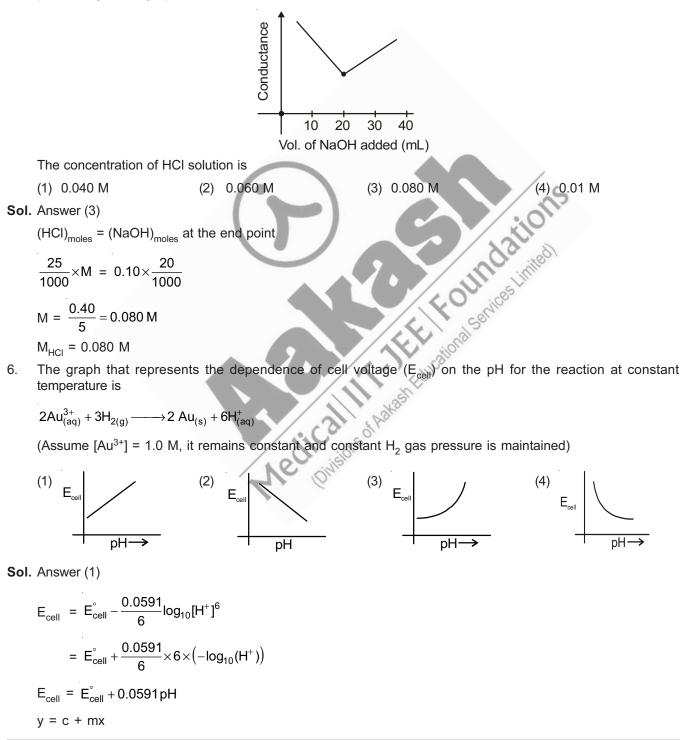


Chapter 3

Electrochemistry

Solutions


2.	Given that			
	$NiO_2 + 4H^+ + 2e^- \rightarrow Ni^{2+} + 2H_2O$, E° = 1.678 V			
	$NiO_2 + 2H_2O + 2e^- \rightarrow Ni(OH)_2 + 2OH^-, E^\circ = -0.49 V$			
	For the following reaction			
	$Ni(OH)_2 + 2H^+ \rightleftharpoons Ni^{2+} + 2H^+$	H ₂ O		
	Gibb's free energy change (in kJ mol ^{−1}) is		
	(1) 418.424	(2) –229.284	(3) -418.424	(4) 229.284
Sol	Answer (3)			
		2		
	$NiO_2 + 4H^+ + 2e^ $	2		
	$Ni(OH)_2 + 2OH^- + 2e^-$			
	$Ni(OH)_2 + 2H^+$ —	$\rightarrow \text{Ni}^{2+} + 2\text{H}_2\text{O}$, E ⁶	$\mathbf{x} = \mathbf{x} \mathbf{V}$	
	· · · · · · · ·			
	$\Delta G^{o} = \Delta G_{1}^{o} + \Delta G_{2}^{o} = -nF(E_{1}^{o})$	$(1 + E_2^0)$		
	= -2 × 96500 × (1.678	s + 0.49) J mol ⁻¹		
	= -418.424 kJ mol ⁻¹	(•		5
3.	Emf of cell given, Ag(s), Ag(c) cell is 3.34×10^{-4} VK ⁻¹ . Ca		s) is 0.05 V at 300 K and tem alpy of the cell. (3) 96500	perature coefficient of the
	(1) 965	(2) 9650	(3) 96500	(4) 96.5
Sol	Answer (2)		1 July Street	
	$2Ag \rightarrow 2Ag^+ + 2e^-$: (anode)	FO grifes	
	$\text{Hg}_2^{2+} + 2e^- \rightarrow 2\text{Hg}$: (cathode)	and the second	
	∵ n = 2		Callol.	
			1. Equi	
	$\Delta H = -nFE_{cell} + nFT \left(\frac{\partial E_{cell}}{\partial T} \right)$ $= 2 \times 96500(300 \times 3.34)$ $= 9650 \text{ J mol}^{-1}$ Given : Ag ⁺ + e ⁻ \rightarrow Ag; E° _{re} Dissociation constant for [Ag) _P	120S1	
	= 2 × 96500(300 × 3.34	I × 10 ^{−4} − 0.05)	offer	
	= 9650 J mol ⁻¹	, di ision		
4.	Given : Ag ⁺ + e ⁻ \rightarrow Ag; E° _{re}	ed = 0.799 V		
	Dissociation constant for [Ag	$g(NH_3)_2]^+$ into Ag^+ and NH_3	is 6 × 10^{-14} . Then for the fol	lowing half-cell reaction:
	$[Ag(NH_3)_2]^+ + e^- \rightarrow Ag + 2NI$			
	(1) 0.019 V	(2) 0.03 V	(3) 0.014 V	(4) 0.19 V
Sol	Answer (1)			
	Ag \longrightarrow Ag ⁺	$+ e^{-}$; $E^{o}_{OP} = -0.799 V$		
	$ \underbrace{ Ag(NH_3)_2^+ + \mathrm{e}^- \longrightarrow Ag + }_{-\!-\!-\!-\!-\!-\!-\!-\!-\!-\!-\!-\!-\!-\!-\!-\!-\!-\!-\!$	$+ NH_3; E^o_{RP} = ?$		

