1.218

   and 2 4C H 0.33 
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Illustration - 19 1 mole of CCl4 vapours at 77C occupies a volume of 35.0 L. If van der Waal’s constants
are a = 20.39 L2 atm mol–2 and b = 0.1383 L mol–1, calculate compressibility factor Z under,
(a) low pressure region (b) high pressure region.

SOLUTION :
(a) Under low pressure region, Vm is high

(Vm – b)  Vm

 m2
m

aP V RT
V

 
   

 

 m
m

aPV RT
V

 

20.39Z 1 0.98
0.0821 350 35

  
 

m

aZ 1
RTV

 
  

 


(b) Under high pressure region P is high,

2
m

aP P
V

 
   

 

 P(Vm – b) = RT       or PVm – Pb = RT


m

RTP
V b





m m

m
m

PV V 1Z bRT V b 1
V

  
 

 1Z 1.0040.1381
35

 


Illustration - 20 At 20C, two balloons of equal volume and porosity are filled to a pressure of 2 atm, one
with 14 kg N2 and other with 1 kg of H2. The N2 balloon leaks to a pressure of 1/2 atm in 1 hr. How long will
it take for H2 balloon to reach a pressure of 1/2 atm ?

SOLUTION :

Note : 1 2

2 1

r M
r M




1 1 2

2 2 1

n / t M
n / t M




 
 

1 1 1 2

2 2 2 1

w M t M
w M t M




1 1 1

2 2 2

w t M
w t M



where w1, w2 are the weights of gas 1 and 2 effused in
time t1 and t2 respectively.

At constant V and T for a gas P  w

Thus, for N2 :   P1 = 2 atm.   2
1P atm.
2

  at    t = 1 hr

w1 = 14 kg w2 = ?


1 1

2 2

P w
P w




2

2 14
1 2 w

         2 2
14w kg N
4



Wt. of N2 diffused = 
14 42 2114 kg
4 4 2

  

Similarly, for H2 :  P1 = 2 atm,  2
1P atm,
2

  at  t = t hr

w1 = 1 kg w2 = ?

 
1 1

2 2

P w
P w

    
2

2 1
1 2 w

   2
1w kg
4





Vidyamandir ClassesStates of Matter

Section 434

Wt. of H2 diffused 
1 31 kg
4 4

 

   Now 2 2

2 2

N H

H N

r M
r M

 
 
 
 

for diffusion of N2 and H2

or
2 2 2

2 2 2

N H N

H N H

w t M
w t M

 

 2Ht21 2 28
3 4 60 2

 

 2H
60t min
14



Alternative approach :

1 1 2

2 2 1

r P M
r P M



1 1 1 2

2 2 2 1

P / t P M
P / t P M





Here : 1 2
1P P 2 atm
2

       and

P1 = P2 = 2 atm


2 2

1 1

t M
t M




2

2 2
2

H
H N

N

M 60t t min
M 14

 

Illustration - 21 A gaseous mixture of helium and oxygen is found to have a density of 0.518 g dm–3 at 25C
and 720 torr. What is the per cent by mass of helium in this mixture ?

SOLUTION :

We know, PMo = dRT


720 M 0.518 0.0821 298
760    

  Mo = 13.37 g/mol
Let mole fraction of He in mixture be .

  2He Oχ , 1    

Average molecular mass =   MHe + (1 – ) 2OM

 13.37 =   4 + (1 – ) 32

  = 0.666

 % by mass of He = 
0.666 4 100

0.666 4 0.334 32



  

    = 19.95%
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  THE LIQUID STATE               Section - 5

The liquid state is intermediate between gaseous and solid states. In the gaseous state the molecular
interactions are very weak practically negligible and molecules are in random motion. Molecules continue to
move unless they are reflected back by the walls of the vessel. Otherwise molecules would continue to move
and the gas would expand to any volume. This is why gases do not have a definite volume.
In case of liquid, the molecular interactions are quite strong and a given quantity of liquid occupies a definite
volume. Molecules of the liquid have so much freedom that they can flow readily and take up the shape of the
container due to continuous breaking and making of weak van der Waal’s bonds between the neighbouring
molecules.
Molecules in solids completely lack in translation motion. The thermal motion of the molecules is so greatly
reduced that they can only oscillate with respect to their fixed positions in the crystals. Each molecule in a
solid has generally 6 to 12 nearest neighbours called coordination number. In the liquid state the coordination
number of a molecule is not fixed but is only slightly less than in solid. The distance between the nearest
neighbours in liquid is only slightly higher than that in solids. This is why there is very little expansion of solids
on melting.
Vapour Pressure
The kinetic theory is the idea that there is distribution
of  kinetic  energies and hence the molecular  speeds,
depending  on the absolute  temperature.  Therefore,
in  any  gas,  liquid or solid  at  room  temperature, a
small  fraction  of   molecules   have   relatively  high
kinetic energy. Some of these high energy  molecules
at  the  liquid  surface  become  free  resulting into its
evaporation.  With   the   departure  of  high   energy
molecules  the  average   kinetic   energy   decreases
leading  to a  fall  in  temperature of  the  liquid.  This
explains why evaporation causes cooling.

In a closed vessel, some free space above the liquid, the evaporated molecules cannot escape to the
atmosphere. Initially the vapour pressure increases and then comes to a constant value. The volume of the
liquid decreases initially and then becomes constant over a period of time. Increase in pressure means more
number of collisions with the walls of the container.

