1) THE p-BLOCK ELEMENTS - General valence shell electronic configuration of p-block elements is n² np¹⁻⁶ - Maximum oxidation states = total number of valence electrons. - The occurence of oxidation states two unit less than the group oxidation states are sometime attributed to the inert pair effect - The second period elements of p-groups are restricted to a maximum covalence of four (using 2s and there 2p orbitals) - Third period elements of p-groups can expand their covalence above four due to vacant 3d orbitals - Only first member of group can form ρπ ρπ multiple bonds to itself. The heavier elements do form π bonds but this involves d-orbitals (dπ - ρπ or dπ - dπ). ### (2) GROUP 13 ELEMENTS: THE BORON FAMILY - B (non-metal), Al (metal but shows many chemical similarities to B) Ga, In, TI, Nh (metal) - Boron mainly occurs as orthoboric acid (H₃BO₃), borax (Na₂B₄O₇, 10H₂O) and kernite (Na₂B₄O₇, 4H₂O) - Boron has two isotopes ¹⁰B(19%) and ¹¹B(81%) - Aluminium is the most abundant metal, Bauxite (Al₂O₃.2H₂O) and cryolite (Na₃AlF₆) are important minerals of aluminium. - Outer electronic configuration of boron family is ns²np¹ - Atomic Radii - (i) B < Al > Ga < In < Tl - (ii) Atomic radius of Ga is less than Al due to poor screening effect of 10d - electrons of Ga. #### Ionization Enthalpy - The decrease from B to AI is associated with increase in size. - (ii) The observed discontinuity between Al and Ga, and between In and TI are due to inablity of d-and felectrons to cause screening effect. - Electronegativity First decreases from B to Al and then increases marginally. #### Physical Properties - Boron is hard and black coloured solid, exists in many allotropic forms, high melting point due to strong crystalline lattice. - (ii) Rest members are soft metals - (iii) Gallium has low melting point (303 K) and high boiling poin (2676 K) - (iv) Density increases down the group #### Chemical Properties - (i) B forms only covalent compounds. - (ii) In Ga, In and TI, both +1 and +3 oxidation states are observed. Relative stability of +1 oxidation state:Al < Ga < In < TI - (iii) For TI, + 1 is predominant and +3 oxidation state is oxidising - (iv) Reactivity towards air $4E(s) + 3O_3(g) = \Delta + 2E_2O_3(s)$ $2E(s) + N_2(g)$ \triangle 2EN(s) B₂O₃(Acidic), Al₂O₃ and Ga₂O₃ (Amphoteric) In₂O₃ and Tl₂O₃(Basic) (v) Al dissolves in mineral acids and aqueous alkalies thus shows amphoteric character $$\begin{split} 2\text{Al(s)} + 6 \text{ HCI (aq)} &\rightarrow 2\text{Al}^{2}\text{ (aq)} + 6\text{Cl}^{2}\text{ (aq)} + 3\text{H}_{2}\text{(g)} \\ 2\text{Al(s)} + 2\text{NaOH(aq)} + 6\text{H}_{2}\text{O(l)} &\rightarrow 2\text{Na}^{2}\text{ [Al(OH)}_{4}\text{]}^{2}\text{ (aq)} + 6\text{H}_{2}\text{Na}^{2}\text{ (aq)} \\ + 2\text{NaOH(aq)} &\rightarrow 2\text{Na}^{2}\text{ (aq)} + 6\text{NaOH(aq)} \\ + 2\text{NaOH(aq)} &\rightarrow 2\text{Na}^{2}\text{ (aq)} + 6\text{NaOH(aq)} \\ + 2\text{NaOH(aq)} &\rightarrow 2\text{Na}^{2}\text{ (aq)} + 6\text{NaOH(aq)} \\ + 2\text{NaOH(aq)} &\rightarrow 2\text{NaOH(aq)} + 6\text{NaOH(aq)} \\ + 2\text{NaOH(aq)} &\rightarrow 2\text{NaOH(aq)} + 6\text{NaOH(aq)} \\ + 2\text{NaOH(aq)} &\rightarrow 2\text{NaOH(aq)} \\ + 2\text{NaOH(aq)} &\rightarrow 2\text{NaOH(aq)} \\ + 2\text{NaOH(aq$$ - (vi) Reactivity towards halogen - $2E(s) + 3X_3(g) \rightarrow 2EX_3(s) (X = F, Cl, Br, I)$ #### Important Trends and Anomalous Properties of Boron - (i) Tri-chlorides, bromides and iodides of all these elements being covalent in nature are hydrolysed in water. - Monomeric trihalides are electron deficient and strong Lewis acids. - (iii) Halides other than boron are dimerised through halogen bridging. - Some Important Compounds of Boron - (i) Borax (Na₂B₄O₇.10H₂O) - Contains tetranuclear units [B₄O₅(OH)₄]²⁻ therefore the correct formula is Na₂[B₄O₅(OH)₄]. 8H₂O. (2) Borax give alkaline solution in water $Na_2B_4O_7 + 7H_2O \rightarrow 2NaOH + 4H_3BO_3$ (3) On heating, borax first loses water molecules and swells up. On further heating turns into a transparent liquid with solidifies into glass like borax bead. $$Na_2B_4O_7.10H_2O \xrightarrow{\Delta} Na_2B_4O_7 \xrightarrow{\Delta} 2NaBO_2 + B_2O_3$$ Metaborates of many transition metals have characteristic colour therefore borax bead test is used to detect metals. #### (ii) Orthoboric acid - White crystalline solid with soapy touch, sparingly soluble in water but highly soluble in hot water. - (2) Na₂B₄O₇ + 2HCl + 5H₂O → 2NaCl + 4B(OH)₃ - (3) Layer structure in which planar BO₃ units are linked by H-bonds. - (4) H₃BO₃ monobasic Lewis acid not protonic acid. B(OH)₃ + 2HOH → [B(OH)₄] + H₃O (5) $$H_3BO_3 \xrightarrow{\Delta} HBO_2 \xrightarrow{\Delta} B_2O_3$$ #### (iii) Diborane (B,H,) - (1) Preparation: 4BF₃ + 3LiAlH₄ → 2B₂H₆ + 3LiF + 3AlF₃ - (2) Lab method: 2NaBH₄ + I₂→B₂H₆ + 2NaI + H₂ - (3) Industrial method: 2BF₃+6NaH → B₂H₆+6NaF - (4) Colourless, highly toxic gas, catches fire spontaneously in air - (5) Readily hydrolyse to give boric acid - (6) 3B₂H₆ + 6NH₃ → 3 [BH₂(NH₃)₂]⁺ [BH₄]⁻ Δ 2B₃N₃H₆ + 12H₂ (B₃N₃H₆ inorganic benzene) The p-Block Elements NCERT Maps (7) (H) (H) (H) (H) Four terminal B – H are regular two centre-two electron bonds while the two bridge (B – H – B) bonds are three centre-two electron bonds. (8) Lithium and sodium tetrahydridoborate also known as borohydrides $2MH + B_2H_8 \rightarrow 2M^{\dagger}[BH_4]^{-}(M = Li \text{ or Na})$ ## (3) GROUP 14 ELEMENTS: THE CARBON FAMILY - C, Si, Ge, Sn, Pb and Fl are 14th group elements. - C has two stable isotopes: ¹²C and ¹³C and radioactive isotope ¹⁴C - Ge exists only in traces, Sn as cassiterite (SnO₂), Pb as galena (PbS) - General valence shell electronic configuration ns²np² - o Physical Properties C and Si (Non-metals), Ge (metalloid), Sn and Pb (Metals) - Covalent Radius: Considerable increase in covalent radius from C to Si, small increase thereatfer due to completely filled d and f orbitals of heavier members. - o Electronegativity values from Si to Pb are almost same - Ionization Enthalpy: In general decreases down the group, small decrease from Si to Ge to Sn and slight increase from Sn to Pb. #### Anomalous Behaviour of Carbon - (i) Maximum covalence = 4 - (ii) Order of catenation C > > Si > Ge ≈ Sn, Pb does not show catenation. #### Allotropes of Carbon - (i) Diamond sp3 hybridised, crystalline lattice - (ii) Graphite Layered structure (held by van der Waals forces), sρ² hybridised, conducts electricity - (iii) Fullerenes #### Chemical properties - (i) Common oxidation states are + 4 and + 