 $Ag(NH_3)_2^+ \qquad \rightleftharpoons \qquad Ag^+ + 2NH_3$

 $E_{cell} = E_{cell}^{o} + \frac{0.0591}{1} \log_{10} \frac{[Ag(NH_3)_2^+]}{[Ag^+][NH_3]^2} = 0 \text{ at equilibrium}$

$$\Rightarrow E_{cell}^{o} = 0.0591 \times \log_{10} K_{c} = 0.0591 \times \log_{10} (6 \times 10^{-14})$$
$$= -0.780 V$$
$$= E_{OP(Ag/Ag^{+})}^{o} + E_{RP(Ag(NH_{3})_{2}^{+}/Ag)}^{o}$$
$$\Rightarrow E_{Ag(NH_{3})_{2}^{+}/Ag}^{o} = -0.780 + 0.799$$
$$= +0.019 V$$

5. 25 mL of HCl solution is titrated with 0.10 mole.L⁻¹ NaOH solution in a conductivity cell. The data obtained were plotted to give the graph shown below.

110 Electrochemistry

Electrolytes having same value of constant A in Debye-Huckel-Onsager equation is/are 7.

	$\lambda_{m} = \lambda_{m}^{o} -$	- A√c	
MgCl ₂	CaCl ₂	MgSO ₄	NaCl
(I)	(II)	(III)	(IV)
(1) (I), (II) & (III)	(2) (II), (III) & (IV)	(3) (1) & (11)	(4) (I) & (II)

Sol. Answer (4)

- 8. Correct statements from the below is/are
 - (I) Cell potential of Ni-Cd cell remains constant during its lifetime.
 - (II) The output of fuel cell is lower than the theoretically expected.
 - (III) Concentration of H₂SO₄ in Pb-storage battery decreases during charging of the battery.
 - (IV) The cell potential remains constant in Hg-cell as the overall reaction does not involve ions concentration.

(2) Anodizing (4) All of these

(1) (I), (II) & (III) (2) (I), (II) & (IV) (3) (II), (III) & (IV) (4) (III) & (IV)

Sol. Answer (2)

Facts

- 9. Methods effective in preventing corrosion is/are
 - (1) Surface treatment (coating)
 - (3) Galvanisation
- Sol. Answer (4)

Fact

- 10. What happens to pH of an aqueous solution of CuSO₄ when it is treated with external source of electricity Educational Services using inert electrodes? [Assume no change in volume due to electrolysis]
 - (1) Decreases
 - (2) Increases
 - (3) Remains same
 - (4) First increases and then decreases

Sol. Answer (1)

OH- ion concentration decreases due to oxidation at anode. Hence H⁺ concentration relatively increases and pH will decrease.

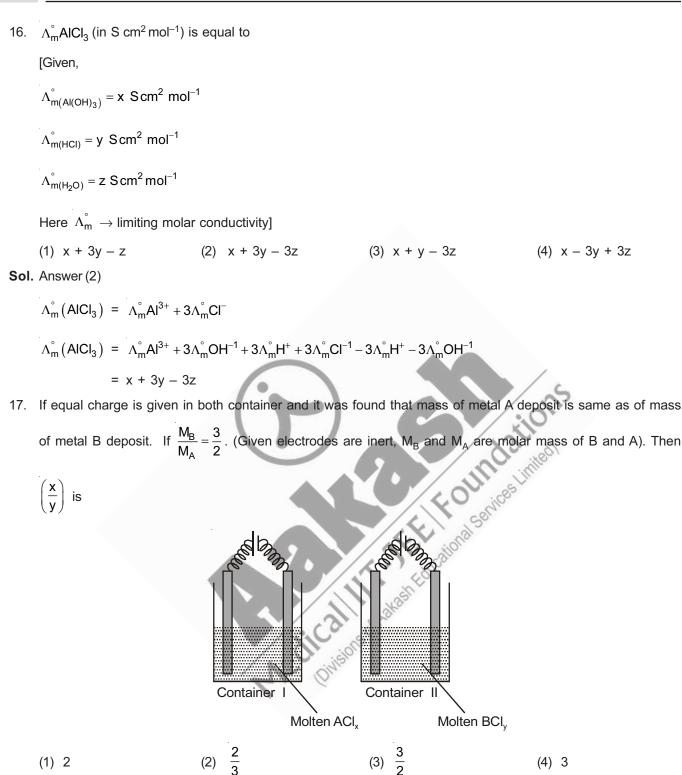
11. If A³⁺, B²⁺ and C⁺ reduce at cathode in different experiments. If equal charge is given to each ion and charge to mass ratio of each ion is same, select the correct statement.

