RACE # 45

STRAIGHT LINE

MATHEMATICS

- 1. A line passes through (2,2) and cuts a triangle of area 9 square units from the first quadrant. The sum of all possible values for the slope of such a line, is
 - (A) -2.5 (B) -2 (C) -1.5 (D) -1
- 2. The equations of L_1 and L_2 are y = mx and y = nx, respectively. Suppose L_1 makes twice as large of an angle with the horizontal (measured counterclockwise from the positive x-axis) as does L_2 and that L_1 has 4 times the slope of L_2 . If L_1 is not horizontal, then the value of the product (mn) equals-

(A)
$$\frac{\sqrt{2}}{2}$$
 (B) $-\frac{\sqrt{2}}{2}$ (C) 2 (D) -2

- 3. The extremities of the base of an isosceles triangle ABC are the points A(2,0) and B(0,1). If the equation of the side AC is x = 2 then the slope of the side BC is -
 - (A) $\frac{3}{4}$ (B) $\frac{4}{3}$ (C) $\frac{3}{2}$ (D) $\sqrt{3}$
- 4. The graph of the function, $y = \cos x \cos(x + 2) \cos^2(x + 1)$ is -
 - (A) a straight line passing through $(0, -\sin^2 1)$ with slope 2
 - (B) a straight line passing through (0,0)
 - (C) a parabola with vertex $(1, -\sin^2 1)$

(D) a straight line passing through the point $\left(\frac{\pi}{2}, -\sin^2 1\right)$ and parallel to the x-axis.

- 5. The sides of a triangle ABC lie on the lines 3x + 4y = 0; 4x + 3y = 0 and x = 3. Let (h,k) be the centre of the circle inscribed in \triangle ABC. The value of (h + k) equals-
 - (A) 0 (B) 1/4 (C) -1/4 (D) 1/2
- 6. If m and b are real numbers and mb > 0, then the line whose equation is y = mx + b cannot contain the point-(A) (0,2009) (B) (2009,0) (C) (0,-2009) (D) (20,-100)
- 7. The co-ordinates of the orthocentre of the triangle bounded by the lines, 4x 7y + 10 = 0; x + y = 5 and 7x + 4y = 15 is-
 - (A) (2,1) (B) (-1,2) (C) (1,2) (D) (1,-2)

8. If the x intercept of the line y = mx + 2 is greater than 1/2 then the gradient of the line lies in the interval-(A) (-1,0) (B) (-1/4,0) (C) (- ∞ ,-4) (D) (-4,0)

9. Let the co-ordinates of the points A and B be (1,2) and (7,5) respectively. The line AB is rotated through 45° in anti clockwise direction about the point of trisection of AB which is nearer to B. The equation of the line in new position is :

(A) 2x - y - 6 = 0 (B) x - y - 1 = 0 (C) 3x - y - 11 = 0 (D) none of these

10. The greatest slope along the graph represented by the equation $4x^2 - y^2 + 2y - 1 = 0$, is-(A) -3 (B) -2 (C) 2 (D) 3

11. A ray of light passing through the point A(1,2) is reflected at a point B on the x-axis and then passes through (5,3). Then the equation of AB is :

(A)
$$5x - 4y = 13$$
 (B) $5x - 4y = -3$ (C) $4x + 5y = 14$ (D) $5x - 4y = 13$

	mid- point of BC is (5,6) then the equation of BC is :					
	(A) $x - y = -1$	(B) $5x - 2y = 13$	(C) $x + y = 11$	(D) $3x - 4y = -9$		
13.	Number of lines that careful to	an be drawn through the	point(4,-5) so that its di	stance from $(-2,3)$ will be equal to 12 is		
	(A) 0	(B) 1	(C) 2	(D) 3		
14.	Two mutually perpendicular straight lines through the origin form an isosceles triangle with the line $2x + y = 5$. Then the area of the triangle is :					
	(A) 5	(B) 3	(C) 5/2	(D) 1		
15.	Let the lines $(y - 2) = m_1(x - 5)$ and $(y + 4) = m_2(x - 3)$ intersect at right angles at P (where m ₁ and m ₂ are parameters). If locus of P is $x^2 + y^2 + gx + fy + 7 = 0$, then $(f - g)$ equals -					
	(A) 1	(B) 2	(C) 8	(D) 10		
16.	P lies on the line $y = x$ and Q lies on $y = 2x$. The equation for the locus of the mid point of PQ, if $ PQ = 4$, is					
	(A) $25x^2 + 36xy + 13y^2 = 4$ (B) $25x^2 - 36xy + 13y^2 = 4$					
	(C) $25x^2 - 36xy - 13y$	$25x^2 - 36xy - 13y^2 = 4$ (D) $25x^2 + 36xy - 13y^2 = 4$				
17.	The vertex of the right angle of a right angled triangle lies on the straight line $2x - y - 10 = 0$ and the two other vertices, at points (2,-3) and (4,1) then the area of triangle in sq. units is-					
	(A) $\sqrt{10}$	(B) 3	(C) $\frac{33}{5}$	(D) 11		
18.	-	BC is 20 square units. The co-ordinates $x = 2$ The co-ordinates $x = 2$		A are $(-5,0)$ and B are $(3,0)$. The vertex		

In a triangle ABC, side AB has the equation 2x + 3y = 29 and the side AC has the equation, x + 2y = 16. If the

1 C lies on the line, x - y = 2. The co-ordinates of C are -

(A) (5,3) (B) (-3,-5) (C) (-5,-7) (D) (7,5)

[SUBJECTIVE]

- 19. (a) Find the equation of the straight line passing through (3,4) and the intersecting point of the two lines $5x - x^2 + x^$ y = 9 and x + 6y = 8.
 - (b) Find the equation of the straight line which go through the origin and trisect the portion of the straight line 3x + y = 12 which is intercepted between the axes of coordinates.
 - (c) Find the equations to the straight line which passes through the point (-5,4) and is such that the portion of it between the axes is divided by the point in the ratio of 1:2.
- Find the equation to the straight line which passes through the point (5,6) and has intercepts on the axes. 20.
 - (i) Equal in magnitude and both positive.
 - (ii) Equal in magnitude but opposite in sign.

[MATCH THE COLUMN]

21. Consider the line Ax + By + C = 0.

Match the nature of intercept of the line given in column-I with their corresponding conditions in column-II. The mapping is one to one only.

Column-II

Column-I

12.

(A)	x intercept is finite and y intercept is infinite	(P)	$A = 0, B, C \neq 0$
(B)	x intercept is infinite and y intercept is finite	(Q)	$\mathbf{C}=0,\mathbf{A},\mathbf{B}\neq0$
(C)	both x and y intercepts are zero	(R)	A,B = 0 and C \neq 0

(D) both x and y intercepts are infinite $B = 0, A, C \neq 0$ (S)

Answers

1. (A) 2. (C) 3. (A) 4. (D) 5. (A) 6. (B) 7. (C) 8. (D) 9. (C) 10. (C)

- 11. (A) 12. (C) 13. (A) 14. (A) 15. (D) 16. (B) 17. (B) 18. (BD)
- **19.** (a) 3x y 5 = 0, (b) y = 6x, 2y = 3x, (c) 5y 8x = 60 **20.** (i) x + y = 11, (ii) y x = 1
- **21.** A-S ; B-P ; C-Q ; D-R