


4.

5.

## MCQs with One Correct Answer

 The potential energy of electron present in ground state of Li<sup>2+</sup> ion is represented by :

(a) 
$$\frac{+3e^2}{4\pi\epsilon_0 r}$$
 (b)  $\frac{-3e}{4\pi\epsilon_0 r}$ 

(c) 
$$\frac{-3e^2}{4\pi\epsilon_0 r^2}$$
 (d)  $\frac{-3e^2}{4\pi\epsilon_0 r}$ 

2. Let  $m_p$  be the mass of a proton,  $m_n$  that of a neutron,  $M_1$  that of a  $^{20}_{10}$ Ne nucleus and  $M_2$ 

that of a 
$${}^{40}_{20}$$
Ca nucleus. Then

(a) 
$$M_2 = 2M_1$$

(b) 
$$M_1 < 10(m_p + m_n)$$

(c) 
$$M_2 > 2M_1^2$$

(d) 
$$M_1 = M_2$$

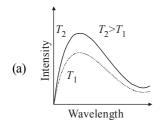
**3.** Which of the following pairs of nucleides are isodiaphers ?

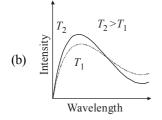
(a) 
$${}^{13}_{6}C$$
 and  ${}^{16}_{8}O$  (b)  ${}^{1}_{1}H$  and  ${}^{2}_{1}H$ 

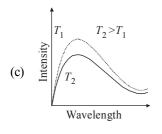
(c)  ${}_{1}^{3}$ H and  ${}_{2}^{4}$ He (d)  ${}_{25}^{55}$ Mn and  ${}_{30}^{65}$ Zn

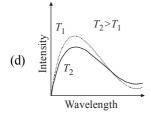
Based on equation E =  $-2.178 \times 10^{-18} J\left(\frac{Z^2}{n^2}\right)$ ,

certain conclusions are written. Which of them is not correct ?


- (a) Larger the value of n, the larger is the orbit radius.
- (b) Equation can be used to calculate the change in energy when the electron changes orbit.
- (c) For n = 1, the electron has a more negative energy than it does for n = 6 which mean that the electron is more loosely bound in the smallest allowed orbit.
- (d) The negative sign in equation simply means that the energy or electron bound to the nucleus is lower than it would be if the electrons were at the infinite distance from the nucleus.
- An electron in the ground state of hydrogen was excited to a higher energy level using monochromatic radiations of wave length ( $\lambda$ ) 975 Å. The longest wave length that appears in the resulting spectrum is due to transition from:
  - (a)  $n_4 \longrightarrow n_1$  (b)  $n_4 \longrightarrow n_3$
  - (c)  $n_5 \longrightarrow n_4$  (d)  $n_5 \longrightarrow n_1$


## Structure of Atom


6. If m and e are the mass and charge of the revolving electron in the orbit of radius r for hydrogen atom, the total energy of the revolving electron will be:


(a) 
$$\frac{1}{2} \frac{e^2}{r}$$
 (b)  $-\frac{e^2}{r}$   
(c)  $\frac{me^2}{r}$  (d)  $-\frac{1}{2} \frac{e^2}{r}$ 

7. The correct representation of wavelength intensity relationship of an ideal black body radiation at two different temperatures  $T_1$  and  $T_2$  is









- 8. Among the following, the incorrect statement is (a) No two electrons in an atom can have the
  - same set of four quantum numbers
  - (b) The maximum number of electrons in the shell with principal quantum number, n is equal to  $n^2 + 2$
  - (c) Electrons in an orbital must, have opposite spin
  - (d) In the ground state, atomic orbitals are filled in the order of their increasing energies
- **9.** What transition in He<sup>+</sup> ion shall have the same wave number as the first line in Balmer series of H atom?
  - (a)  $7 \rightarrow 5$  (b)  $6 \rightarrow 4$
  - (c)  $5 \rightarrow 3$  (d)  $4 \rightarrow 2$
- 10. The velocity of an electron in excited state of Hatom is  $1.093 \times 10^6$  m/s. What is the circumference of this orbit?
  - (a)  $3.32 \times 10^{-10}$  m (b)  $6.64 \times 10^{-10}$  m