[Efficiency is 100% in each experiment and A³⁺, B²⁺ and C⁺ reduce to A, B and C respectively]

- (1) Mass deposit of A is maximum among all three ions
- (2) Mass deposit of B is maximum among all three ions
- (3) Mass deposit of C is maximum among all three ions
- (4) Same mass of A, B and C deposit

Sol. Answer (4)

If equal charge is given then equal number of equivalent deposit


[eq. of A = eq. of B = eq. of C]

 $\frac{\text{Mass of A deposit } \times 3}{\text{Molar mass of A}} = \frac{\text{Mass of B deposit } \times 2}{\text{Molar mass of B}} = \frac{\text{Mass of C deposit } \times 1}{\text{Molar mass of C}}$

12. The value of ΔG°_{cell} at 298 K for M(s)/M⁺³ || A⁺ / A(s) is

 $\mathsf{E}^{\circ}_{\mathsf{M}^{+3}/\mathsf{M}} = \mathsf{x}$ $\mathsf{E}^{\circ}_{A^+/A} = \mathsf{y}$ (1) -3F(x + y) (2) 3F(x - y)(3) 3F (x - 3y) (4) 3F(x + y)Sol. Answer(2) $\Delta G_{cell}^{\circ} = - nF E_{cell}^{\circ}$ $n \Rightarrow 3$ $E_{cell}^{\circ} = y - x$ $\therefore \Delta G^{\circ}_{cell} = -3F(y-x) = 3F(x-y)$ 13. 965 A current is passed for 5 minute in molten solution and 27 g of metal is deposit at cathode. The possible molten solution is [Assume electrode are inert and 1 Faraday = 96500 C. Current efficiency of process is 100%] (3) AICI₂ (4) All of these (1) NaCl (2) MgCl₂ Sol. Answer (3) etical harastructional services time (4) 10² cm⁻¹ Number of faraday given \Rightarrow 965 × 5 × 60 = 3 F So number of equivalent of metal deposit = 3 14. 0.1 M aqueous solution of KCI having molar conductance x S cm² mol⁻¹. If resistance offered by solution is 1000 ohm, then value of cell constant is (1) 10⁻²x cm⁻¹ (2) 0.1x cm⁻¹ Sol. Answer(2) $\Lambda_{m} = \frac{\mathsf{K} \times 1000}{\mathsf{M}}$ $K = \frac{1}{R} \left(\frac{\ell}{A} \right)$ $\frac{\ell}{\Lambda} = KR$ $\frac{\Lambda_{M} \times M}{1000} = K$ $\Rightarrow \frac{x \times 0.1}{1000} = K$ cell constant $\left(\frac{\ell}{A}\right) = \frac{x(0.1)}{1000} \times 1000 = 0.1x \text{ cm}^{-1}$ 15. Which of the following is correct reaction for anode in fuel cell? (1) $O_2(g)$ + $2H_2O(I)$ + $4e^- \rightarrow 4OH^-(aq)$ (2) $H_2 + 2OH^- \rightarrow 2H_2O + 2e^-$ (4) $2O^{2-} \rightarrow O_2$ + 4e (3) $H_2O \rightarrow H^+ + OH^-$

Sol. Answer (2)

Sol. Answer (2)

Equal charge given so

No. of equivalent of A deposit = No. of equivalent of B deposit

 \Rightarrow (moles × n-factor)_A = (moles × n-factor)_B

$$\Rightarrow \frac{\text{Mass of A deposited}}{M_A} \times x = \frac{\text{Mass of B deposited}}{M_B} \times y \Rightarrow \frac{x}{y} = \frac{M_A}{M_B} = \left(\frac{2}{3}\right)$$

