Thermodynamics

1 THERMODYNAMIC TERMS

- (i) System Part of universe under observation.
- (ii) Surroundings Include everything other than system.
- There are three types of system.
- (i) Open system Exchange of energy and matter between system and surroundings.
- (ii) Closed system No exchange of matter but exchange of energy is possible.
- (iii)Isolated system There is no exchange of energy or matter between the system and surroundings.
- The state of a thermodynamic system is described by its measurable properties. P, V, T, n etc are called state variables or state functions because their values depend only on the state of the system and not on how it is reached.

(2) FIRST LAW OF THERMODYNAMICS

- Commonly known as the law of conservation of energy i.e. energy can neither be created nor be destroyed.
- ∆U = q + w is mathematical statement of the first law of thermodynamics

Internal Energy (U)

 Sum of chemical, electrical, mechanical or any other type of energy of the system.

Work (W)

 Work is done on an ideal gas when it is compressed and work is done by an ideal gas when it is expanded

$$W = -\int P_{ex} dV$$

- A process or a change is said to be reversible, if a change is brought out in such a way that the process could, at any moment, be reversed by an infinitesimal change. Process other than reversible are known as irreversible processes.
- For isothermal irreversible change $q = -W = P_{ex}(V_f V_i)$
- For isothermal reversible change $q = -W = nRT \ln \frac{V_f}{V_f}$
- For adiabatic change, q = 0 ∆U = W_{ad}
- W = 0 in free expansion

3 ENTHALPY (H)

- Thermodynamic function is equal to U + pV
- It is a state function.
- $\circ \Delta H = q_P$, heat absorbed by system at constant pressure.
- $\circ \Delta U = q_v$ at constant volume
- ∆H > 0 for endothermic and ∆H < 0 for exothermic reaction.
- $\Delta H = \Delta U + \Delta n_g RT$ where Δn_g is change in gaseous moles.

4 EXTENSIVE AND INTENSIVE PROPERTIES

- An extensive property is a property whose value depends on the quantity or size of matter present in the system e.g. mass, volume, enthalpy etc.
- Properties which do not depend on the quantity or size of matter present are known as intensive properties e.g. temperature, density, molar heat capacity etc.

Heat Capacity

- Molar heat capacity is the quantity of heat required to raise the temperature of one unit mole of a substance by 1°C or 1 K, q = nc∆T
- Molar heat capacity at constant pressure is C_P and molar heat capacity at constant volume is C_V and C_P → C_V = R.
 Bomb calorimeter is used to find ΔU.

5 REACTION ENTHALPY (ARH)

 The standard enthalpy of reaction is the enthalpy change for a reaction when all the participating substances are in their standard states.

Enthalpy Change During Phase Transformation

- The enthalpy change that accompanies melting of one mole of solid substance in standard state is called standard enthalpy of fusion (\Delta_{c_n}H^\u00ff)).
- Amount of heat required to vaporise one mole of liquid at constant temperature and under standard pressure (1 bar) is called standard enthalpy of vaporisation Δ_{uon}H°.

Standard Enthalpy of Formation $(\Delta_{i}H^{\circ})$ is the standard enthalpy change for the formation of one mole of a compound from its elements in their most stable states of aggregation.

Standard Molar Enthalpies of Formation ($\Delta_i H^\circ$) at 298 K of a few Selected Substances

Substance	$\Delta_{\rm f} {\rm H}^{\circ}$ / (kJ mol ⁻¹)	Substance	$\Delta_{\rm f} {\rm H}^{\circ}$ / (kJ mol ⁻¹)
Br ₂ (i)	0	H ₂ O(I)	-285.83
Br ₂ (g)	+30.91	NO(g)	+90.25
C(diamond)	A+1.89	NO ₂ (g)	+33.18
C(graphite)	0	SiO ₂ (s) (quartz)	-910.94
Cl ₂ (g)	0	C(g)	+716.68
H ₂ (g)	0	H(g)	+217.97
H ₂ O(g)	-241.82	Cl(g)	+121.68

Hess's Law of Constant Heat Summation

 Enthalpy change for a reaction is the same whether it occurs in one step or in series of steps.