Inside a closed vessel, the liquid and its vapours are in dynamic equilibrium. The pressure exerted by the
vapours is then known as equilibrium vapour pressure. Since the vapour pressure is a kinetic phenomena,
it is independent of the amount of a liquid .It only depends on the temperature. The temperature must,
therefore, be specified with the vapour pressure of a liquid.
A liquid is said to be at its boiling temperature if its vapour pressure is equal to external pressure. Therefore,
the boiling point of water in particular and of liquids in general decreases as altitude of a place increases
where the external pressure is less than one atmospheric pressure



Vidyamandir ClassesStates of Matter

Example - 7

Section 536

Vapour pressure of solids
When a solid is directly converted to its vapour state, then the process is called sublimation. Substances like
ammonium chloride, iodine, camphor, solid carbon dioxide sublime at ordinary temperature and pressure.
The white cloud like trail that we see coming out of the high flying jet is water vapours issuing from the
exhausts of high flying jets, getting converted directly into microcrystalline ice which is slowly reconverted
into water vapour without passing through the liquid state. This property of sublimation is used in the process
called freeze drying.

Surface Tension

Surface tension is one of the characteristic properties of liquids. Each molecule in the liquid state is influenced
by the nearest neighbour molecules. A molecule in the bulk of liquid experiences equal attractive forces from
all sides. There is no resultant force on the molecule which tries to move it

 in any direction, whereas for a molecule at the surface of the liquid, the net

attraction towards the liquid is greater than that towards the vapour state.
The energy required to increase the surface area of the liquid by one unit, is
defined as its surface tension. It is represented by the Greek letter 
(gamma). The liquid surface, in the absence of any other force tends to
attain a minimum area. Mathematically it can be shown that for a given
volume, the sphere has a minimum area. Hence the water drop acquires a
spherical shape. Liquid in a capillary tube rises due to its surface tension.
Surface tension is also defined as the force acting per unit length perpendicular
to the line drawn on the surface. The units of surface tension is Nm–1 .

Viscosity of liquids
The ease with which a fluid can flow is determined by its property called viscosity. Viscosity arises due to the
internal friction between layers of fluids as they pass over each other. When a liquid is steadily flowing over
a fixed horizontal surface the layer immediately in contact with the surface is stationary. The velocity of the
layers increases with the distance from the fixed surface. if we select a layer, the layer immediately below tries
to retard its flow(velocity),while the one above tries to accelerate the flow. Force required to maintain the
flow in the three layers described above is directly proportional to the area of contact and velocity gradient.
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  THE SOLID STATE               Section - 6

The substance is said to be in solid state if the molecular interaction energy predominates over the disruptive
thermal energy.

Covalent Solids

A covalent solid is a giant molecule having a three dimensional network of covalent bonds. Examples are
diamond, silicon carbide, silica. These are generally very hard.

Ionic Solids
Ionic solids are three dimensional arrangements of cations and anions bound by coulombic forces .The
crystal on the whole are electrically neutral. Such solids are characterized by high melting and boiling points.
The ionic solids do not conduct electricity as ions present therein are not free to move. Examples are sodium
chloride, barium oxide and calcium fluoride.

Metallic Solids
Metals are orderly collection of positive ions surrounded by and held together by free electrons, each metal
atom donating one or more electrons. The bonding is not directional. The metals are good conductors of heat
and electricity. They are highly malleable and ductile. These sets of properties can be attributed to this
structure of metals. Metals like sodium crystallize- in simple cubic lattice. The presence of a sea of mobile
electrons in a metal accounts for its high electrical and thermal conductivity.

Molecular Solids
Many combinations of elements result into covalent molecules. These are discrete units capable of independent
existence. Thus we have molecules like di-hydrogen, di-nitrogen, methane etc. which are called covalent
compounds. They have weak molecular interaction. Even mono-atomic molecules like the noble gases, form
molecular solids. These solids are characterized by low melting points.

Force is proportional to area in contact and velocity gradient, i.e.,
F  A (Area) . . . . . .(i)

and F  
dv
dx (velocity gradient) . . . . . .(ii)

On combining (i) & (ii) , we get : F   
dv
dx

       F =  A 
dv
dx

where  is a constant, called as the coefficient of viscosity and it has the unit of poise, g cm–1s–1.



Recapitulating and Summarizing
2. Boyle’s Law : PV = constant (Keeping T and n constant)

3. Charle’s Law :
V
T  = constant (Keeping P and n constant)

4. Combined Gas Law :
PV
T  = constant(Keeping n constant)

5. Gay Lussac’s Law :
P
T  = constant (Keeping V and n constant)

6. 1 mol Ideal Gas = 22.4 L at STP.

7. Ideal gas Equation : PV = nRT or PVm = RT (Vm = V/n)

8. Dalton’s law of Partial Pressure :
 1 2

Total
n n . . .

P RT
V

 
  Partial pressure of a gas = Gas TotalP 

9. Graham’s Law of Diffusion : Rate of diffusion/effusion = 
n
t




 or 
P
t




 or 
V
t




             
P
M



10. Maxwell’s speed distribution : rms avg MP
3RT 8RT 2RTC ; C ; C
M M M  

  


[ T is in Kelvin : M is in kg/mol : R = 8.314 kJ/mol ]

11. Kinetic Energy of Gas : avg B
3KE k T
2



12. Real Gas Equation :  
2

2
anP V nb nRT
V

 
    

 
  and   mPVZ

RT


b = 4  volume of 1 mol of gas molecules.

13. Critical constants for a real gas C C m, C2
8a aT ; P , V 3b

27Rb 27 b
  

14.

In low Pressure Region : m2 mm

a aP V RT & Z 1
R T VV

 
      

In High Pressure Region :  m
PbP V b RT & Z 1
RT

   
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