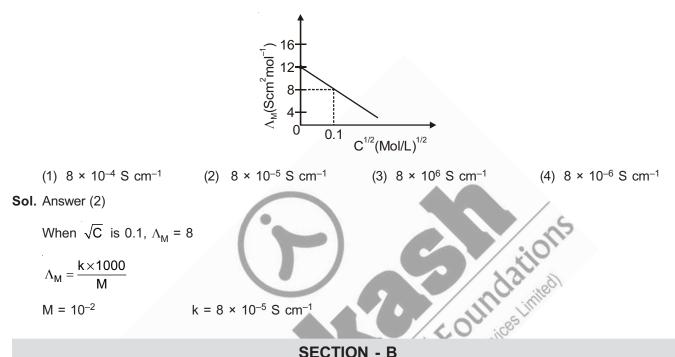
- $Zn(s) | ZnSO_4 || CuSO_4 | Cu(s)$ Cell-I 18. (0.1M) (0.1M) $Zn(s) | ZnSO_4 || Ag_2SO_4 | Ag(s)$ Cell-II (0.1M) (0.05 M) $Cu(s) | CuSO_4 || Ag_2SO_4 | Ag(s)$ Cell-III (0.05 M) 0.1M $\mathsf{E}^{\circ}_{Zn^{+2}/Zn} = -x \mathsf{V} \ \mathsf{E}^{\circ}_{Cu^{+2}/Cu} = y \mathsf{V} \ \mathsf{E}^{\circ}_{Ag^{+}/Ag} = z \mathsf{V}$ If x, y and z all have positive values and z > x > y then which cell have highest E_{cell}° at 298 K? (1) Cell-I (2) Cell-II (3) Cell-III (4) Cannot be determined Sol. Answer (2) E°_{cell} for Cell-I = y + x Called Aaros Educational Services Limited E°_{cell} for Cell-II = z + x E°_{cell} for Cell-III = z - y19. Which of the following cell have highest E_{cell} at 298K? (1) $Cu(s) | CuSO_4 || CuSO_4 | Cu(s)$ 0.1M 0.1M (2) $Cu(s) | CuSO_4 || CuSO_4 | Cu(s)$ 0.01M 0.1M (3) $Cu(s) | CuSO_4 || CuSO_4 | Cu(s)$ 0.1M 0.01 M (4) $Cu(s) | CuSO_4 || CuSO_4 | Cu(s)$ ical 1M 1 M Sol. Answer (2)
- 20. The molar conductivity (in S cm²mol⁻¹) of aqueous solution of CH₃COOH that have pH = 3 is (Given limiting molar conductivity of CH₃COOH solution is 3900 Scm²mol⁻¹ and dissociation constant of CH₃COOH is 10⁻⁵).

(2) 39×10^4 (3) 39×10^{-4} (4) 39×10^{-6} (1) 39

pH = 3, [H⁺] =
$$10^{-3} = \sqrt{10^{-5} \times C}$$

c = 10^{-1}
C α = 10^{-3}
 α = 10^{-2}

 $\alpha = \frac{\Lambda_{m}}{\Lambda_{m}^{\circ}} \Longrightarrow \Lambda_{m} = \alpha \Lambda_{m}^{\circ} = 39 \text{ Scm}^{2} \text{ mol}^{-1}$


21. The E°(in V) at 298 K of the given cell is

 $A_{(s)} | A^{3+}_{(C_1)} || B^{2+}_{(C_2)} | B_{(s)}$ Given $2A(s) \longrightarrow 2A^{3+} + 6e^{-} E^{\circ} = 2x V$ $3B^{2+}+6e^-\longrightarrow 3B(s)$ $E^\circ = 3y V$ (1) y - x (2) y + x (3) 3y + 2x (4) 3y - 2x Sol. Answer(3) $E^{\circ}(A^{3+}/A) = -2x$ $E^{\circ}(B^{2+}/B) = 3y$ So $E_{cell}^{\circ} = 3y - (-2x) = 3y + 2x$ Equilibrium constant for the given cell at 25°CA(s)|A+3(aq)||B+2(aq)|B(s) is 22. (4) 10-4 (Given that $E_{cell}^{\circ} = 0.04 \text{ V}$ and $\frac{2.303 \text{ RT}}{\text{E}} = 0.06 \text{ at } 25^{\circ}\text{C}$) (1) 10^2 $(3) 10^{-2}$ (2) 10⁴ Sol. Answer (2) $2A + 3B^{+2} \longrightarrow 2A^{+3} + 3B$ $E_{cell}^{\circ} = \frac{0.06}{6} \log K_c$ $\log K_{c} = \frac{0.04 \times 6}{0.06} = 4$ $K_{c} = 10^{4}$ 23. Which of the following reaction occur at anode in lead-storage battery when battery is in use? Sol AND (1) $PbSO_{4(s)} + 2e^{-} \rightarrow Pb_{(s)} + SO_{4(aq)}^{2-}$ (2) $PbSO_{4(s)} + 2H_2O_{(l)} \rightarrow PbO_{2(s)} + SO_4^{-2} (aq) + 4H^+ +$ (3) $Pb_{(s)} + SO_4^{-2}_{(aq)} \rightarrow PbSO_{4(s)} + 2e$ (4) $PbO_2 + SO_4^{-2} + 4H^+ + 2e \rightarrow PbSO_4 + 2H_2O_4$ Sol. Answer (3) Fact 24. For which of the following cell, $E_{cell} = E_{cell}^{\circ}$ at 298 K? (1) $Z_{n} Z_{nSO_{4}} CuSO_{4} CuSO_{4} Cu(s)$ (2) $Z_{n} Z_{nSO_{4}} Ag_{0.1M} Ag_{0.1M} Ag(s)$ (4) $\operatorname{AI}_{(s)} \left| \operatorname{AI}^{+3}_{0.1M} \right| \left| \operatorname{Cu}^{+2}_{0.1M} \right| \operatorname{Cu}(s)$ (3) $\operatorname{Cu} \left| \operatorname{CuSO}_{4} \right| \left| \operatorname{AgNO}_{3} \right| \operatorname{Ag(s)}$

