CHAPTER 13

PROBABILITY

Worksheet-1

13.2. Conditional Probability

Let E and F be two events associated with the same sample space of a random experiment. Then the probability of occurrence of the event E given that event F has already occurred is called the conditional propability of E given F

It is denoted of by P(E|F)

$$\mathsf{P}(\mathsf{E}/\mathsf{F}) = \frac{P(E \cap F)}{P(F)}, \text{ provided, } P(F) \neq 0$$

Properties of Conditional Probability

(i) Let E and F be events of a sample space S of an experiment

Then P(S | F) = P(F | F) = 1

(ii) If A and B are two events of a sample space S and F is an event of S such that $P(F) \neq 0$

Then
$$P((A \cup B) | F) = P(A | F) + P(B | F) - P((A \cap B) | F)$$

In particular, if A and B are disjoint events,

Then
$$P((A \cup B) | F) = P(A | F) + P(B | F)$$

(iii) P(E' | F) = 1 - P(E | F)

Activity -1

A family has 2 children. What is the probability that both the children are boys given that atleast one of them is a boy.

Ans: Let 'b' stands for boy and 'g' for girl.

Sample space, $S = \{(b, b), (b, g), \dots, \dots, \}$

Let E and F denote the following events.

E : both the children are boys

F : atleast one of the children is boy.

Then $E = \{(b, b)\}$

 $F = \{(b, b), \dots, \}$

 $E \cap F = \dots$

$$P(F) = \frac{3}{4}$$
 and $P(E \cap F) = \frac{1}{4}$

 \therefore P (both the children are boys given that at least one of them is a boy)

$$= P(E | F)$$

$$= \frac{P(E \cap F)}{P(F)}$$

$$= \dots$$

Activity -2

Ans:

Evaluate
$$P(A \cup B)$$
, if $2P(A) = P(B) = \frac{5}{13}$ and $P(A/B) = \frac{2}{5}$
Given that $2P(A) = P(B) = \frac{1}{13}$
Then $2P(A) = \frac{5}{13}$ and $P(B) = \frac{5}{13}$
i.e. $P(A) = \dots$
We have, $P(A \cup B) = P(A) + P(B) - P(A \cap B)$(1)
 $P(B) = \dots$
 $P(A \mid B) = \frac{2}{5}$

$$P(A \mid B) = \frac{P(A \cap B)}{P(B)}$$

$$\therefore P(A \cap B) = P(B) \cdot P(A \mid B)$$

$$= \dots$$

(1) becomes

$$P(A \cup B) = \dots + \frac{5}{13} - \dots$$
$$= \dots$$

Activity:3

An instructor has a question bank consisting of 300 easy True/False questions, 200 difficult True/False questins, 500 easy multiple choice questions and 400 difficult multiple choice questions. If a question is selected at random from the question bank, what is the probability that it will be an easy question given that it is a multiple choice question.

Ans: Let E and F be the events, E: getting an easy question F: getting a multiple choice question.

=1400

N(F) = 500 + 400 = 900

 $N(E \cap F) = 500$ (easy & multiple choice questions)

$$P(E \cap F) = \frac{500}{---} = \frac{5}{14}$$

$$P(F) = \frac{-}{1400} = -----$$

Required probability,

$$P(E / F) = \frac{P(E \cap F)}{P(F)}$$
$$=$$
$$=$$

Activity-4

A black and a red dice are rolled.

- (i) Find the conditional probability of obtaining a sum greater than 9, given that the black die resulted in a 5.
- (ii) Find the conditinal probability of obtaining the sum 8, given that the red die resulted in a number less than 4.

Ans: (i) Here, the sample space 'S' has---- elements E and F be events, E: getting a sum greater than 9 F: black die resulted in 5 We have to find P(E | F) $E = \{(4,6), (5,5), (5,6), (6,4), (6,5), (6,6)\}$

$$F = \{(5,1), (5,2), (5,3), (5,4), (5,5), (5,6)\}$$

$$E \cap F = \{\dots, \dots\}$$

$$P(E \cap F) = \frac{\dots}{36} = \dots$$
$$P(F) = \dots$$

Required probabiltiy,

$$P(E | F) = \frac{P(E \cap F)}{P(F)}$$
$$= \dots$$

(ii) E: getting sum 8 F: red die resulted in a number less than 4

$$E = \{(2,6), (3,5), (4,4), (5,3), (6,2)\}$$

$$F = \{(1,1), (1,2), (1,3), (2,1), (2,2), \dots (6,3)\} \text{ (write all outcomes)}$$

$$E \cap F = \{5, 3\}, (6, 2)\}$$

$$P (E \cap F) = \dots \dots P (F) = \dots P (F) = \dots P (F) = \frac{18}{36}$$

$$P \left(\frac{E}{F}\right) = \frac{P (E \cap F)}{P (F)}$$

$$= \dots \dots = \frac{1}{9}$$

Activity 5

If
$$P(A) = \frac{6}{11}$$
, $P(B) = \frac{5}{11}$ and $P(A \cup B) = \frac{7}{11}$. Find
(i) $P(A \cap B)$
(ii) $P(A \mid B)$
(iii) $P(B \mid A)$

Given
$$P(A) = \frac{6}{11}$$

 $P(B) = \frac{5}{11}$
 $P(A \cup B) = \frac{7}{11}$
 $\frac{6}{11} + \frac{5}{11} - P(A \cap B) = \frac{7}{11}$
 $P(A \cap B) = \frac{6}{11} + \frac{5}{11} - \dots$
 $\therefore P(A \cap B) = \frac{4}{11}$

(i)

$$P(B \mid A) = \frac{P(A \cap B)}{P(B)}$$
$$= \dots$$
$$= \dots$$

(iii)

$$P(B \mid A) = \frac{P(A \cap B)}{P(A)}$$

Worksheet II

13.4 Independent Events

Two events E and F are said to be independent if the probability of occurrence of any one of them is not affected by the occurrence of the other.