Standard Enthalpy of Combustion ($\Delta_c H^\circ$) is defined as the enthalpy change per mole of a substance, when it undergoes combustion and all the reactants and products being in their standard states at the specified temperature.

Bond Enthalpy (Δ_{bend} H°) is energy required to break a bond or energy released when a bond is formed.

Enthalpy of Atomization $(\Delta_{\sigma}H^{\circ})$ is the enthalpy change on breaking one mole of bonds completely to obtain atoms in the gas phase.

- In case of diatomic molecules, the enthalpy of atomization is also the bond dissociation enthalpy.
- $_{O} \Delta_{r}H^{\circ} = \sum bond enthalpies_{reactants} \sum bond enthalpies_{products}$

Aakash Educational Services Limited - Regd. Office : Aakash Tower, 8, Pusa Road, New Delhi-110005 Ph. 011-47623456

Thermodynamics

Aakash Educational Services Limited - Regd. Office : Aakash Tower, 8, Pusa Road, New Delhi-110005 Ph. 011-47623456

NCERT Maps

NC	ERT Maps			Thermodynamics 25
	Sharpen Your Understanding			NCERT Based MCQs
1.	 Select the incorrect statement among the following. [NCERT Pg. 162] (1) System and the surroundings together constitute the universe (2) System is separated from the surroundings by some sort of wall which may be real or imaginary (3) In closed system exchange of heat is possible but no exchange of heat is possible with surroundings (4) In an isolated system, there is no exchange of energy or matter between the ourseundings 	 (1) -1.5 kJ (2) -4.5 kJ (3) -6.5 kJ (4) -9 kJ 6. If enthalpy of combustion of carbon to CO ₂ is -400 kJ mol ⁻¹ then how much heat will be released upon formation of 8.8 g CO ₂ from carbon and dioxygen gas?[NCERT Pg. 176] (1) 40 kJ (2) 80 kJ (3) 400 kJ (4) 800 kJ 7. A reaction is non spontaneous at all temperatures when [NCERT Pg. 186]	11.	$\begin{array}{llllllllllllllllllllllllllllllllllll$
2. 3.	the system and the surroundingsPath function is[NCERT Pg. 162](1) H(2) W(3) U(4) SA system absorbed 400 J of heat and done300 J of work. The change in internal energyof the system is[NCERT Pg. 164]	(1) $\Delta_r H > 0$ and $\Delta_r S > 0$ (2) $\Delta_r H < 0$ and $\Delta_r S > 0$ (3) $\Delta_r H < 0$ and $\Delta_r S < 0$ (4) $\Delta_r H > 0$ and $\Delta_r S < 0$ 8. If equilibrium constant is 2 atm at 300 K then	12.	 (3) AW = 0 (4) All of these Intensive property among the following is [NCERT Pg. 168] (1) Molar heat capacity (2) Entropy (3) Internal energy
4.	(1) 100 J (2) -100 J (3) 700 J (4) -700 J If heat of atomization of CH ₄ (g) is x J then average bond enthalpy of C - H bond is [NCERT Pg. 178] (1) x	the standard free energy change at 300 K and 1 atm pressure is [NCERT Pg. 187] (1) 1728.9 J mol ⁻¹ (2) –1728.9 J mol ⁻¹ (3) 309 J mol ⁻¹ (4) –309 J mol ⁻¹ 9. In which of the following entropy decreases?	13.	 (4) Enthalpy 10 mol of ideal gas expanded reversibly isothermally from 1 L to 10 L at 100 K. The work done during the process is [NCERT Pg. 166]
5.	(1) x (2) $\frac{x}{4}$ (3) $\frac{4}{x}$ (4) 4x Enthalpy change on freezing of 1.0 mol of water at 40°C to ice at 0°C is ($\Delta_{fus}H = 6 \text{ kJ}$ mol ⁻¹ at 0°C, C _P [H ₂ O(I) = 75 J mol K ⁻¹])	[NCERT Pg. 183] (1) CaCO ₃ (s) \rightarrow CaO(s) + CO ₂ (g) (2) 2H(g) \rightarrow H ₂ (g) (3) A solid melts into liquid (4) 2NaHCO ₃ (s) \rightarrow Na ₂ CO ₃ (s) + CO ₂ (g) +	14.	$ \begin{array}{ll} (1) -1.91 \ \text{kJ} & (2) -0.95 \ \text{kJ} \\ (3) -19.1 \ \text{kJ} & (4) -38.2 \ \text{kJ} \\ \text{If } \Delta_r \text{H of } A \rightarrow B \ ; \ B \rightarrow C \ \text{and } A \rightarrow D \ \text{are } x, y \\ \text{and } z \ \text{kJ mol}^{-1} \ \text{respectively then } \Delta_r \text{H of} \\ C \rightarrow D \ \text{is} & [\text{NCERT Pg. 176}] \\ (1) \ z - x - y & (2) \ x + y - z \end{array} $
	[NCERT Pg. 172]	H ₂ O(g)		(3) x - y - z (4) x + y + z