Sol. Answer (1)

$$Zn + Cu^{+2} \rightarrow Cu(s) + Zn^{+2}$$

Q = 1
E_{cell} = E_{cell}

25. A graph is given between molar conductivity and \sqrt{C} (C \rightarrow concentration) for a strong electrolytic solution. The conductivity (k) of the solution is

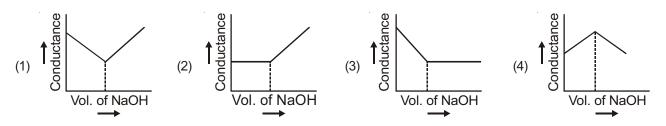
SECTION - B

Objective Type Questions (More than one options are correct)

- Which of following is/are correct? 1.
 - (1) The metallic conduction is due to the movement of electrons in the metal
 - (2) The electrolytic conduction is due to the movement of ions in the solution
 - (3) The metallic conduction increases with increase in temperature whereas electrolytic conduction decreases with increase in temperature
 - (4) None of these

Sol. Answer (1, 2)

The metallic conduction is due to the presence of electrons in the metal and electrolytic conduction is due to the movement of ions in the solution.


- Molar conductance of 2 M H₂A acid is 10 S cm² mol⁻¹. Molar conductance of H₂A at infinite dilution is 2. 400 S cm² mol⁻¹. Which statement is/are correct?
 - (1) Degree of dissociation is 2.5% and pH of solution is 1.0
 - (2) Degree of dissociation is 4 and pH of solution is 1.4
 - (3) Dissociation constant of H₂A is 6.24 × 10^{-5}
 - (4) Dissociation constant of H_2A as per $H_2A \rightleftharpoons 2H^+ + A^{2-}$ is 2.56 × 10⁻⁴

Sol. Answer (1, 4)

	$\alpha = \frac{\Lambda_{\rm m}}{\Lambda_{\rm m}^0} - \frac{10}{400} = \frac{1}{40} = 2.5\%$			
	At equation, $H_2A \rightleftharpoons C(1-\alpha)$			
	$K_{eq} = \frac{(2C\alpha)^2 \times C\alpha}{C(1-\alpha)}$			
	Putting C = 2 M, α = 0.025			
	$K_{eq} = 2.56 \times 10^{-4}$			
	$[H^+] = 2C\alpha = 0.1 = 10^{-1}$			
	pH = - log 10 ⁻¹ = 1			
3.	Which compounds have ma	ximum conductivity?		
	(1) 0.2 M [Cr(NH ₃) ₃ Cl ₃]		(2) 0.15 M [Cr(NH ₃) ₄ Cl ₂]Cl	
	(3) 0.1 M [Cr(NH ₃) ₅ Cl]Cl ₂		(4) 0.07 M [Cr(NH ₃) ₆]Cl ₃	
Sol	. Answer (2, 3)			
	$[\text{Cr}(\text{NH}_3)_4\text{Cl}_2]\text{Cl} \rightarrow [\text{Cr}(\text{NH}_3)_4]$	Cl ₂] ²⁺ +Cl [−]		6
	\Rightarrow 0.15 × 2 = 0.30			ns
	and for			
	$[\mathrm{Cr}(\mathrm{NH}_3)_5\mathrm{Cl}]\mathrm{Cl}_2 \rightarrow [\mathrm{Cr}(\mathrm{NH}_3)_5]$	[CI] ²⁺ + 2CI [−]	da	Batt
	$\Rightarrow 0.1 \times 3 = 0.30$			in .
4.	For electrolyte $A_x B_y$ which is/ (Λ_{eq}) (1) $\Lambda_M = xy \Lambda_{eq}$ (6) Answer (2, 3, 4) For the electrolyte $A_x B_y$ n-factor = xy $\Lambda_M = (xy) \Lambda_{eq}$ Only 1 st option is correct &	are not correct relation betw	een molar conductivity (Λ_{M}) a	and equivalent conductivity
	(1) $\Lambda_{\rm M} = xy \Lambda_{\rm eq}$	(2) $\Lambda_{eq} = xy \Lambda_{M}$	(3) $x\Lambda_M = y \Lambda_{eq}$	(4) $y\Lambda_{M} = x \Lambda_{eq}$
Sol.	Answer (2, 3, 4)		· · · · · · · · · · · · · · · · · · ·	
	For the electrolyte $A_x B_y$		an For	
	n-factor = xy		12	
	$\Lambda_{M} = (xy) \Lambda_{eq}$	i Car	O'	
	Only 1 st option is correct &	others are incorrect option.		
5.	The cell constant of a cond A = area, R = resistance, G	-		
	(1) $\sigma = \frac{l}{A}$	(2) $\sigma = \frac{\rho}{R}$	(3) $\sigma = (G\rho)^{-1}$	(4) $\sigma = \frac{G}{K}$
Sol	. Answer (1, 3)			
	$R = \rho \frac{I}{A} \Rightarrow \frac{1}{\rho} = \frac{1}{R} \frac{I}{A}$			

$$K = C \times \frac{I}{A}$$

 $\rho = \frac{RA}{I}; \ \sigma = \frac{I}{A} \text{ and } \sigma = (G\rho)^{-1}$

Which of following plots will not be obtained for a conductometric titration of HCI and NaOH? 6.