(c)  $13.30 \times 10^{-10}$  m (d)  $13.28 \times 10^{-8}$  m

- 11. The angular momentum of an electron in a Bohr's orbit of He<sup>+</sup> is  $3.1652 \times 10^{-34}$  kg-m<sup>2</sup>/sec. What is the wave number in terms of Rydberg constant (*R*) of the spectral line emitted when an electron falls from this level to the first excited state. [Use h =  $6.626 \times 10^{-34}$  J · s]
  - (a) 3R (b)  $\frac{3R}{9}$

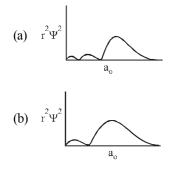
(c) 
$$\frac{3R}{4}$$
 (d)  $\frac{8R}{9}$ 

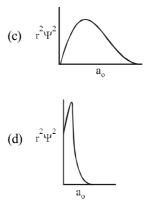
- 12. A electron in a hydrogen atom in its ground state absorbs 1.5 times as much energy as the minimum required for it to escape from the atom. What is the velocity of the emitted electron?
  - (a)  $1.54 \times 10^6$  m/s
  - (b)  $1.54 \times 10^8 \,\text{m/s}$
  - (c)  $1.54 \times 10^3$  m/s
  - (d)  $1.54 \times 10^4$  m/s
- **13.** For a multi-electron atom, the highest energy level among the following is
  - (a)  $n=5, l=0, m=0, s=+\frac{1}{2}$
  - (b)  $n=4, l=2, m=0, s=+\frac{1}{2}$
  - (c)  $n=4, l=1, m=0, s=+\frac{1}{2}$
  - (d)  $n=5, l=1, m=0, s=+\frac{1}{2}$

14. For Balmer series in the spectrum of atomic hydrogen, the wave number of each line is given

by 
$$\overline{v} = R_H \left( \frac{1}{n_1^2} - \frac{1}{n_2^2} \right)$$
 where  $R_H$  is a constant

and n<sub>1</sub> and n<sub>2</sub> are integers. Which of the following statement(s) is (are) correct?


- I. As wavelength decreases, the lines in the series converge.
- The integer  $n_1$  is equal to 2. II.
- III. The ionization energy of hydrogen can be calculated from the wave number of these lines.
- IV. The line of longest wavelength corresponds to  $n_2 = 3$ .
- (a) I, II and III
- (b) II, III and IV only
- (c) I, II and IV
- (d) II and IV only
- 15. Calculate the minimum and maximum number of electrons which may have magnetic quantum number, m = +1 and spin quantum number,


$$s = -\frac{1}{2}$$
 in chromium (Cr):  
(a) 0,1 (b) 1,2  
(c) 4,6 (d) 2,3

16. The correct order of energy of 2s-orbitals in H, Li, Na and K, is

1,2

- (a) K < Na < Li < H
- (b) Na < Li < K < H
- (c) Na < K < H < Li
- (d)  $H \le Na \le Li \le K$
- 17. Which of the following radial distribution graphs correspond to  $\ell = 2$  for the H atom ?





- The electrons, identified by quantum numbers n 18. and l,
  - (I)  $n=3, \ell=2$ (II)  $n = 5, \ell = 0$
  - (III)  $n = 4, \ell = 1$ (IV)  $n = 4, \ell = 2$
  - (V) n = 4,  $\ell = 0$  can be placed in order of increasing energy, as

(a) 
$$I < V < III < IV < II (b)$$
  $I < V < III, II, IV$ 

(c) 
$$V < I < III < II < IV$$
 (d)  $V < I < II < III < IV$ 

18. The energies 
$$E_1$$
 and  $E_2$  of two radiations are 25 eV and 50 eV, respectively. The relation between their wavelengths i.e.,  $\lambda_1$  and  $\lambda_2$  will be :