F

Aakash Educational Services Limited - Regd. Office : Aakash Tower, 8, Pusa Road, New Delhi-110005 Ph. 011-47623456

Bomb calorimeter is used to measure [NCERT Pg. 169]	17. For which of the following $\Delta H = \Delta U$?	(3) ∆rG° = RT In K
	[NCERT Pg. 167]	(4) ∆rG° = 2.303 RT In K
 (1) ΔU (2) W (3) ΔG (4) ΔS 	(1) $N_2(g) + 3H_2(g) \rightarrow 2NH_3(g)$ (2) $PCI_5(g) \rightarrow PCI_3(g) + CI_2(g)$	19. Reference state of oxygen at 25°C and 1 bar pressure is [NCERT Pg. 173]
If $\Delta_t H^\circ$ of CaCO ₃ (s), CaO(s) and CO ₂ (g) are	(3) C(s) + O ₂ (g) \rightarrow CO ₂ (g) (4) H ₂ (g) + $\frac{1}{2}$ O ₂ (g) \rightarrow H ₂ O(I) 18. Select the correct relation.[NCERT Pg. 186]	(1) O ₂ (g) (2) O ₃ (g)
-1200, -630 and -400 kJ mol ⁻¹ respectively		(3) O(g) (4) O ₂ (l)
$ \begin{array}{llllllllllllllllllllllllllllllllllll$		20. Process occurring at constant volume is known as [NCERT Pg. 166]
(1) –170 kJ mol ⁻¹ (2) 170 kJ mol ⁻¹	(1) ∆ _r G° = –RT In K	(1) Isobaric (2) Isochoric
(3) –2230 kJ mol ⁻¹ (4) 2230 kJ mol ⁻¹	(2) Δ _r G° = -2.303 RT In K	(3) Adiabatic (4) Isothermal
At equilibrium, Δ _{sys} G is equal to [NCERT Pg. 188] The of any pure crystalline substance approaches zero as the	 For 1 mol of ideal gas, the difference between molar heat capacity at constant pressure and molar heat capacity at constant volume is 	15. Diffusion of gases have ΔH to zero and ΔS than zero. [NCERT Pg. 182]
	pressure and molar heat capacity at constant volume is	[NCERT Pg. 182]
temperature approaches absolute zero. [NCERT Pg. 185]	[NCERT Pg. 169] 10. For adiabatic process g is equal to	 More negative the Δ_iH°, is the thermodynamic stability. [NCERT Pg. 191]
is sum of Δ _{lattice} H° and Δ _{hyd} H°. [NCERT Pg. 180]		17. Unit of entropy is
Sum of heat and work is a	11 is used to determine lattice	[NCERT Pg. 183]
function. [NCERT Pg. 164]	enthalpies. [NCERT Pg. 180]	18. ΔU = W, for process.
Maximum mean single bond enthalpy is of [NCERT Pg. 178]	12. All the fast reactions are [NCERT Pg. 185]	[NCERT Pg. 190]
For a spontaneous process, ΔS _{total} isthan zero. [NCERT Pg. 183]	13. A reversible process takes time for completion. [NCERT Pg. 166]	19. Sum of all kind of energies is known as [NCERT Pg. 163]
According to 1st law of thermodynamics, q +	14. During an adiabatic process, if system	20. According to 1 st law of thermodynamics, the
According to 1 st law of thermodynamics, q + w is equal to [NCERT Pg. 188] Heat of reaction at constant pressure is	absorbs 10 J heat from surrounding then the	energy of an isolated system is

F