Sol. Answer (2, 3, 4)

In the conductometric titration of HCI and NaOH conductance first decreases, reaches a minimum value and then increases.

- 1.0 L of 0.1 M aqueous solution of KCl is electrolysed. A current of 96.50 mA is passed through the solution 7. for 10 hours. Which is/are correct? (Assume volume of solution remains constant during electrolysis)
 - (1) After electrolysis molarity of K⁺ is 0.064 and molarity of Cl⁻ is 0.064
 - (2) After electrolysis molarity of K⁺ is 0.1 and molarity of Cl⁻ is 0.064
 - (3) At S.T.P. 202 ml of Cl₂ produced when current efficiency is 50%
 - (4) At S.T.P. 606 ml of total gases produced when current efficiency is 50%

Sol. Answer (2, 3)

Solution is 1.0 L and 0.1 M

Moles present = 1 × 0.1 = 0.1 moles

Reactions :

$$2H^+ + 2e \rightarrow H_2 : 2CI^- \rightarrow CI_2 + 2e^-$$

$$\frac{w}{M} = \frac{it}{nF} = \frac{w}{M} = \frac{96.50 \times 10 \times 60 \times 60 \times 10^{-3}}{2 \times 96500} = 0.0$$

For Cl⁻ = 0.036; Molarity = 0.1 - 0.036 = 0.064

$$V_{Cl_2} = \frac{0.018 \times 22.4}{2} = 0.202 \text{ L or } 202 \text{ ml.}$$

K⁺ will not discharge.

- all the advantage of the state 1000 ml 2 M CuSO₄ is electrolysed by a current of 9.65 amp for 2 hours. Which is/are correct? 8.
 - (1) After electrolysis remaining concentration of Cu⁺² is 1.64 M using Cu electrode
 - (2) After electrolysis remaining concentration of Cu⁺² is 1.64 M using Pt-electrode
 - (3) When remaining concentration of Cu⁺² is 1.822 then volume of solution is reduced by 10% using Ptelectrode
 - (4) 17.15 g copper deposit when current efficiency is 75% using copper electrode

Sol. Answer (2, 3, 4)

- No. of moles of CuSO₄
 - = 1000 × 2 = 2000 millimoles = 2 moles
- i = 9.65 A; t = 2 hrs = 2 × 60 × 60 s

Cu deposited is w =
$$\frac{E \times it}{F}$$

2

(4) AgCl

$$\Rightarrow w = \frac{63.5}{\alpha} \times \frac{9.65 \times 2 \times 60 \times 60}{96500} = 22.86$$

$$n = \frac{W}{M} = 0.36$$

 \Rightarrow 2 - 0.36 = 1.64

Hence, molarity = 1.64 M using Pt electrode

w =
$$\frac{63.5}{2} \times \frac{75}{100} \frac{(9.65) \times 2 \times 60 \times 60}{96500}$$
 = 17.15 g

Which statement is correct about electrolysis of CuSO₄? 9.

- (1) At cathode Cu will deposit and at anode O₂ will be produced using Pt-electrode
- (2) At cathode Cu will not deposit but Cu dissolve at anode using Cu-electrode
- (3) At cathode Cu will deposit and at anode O₂ will be produced using Cu-electrode
- (4) At cathode Cu will deposit and at anode Cu will dissolve using Cu-electrode

Sol. Answer (1, 4)

Using Pt electrodes

 $CuSO_{4} \rightarrow Cu^{2+} + SO_{4}^{2-}$

 $H_2O \rightarrow H^+ + HO^-$

At cathode : $Cu^{2+} + 2e^- \rightarrow Cu$

Anode : $4HO^- \rightarrow 2H_2O + O_2 + 4e^-$

Products are Cu and O₂

Using Cu electrodes

Anode : Cu \rightarrow Cu²⁺ + 2 e⁻

Cathode : Cu^{2+} + 2 e⁻ \rightarrow Cu

```
Freducational Services Limited
10. Aqueous solution of which electrolyte produces H<sub>2</sub> gas at cathode, when electrolysed among inert electrodes?
```

(3) CuCl₂

(1) NaCl

Sol. Answer (1, 2)

 $\rm H^{\star}$ has lower discharge potential as compared to $\rm Na^{\star}$ and $\rm Mg^{2\star}$ Hence, in case of NaCl and MgCl₂ reaction is $2H^+ + 2e^- \rightarrow H_2$.