2, C also exhibits negative oxidation states. - (ii) +4 oxidation state are generally covalent in nature Heavier elements show + 2 oxidation state. - (iii) Halides of group 14 elements except carbon undergo hydrolysis and have tendency to form complexes by accepting electron pairs from donor species. - (iv) Reactivity towards oxygen: (1) All members form mainly two types of oxides MO and MO. - (2) CO₂, SiO₂, GeO₂ are acidic and SnO₂, PbO₂ are amphoteric - (v) Reactivity towards water - C, Si and Ge are not affected by water, Tin decomposes steam to form SnO₂ and H₂ (2) Pb is unaffected by H₂O due to protective oxide film formation #### (vi) Reactivity towards halogen - (1) Form halides of formula MX, and MX, - (2) Except C all other members react directly with halogen - (3) Most MX, are covalent except SnF, and PbF, - (4) Pbl, does not exist as energy released due to bond formation is not sufficient to unpair 6s² electrons. - (5) GeX₄ is more stable than GeX₂ whereas PbX₂ is more stable than PbX. - Some Important compound of Carbon and Silicon - (i) Carbon Monoxide (CO) - (1) Preparation $$C(s) + H_2O(g) \xrightarrow{473-1273 \text{ K}} CO(g) + H_2(g)$$ (Water gas) $$2C(s) + O_2(g) + 4N_2(g) \xrightarrow{1273 \text{ K}} 2CO(g) + 4N_2(g)$$ (Producer gas) - (2) In CO molecule, there is one sigma and two $\boldsymbol{\pi}$ bonds - (3) CO is highly poisonous due to its ability to form a complex with haemoglobin #### (ii) Carbon Dioxide (CO2) (1) Lab preparation $$CaCO_3(s) + 2HCI(aq) \rightarrow CaCI_2(aq) + CO_2(g) + H_2O(I)$$ - (2) Colourless, odourless gas, low solubility in H₂O, with water forms carbonic acid H₂CO₃(weak dibasic acid) - (3) H₂CO₃/HCO⁻₃ buffer system helps to maintain pH of blood. - (4) CO₂ is removed from atmosphere by photosynthesis - (iii) Silicon Dioxide (SiO₂): It resists the attack of halogens, dihydrogen and most of the acids and metals even at elevated temperature. However it is attacked by HF and NaOH. - (iv) Silicones - (1) +R,SiO + as a repeating unit. - (2) Preparation Silicone $$\leftarrow$$ Polymerisation $(CH_3)_2Si(OH)_2$ \leftarrow $\xrightarrow{+2H_2O}$ $\xrightarrow{-2HCI}$ The chain length of polymer can be controlled by adding (CH₃)₃ SiCl - (v) Silicates: - Silicates mineral like feldspar, Zeolites, mica etc. exist in nature - (2) The basic structural unit of silicates is SiQ - (vi) Zeolites - If aluminium atoms replace few silicon atoms in three-dimensional network of silicondioxide, overall structure known as aluminosilicate - (2) A type of zeolite ZSM-5 used to convert alcohols directly into gasoline ## **Sharpen Your Understanding** ## Correct order of atomic radii is ## [NCERT Pg. 317] - (1) B < Al < Ga < In (2) B > Al > Ga > In - (3) B < Al > Ga < In (4) Al < B < Ga < In - +1 oxidation state is predominant in [NCERT Pg. 318] - (1) B (2) AI - (3) Ga - (4) TI - Hybridisation of Al when AlCl₃ dissolved in acidified aqueous solution is ## [NCERT Pg. 319] (1) sp - (2) sp2 - (3) sp^3 - (4) sp3d2 - 4. Which of the following trihalides is least stable? [NCERT Pg. 320] - (1) BCl₃ - (2) AlBr₃ - (3) TII₃ - (4) Bl₃ - Select the correct statement(s) ## [NCERT Pg. 320] - (1) Boron is unable to form BF₆³⁻ - (2) Boron is unable to expand its octet - (3) Maximum covalence of boron