In this case,
$$P(E | F) = P(E)$$
, here $P(F) \neq 0$

$$P(F | E) = P(F)$$
, here $P(E) \neq 0$

Thus, if E and F are independent events,

 $P(E \cap F) = P(E).P(F).$

- * The term 'independent' is defined in terms of 'probability of events' where as 'mutually exclusive' is defined in terms of events (subsets of sample space).
- * Independent events may have common outcome
- * Mutually exclusive ents never have a common outcome
- * Two mutually exclusive events having non-zero probabilities of occurrence cannot be independent
- * Three events A, B and C are said to be mutually independent, if

 $P(A \cap B) = P(A).P(B)$ $P(A \cap C) = P(A).P(C)$ $P(B \cap C) = P(B).P(C)$ $P(A \cap B \cap C) = P(A).P(B).P(C)$

- * If the events E & F are independent, then
 - (a) E`and F are independent
 - (b) E and F` are independent
 - (c) E' and F' are independent

Activity -1

A die is thrown E and F are events such that E: the number appearing is a multiple of 3 F: the number appearing is even. Find whether E and F are independent.

Ans: Here sample space $S = \{1, 2, 3, 4, 5, 6\}$

Now
$$E = \{3, 6\}$$

 $F = \{ _, _, _, _, _\}$
 $E \cap F = \{6\}$
 $P(F) = \frac{3}{6} = \frac{1}{2}$
 $P(E \cap F) = _$ (1)
 $P(E) \cdot P(F) = \frac{1}{3} \cdot \frac{1}{2} = \frac{1}{6}$ (2)

from (1) & (2)

 $\therefore E$ and F are independent

<u>Activity -2</u>

Three coins are tossed simultaneously.

E, F & G are events such that

- E: three heads or three tails
- F: alterast 2 heads
- G: atmost 2 heads.

Of the pairts (E,F), (E,G) and (F,G), which are independent, which are dependent?

Ans: Here Sample space $S = \{HHH, HHT, HTH, HTH, TTH, TTT\}$

 $E = \{HHH, TTT\}$ $F = \{HHH, HHT, HTH, THH\}$ $G = \{HHT, HTH, THH, HTT, THT, TTH, TTT\}$

 $E \cap F = \underline{\qquad}$ $E \cap G = \underline{\qquad}$ $F \cap G = \underline{\qquad}$

Hence, the events E and F are independent events. The pairs of events (E,G) and (F,G) are dependent.

Activity -3

Events A and B are such that $P(A) = \frac{1}{2}$, $P(B) = \frac{7}{12}$ and $P(\text{not A or not B}) = \frac{1}{4}$ state whether A and B are independent.

Ans:

$$P(n \text{ ot } A \text{ or n ot } B) = \frac{1}{4}$$

$$P(A) = \frac{1}{2}, P(B) = \frac{7}{12}$$

$$P(A' \cup B') = \frac{1}{4}$$

$$\Rightarrow P(A \cap B)' = \frac{1}{4}$$

$$\Rightarrow 1 - \underline{\qquad} = \frac{1}{4}$$

$$\Rightarrow P(A \cap B) = 1 - \frac{1}{4} = \frac{3}{4}$$

Now, P(A). P(B) =_____×____

=

 \therefore A and B are not indepedent

Activity -4

(1) The probability of solving a problem independently by A and B are $\frac{1}{3}$ and

 $\frac{1}{4}$ respectively. Find the probability that exactly one of them solves the problem

(2) A and B try to solve a problem independently.

The probability that A solves a problem is $\frac{1}{2}$ and that B solves the problem is $\frac{1}{3}$. Find the probability that

- (a) Both of them solves the problem.
- (b) Problem is solved.

Ans:

(1)
$$P(A) = \frac{1}{3}$$
 $P(B) = \frac{1}{4}$

$$P(A^{1}) = 1 - P(A) =$$

 $P(B^{1}) = 1 - P(B) =$ _____

Probability of one of them solves the problem

$$= P(A).P(B^{1}) + P(B).P(A^{1})$$
$$= \underline{\qquad} = \frac{5}{12}$$

(2) Let

A: problem is solved by A

B: Problem is solved by B

$$P(A) = \frac{1}{2}, P(B) = \frac{1}{3}$$

(a) P (both solve the problem) = $P(A \cap B)$

$$= P(A).P(B) = ___= \frac{1}{6}$$

(b) P(problem is solved) = 1 - P(Problem not solved)

$$= 1 - P(A' \cap B')$$

= 1 - P(A¹)(B¹)
= 1 -
= $\frac{2}{3}$ $P(A^{1}) = _$ ____
 $P(B^{1}) = _$ ____

Activity -6

Rani and Joy appear in an interview for 2 vacancies in the same post. The probability of Rani's selection is $\frac{1}{7}$ and that of Joy's selection is $\frac{1}{5}$. What is the probability that

- (a) Rani will not be selected
- (b) Both of them will be selected
- (c) None of them will be selected

Ans:

Let Rani's selection be the event A & Joy's selection be the event B.

$$P(A) = \frac{1}{7}, P(B) = \frac{1}{5}$$

(a) $P(\text{Rani will not be selected}) = P(A^1)$

$$= 1 - P(A)$$
$$= \frac{-6}{7}$$

(b) P(Both of them will be selected)

$$= P(A \cap B) = P(A).P(B)$$
$$= \underline{\qquad}$$
$$= \frac{1}{35}$$

(iii) P(None of them will be selected)