(2) MgCl₂

- For the electrolysis of CuSO₄ solution which is/are correct? 11.
 - (1) Cathode reaction : $2H^+ + 2e \longrightarrow H_2$ using Pt electrode
 - (2) Cathode reaction : $Cu^{+2} + 2e^{-} \longrightarrow Cu$ using Cu electrode
 - (3) Anode reaction : $Cu \longrightarrow Cu^{+2} + 2e^{-}$ using Cu electrode
 - (4) Anode reaction : $Cu \longrightarrow Cu^{+2} + 2e^{-}$ using Pt electrode

Sol. Answer (2, 3)

 $CuSO_4(aq)$ forms the ions

 Cu^{2+} , H⁺, HO⁻ and SO_4^{2-}

Using Pt electrode

At cathode; $Cu^{2+} + 2e \rightarrow Cu$

Using Cu electrodes

At anode : Cu \rightarrow Cu²⁺ + 2e⁻

12. Which solution(s) become(s) more acidic after the electrolysis using inert electrodes?

(2) CuSO₄ solution (3) AgNO₃ solution (1) NaCl solution (4) Na_2SO_4 solution

Sol. Answer (2, 3)

In the electrolysis of CuSO₄ solution and AgNO₃ solution, H₂SO₄ and HNO₃ are formed respectively.

13. Zn | Zn⁺²(1M) || Ni⁺²(1 M) | Ni, Antilog (0.7411) = 5.5

 $E^{\circ}_{7n^{+2}/7n} = -0.75 \text{ V}, \ E^{\circ}_{Ni^{+2}/Ni} = -0.24 \text{ V}$

Which statement is/are correct for above cell?

- (1) Emf of cell is 0.51 V and cell reaction is spontaneous
- (2) Emf of cell is -0.51 V and cell reaction is non-spontaneous
- (3) Emf of cell is zero when concentration of Ni⁺² is 5.5×10^{-18} M
- (4) Cell reaction is non-spontaneous when concentration of Ni⁺² is less than 5.5×10^{-18} M FEL FOUNDESTIMIE

Sol. Answer (1, 3, 4)

The given cell is

Zn|Zn²⁺(1M)||Ni²⁺(1M)|Ni

 $E^{\circ} = (0.75) + (-0.24) = 0.51V$

and cell reaction is spontaneous.

$$E = E^{\circ} - \frac{0.0591}{2} \log \frac{[Zn^{2+}]}{[Ni^{2+}]}$$

 \Rightarrow E = 0; [Ni²⁺] = 5.5 × 10⁻¹⁸ M

Non-spontaneous when concentration of M^{2+} is less than 5.5 × 10⁻¹⁸ M.

- 14. Which is/are correct statements about salt bridge?
 - (1) Velocity of ions of salt bridge are almost equal
 - (2) Salt bridge completes the electric circuit
 - (3) lons of salt bridge discharge at electrode
 - (4) Ions of salt bridge do not discharge at electrode
- **Sol.** Answer (1, 2, 4)

Salt Bridge contains electrolyte which do not participate in the electrochemical change, completes the cell circuit and it is also necessary that velocity of ions of salt bridge are almost equal.

15.
$$K_{sp}$$
 for AgBr = 8 × 10⁻¹³

Ag, AgNO₃ (1.0 M) || KBr (1.0 M), AgBr, Ag

For above cell which is/are correct?

- (1) E_{cell} = 0.715 V
- (3) $\Delta G = -1 \times 96500 \times 0.715$

(2) E_{cell} = -0.715 V

(4) $\Delta G = 1 \times 96500 \times 0.715$

Sol. Answer (2, 4) For the 1st Half cell Anode : Ag \rightarrow Ag⁺ + e⁻ Cathode : $Ag^+ + e^- \rightarrow Ag$

$$E = -\frac{0.0591}{1} \log \frac{[Ag^+]_L}{[Ag^+]_R}$$

$$E = -0.0591 \log \frac{1}{[Ag^+]}$$

$$K_{sp}$$
 (AgBr) = [Ag⁺] [Br⁻]

$$[Ag^+]_R = \frac{8 \times 10^{-13}}{1} = 8 \times 10^{-13} M$$

E = -0.0591 log $\frac{1}{8 \times 10^{-13}}$ = -0.0591 log $\frac{10^{13}}{8}$

 \Rightarrow 0.0591 log 8 × 10⁻¹³.

0.0591 (0.6 - 13) = - 0.715 V

- and $\Delta G = -nFE = +1 \times 96500 \times 0.715$
- 16. Which statement is/are correct?
 - (1) In voltaic cell electrons flow from anode to cathode
 - (2) In voltaic cell, anode is negative electrode and cathode is positive electrode
 - (3) Oxidation take place at anode and reduction take place at cathode in electrochemical cell
 - (4) In electrolytic cell oxidation take place at cathode and reduction take place at anode

Sol. Answer (1, 2, 3)

At cathode always reduction takes place and at anode always oxidation takes place. Divisions of Aakash Hence (4) will not the correct statement.

ledical

17.
$$E^{\circ}_{Zn^{+2}/Zn} = -0.76 \text{ V}, \ E^{\circ}_{Ni^{+2}/Ni} = -0.24 \text{ V}$$

 $E^{\circ}_{Fe^{+3}/Fe} = -0.04 \text{ V}, \ E^{\circ}_{Cd^{+2}/Cd} = -0.40 \text{ V}$

Which is/are correct statements?