is 4 - (4) All of these ## Colour of Co(BO₂)₂ bead is ## [NCERT Pg. 320] - (1) Red - (2) Blue - (3) Green - (4) Orange - Number of water of crystallization in Borax is ## [NCERT Pg. 320] (1) 10 (2)9 (3)8 - (4) 5 - 8. $3B_2H_6 + 6NH_3 \longrightarrow X \xrightarrow{\Delta} Y + H_2, Y \text{ is}$ [NCERT Pg. 320] - (1) B₃N₃H₆ - (2) BH₃ - (3) [BH₂(NH₃)₂]+ [BH₄] - (4) BN - In B₂H₆, maximum number of coplanar atoms is [NCERT Pg. 322] - (1) 3 - (2) 4 - (3) 6 - (4) 8 - Amphoteric oxide among the following is ## [NCERT Pg. 324] - (1) CO₂ - (2) SiO₂ - (3) GeO₂ - (4) SnO₂ # NCERT Based MCQs - lonic tetrahalide among the following is [NCERT Pg. 324] - (1) SnF₄ - (2) CF₄ - (3) PbBr₄ - (4) SiCl₄ - 12. Catenation is not shown by ## [NCERT Pg. 325] - (1) Si - (2) Ge - (3) Sn - (4) Pb - 43. Buckminsterfullerene contains ## [NCERT Pg. 326] - 20 six-membered rings and 12 fivemembered rings - (2) 20 six-membered rings and 20 fivemembered rings - (3) 12 six-membered rings and 20 five membered rings - (4) 12 six-membered rings and 12 fivemembered rings - When air is used instead of steam over hot coke, the gas produced is called ## [NCERT Pg. 328] - (1) Water gas - (2) Hydrogen gas - (3) Producer gas - (4) Carbon dioxide - Which of the following is not the resonance structure of CO₂? [NCERT Pg. 329] - (1) :Ö C ≡ O: - (2) :Ö = C = Ö: - (3) ± C − Ö: - (4) :Ö C = O: - 16. The chain length of silicone can be controlled by adding [NCERT Pg. 330] - (1) SiCl₄ - (2) CH₃SiCl₃ - (3) (CH₃)₂SiCl₂ - (4) (CH₃)₃SiCI - 17. Silicon dioxide on reaction with hydrogen [NCERT Pg. 329] fluoride gives - (1) Si - (2) SiF₄ - (3) SiO - (4) [SiF₆]2- - 18. Least electronegative element among the following is INCERT Pg. 3191 - (1) B - (2) AI - (3) In (4) TI 19. Maximum number of H-bond formed by one molecule of orthoboric acid is [NCERT Pg. 321] - (1) 1 - (2) 3 - (3) 4 - (4) 6 - 20. On commercial scale, CO2 is obtained by [NCERT Pg. 328] - (1) Burning coal - (2) Burning CH₄ - (3) Heating Limestone - (4) CaCO₃ with HCl ## Thinking in Context - SiCl₄ on hydrolysis gives _____. - [NCERT Pg. 325] - Silica is attacked by _____ and ___ [NCERT Pg. 329] - Group of organosilicon polymer having as a repeating units are known as silicones [NCERT Pg. 329] - Hybridisation of B in BH₄ is ______. - [NCERT Pg. 331] - 5. catches fire spontaneously upon exposure to air [NCERT Pg. 321] - Borax dissolves in water to give an solution. [NCERT Pg. 320] - Maximum covalence of boron is INCERT Pg. 3201 - In B₂H₆ 3-centre-2-electron bonds (NCERT Pg. 822) are present. - isotope of carbon used for radiocarbon dating. INCERT Pg. 323] - 10. Cassiterite is the ore of - [NCERT Pg. 323] - are only form of pure carbon. [NCERT Pg. 326] - Water gas is _____. [NCERT Pg. 327] - buffer system helps to maintain the pH of blood between 7.26 to 7.42 - [NCERT Pg. 328] - Is used to convert alcohols directly into gasoline [NCERT Pg. 330] - Boric acid is mono basic - [NCERT Pg. 331] - B–F bond length in BF₃ is than B-F bond length in BF₄ [NCERT Pg. 332] - CO forms when combine with haemoglobin [NCERT Pg. 332] - 18. Graphite is used as _____ due to its layer type structure. [NCERT Pg. 332] - CO is a oxide [NCERT Pg. 333] - 20. Due to inert pair effect, oxidation state decrease by ______. [NCERT Pg. 333]