(a) 
$$\lambda_1 = \lambda_2$$
 (b)  $\lambda_1 = 2\lambda_2$ 

(c) 
$$\lambda_1 = 4\lambda_2$$
 (d)  $\lambda_1 = \frac{1}{2}\lambda_2$ 

- 19. Among the following, the correct statement about cathode ray discharge tube is
  - (a) the electrical discharge can only be observed at high pressure and at low voltages.
  - (b) in the absence of external electrical or magnetic field, cathode rays travel in straight lines.
  - the characteristics of cathode rays depend (c) upon the material of electrodes.
  - (d) the characteristics of cathode rays depend upon the gas present in the cathode ray tube.

A 600 W mercury lamp emits monochromatic 20. radiation of wavelength 331.3 nm. How many photons are emitted from the lamp per second?

 $h = 6.62 \times 10^{-34}$  Js velocity of light =  $3 \times 10^8$  ms<sup>-1</sup>

(a) 
$$1.0 \times 10^{19}$$
 (b)  $1.0 \times 10^{23}$ 

(c) 
$$1.0 \times 10^{21}$$
 (d)  $2.0 \times 10^{23}$ 

## Structure of Atom

## Numeric Value Answer

- **21.** An electron has a speed of 30,000 cm sec<sup>-1</sup> accurate upto 0.001%. What is the uncertainty in locating it's position.
- 22. If the energies of two radiations of wavelength 800 nm and 400 nm are  $E_1$  and  $E_2$  respectively. Then calculate the value of  $E_2/E_1$ .
- **23.** Determine the Bohr orbit of Li<sup>2+</sup> ion in which electron is moving at speed equal to the speed of electron in the first Bohr orbit of H-atom.
- 24. A hydrogen atom with an electron in the first shell absorbs ultraviolet light with a wavelength of  $1.03 \times 10^{-7}$  m. To what shell does the electron jump?
- **25.** What is the sum of radial node(s) and nodal plane(s) for 4d\_2-orbital?
- 26. An electron with de Broglie wavelength  $4 \times 10^{-6}$  m makes transition to a state with de Broglie wavelength  $6 \times 10^{-6}$  m. The wavelength of photon

generated is  $\frac{mc}{h} \times x \times 10^{-11}$  m. What is the value of x?

- Calculate the ratio of wavelength of first line of Balmer series of H-atom to the wavelength of first line of Lyman series of 10 times ionized sodium atom.
- 28. To stop the flow of photoelectrons produced by electromagnetic radiation incident on a certain metal, a negative potential of 300 V is required. If the photoelectric threshold of metal is 1500 Å, what is the frequency of the incident radiation (in terms of  $10^{16}$  Hz)?
- 29. The energy of the electron in the second and the third Bohr's orbits of the hydrogen atom is  $-5.42 \times 10^{-12}$  erg and  $-2.41 \times 10^{-12}$  erg respectively. Calculate the wavelength of the emitted radiation when the electron drops from the third to the second orbit.
- **30.** Naturally occurring boron consists of two isotopes whose atomic weights are 10.01 and 11.01. The atomic weight of natural boron is 10.81. Calculate the percentage of isotope with atomic weight 11.01 in natural boron.

| ANSWER KEY |     |   |     |   |     |    |     |    |     |    |     |    |     |    |     |    |         |    |         |
|------------|-----|---|-----|---|-----|----|-----|----|-----|----|-----|----|-----|----|-----|----|---------|----|---------|
| 1          | (d) | 4 | (c) | 7 | (a) | 10 | (c) | 13 | (d) | 16 | (a) | 19 | (b) | 22 | (2) | 25 | (1)     | 28 | (7.45)  |
| 2          | (a) | 5 | (b) | 8 | (b) | 11 | (b) | 14 | (c) | 17 | (c) | 20 | (c) | 23 | (3) | 26 | (576)   | 29 | (6.604) |
| 3          | (d) | 6 | (d) | 9 | (b) | 12 | (a) | 15 | (d) | 18 | (b) | 21 | (2) | 24 | (3) | 27 | (653.4) | 30 | (80)    |