- (1) $Zn^{+2} + Cd \longrightarrow Cd^{+2} + Zn$, spontaneous
- (3) $Fe^{+3} + Ni \longrightarrow Ni^{+2} + Fe$, spontaneous

Sol. Answer (2, 3, 4)

For (1)

$$Zn^{2+} + Cd \rightarrow Cd^{2+} + Zn$$

 $E^{\circ} = E^{\circ}_{Cd/Cd^{2+}} + E^{\circ}_{Zn^{2+}/Zn} = (0.40) + (-0.76) = -0.36 < 0$
Non-spontaneous

For Ni²⁺ + Cd \rightarrow Cd²⁺ + Ni

$$E^{\circ} = E^{\circ}_{Cd/Cd^{2+}} + E^{\circ}_{Ni^{2+}/Ni} = (0.40) + (-0.24) > 0$$
 is spontaneous

(2) $Ni^{+2} + Cd \longrightarrow Ni + Cd^{+2}$, spontaneous

(4) $Cd^{+2} + Zn \longrightarrow Zn^{+2} + Cd$, spontaneous

for $Fe^{3+} + Ni \rightarrow Ni^{2+} + Fe$

$$E^{\circ} = E^{\circ}_{Ni/Ni^{2+}} + E^{\circ}_{Fe^{3+}/Fe} = (0.24) + (-0.04) > 0$$
 i.e. spontaneous

and for reaction

 $Cd^{2+} + Zn \rightarrow Zn^{2+} + Cd$

$$E^{\circ} = E^{\circ}_{Zn/Zn^{2+}} + E^{\circ}_{Cd^{2+}/Cd} = (0.76) + (-0.40) > 0$$
 is spontaneous.

18. In which of the following cells, reaction quotient is equal to one?

(1) Pb|PbC₂O₄, CaC₂O₄, CaCl₂(0.1 M)||CuSO₄(0.1 M) | Cu

- (2) Zn|ZnSO₄(0.1 M)||CuSO₄(0.1 M)|Cu
- (3) Zn|ZnSO₄(0.1 M)||Hg₂Cl₂, KCl(0.1 M)|Hg, Pt

Sol. Answer (1, 2)

- $\ln(3), Q = 10$
- $\ln (4), Q = 0.1$
- 19. Which of the following cells give the cell potential to their standard values?
 - (1) Zn|Zn²⁺(0.01 M)||H₃O⁺(0.1 M)|H₂(1 atm), Pt
 - (3) Cd|Cd²⁺(0.01 M)||pH = $1|H_2(1 \text{ atm})$, Pt
- Sol. Answer (1, 2, 3)

For $E_{cell} = E_{cell}^{o}$, $K_{C} = 1$.

20. Daniell cell : Zn|Zn⁺²(aq)||Cu⁺²(aq)|Cu operates as electrolysis cell for 60 min and a current of (50 ml 1M) (50 ml 1

0.965 A is passed. Which is/are correct?

 $(E^{\circ}_{Cu^{+2}/Cu} = 0.34 \text{ V}, E^{\circ}_{Zn^{+2}/Zn} = -0.76 \text{ V})$

(2) After electrolysis Cu⁺² concentration is 0.64 M (1) After electrolysis Zn⁺² concentration is 1.36 M

(3) After electrolysis Zn⁺² concentration is 0.82 M (4) After electrolysis Cu⁺² concentration is 1.18 M Sol. Answer (1, 2)

 W_{Cu} (deposited) = $\frac{31.75}{96500} \times 0.965 \times 60 \times 60 = 1.143$ g

Total weight of copper = $50 \times 10^{-3} \times 1 \times 63.5 = 3.175$ g

Left weight of copper = 3.175 - 1.143 = 2.032 g

Molarity of Cu²⁺ solution = $\frac{2.032}{63.5} \times \frac{1000}{50}$ = 0.64 M

Molarity of Zn^{2+} solution = 1 + 0.36 = 1.36 M

- 21. Saturated solution of KNO₃ is used to make 'salt-bridge'. Then incorrect option(s) is/are
 - (1) Velocity of K⁺ is zero (2) Velocity of NO₃⁻ is zero
 - (3) Velocity of both K⁺ and NO₃⁻ are nearly the same (4) KNO₃ is highly soluble in water
- **Sol.** Answer (1, 2)

Fact.

- (2) Cu|Cu²⁺(0.25 M)||Ag⁺(0.5 M)|Ag
- (4) $Zn|Zn^{2+}(0.1 \text{ M})||pH = 1|H_2(1 \text{ atm}), \text{ Pt}$

- 22. Which of following statement(s) is/are correct?
 - (1) If temperature coefficient is greater than zero, cell reaction is endothermic
 - (2) If temperature coefficient is less than zero, cell reaction is endothermic
 - (3) If temperature coefficient is less than zero, cell reaction is exothermic
 - (4) If E_{cell} is negative then ΔG is negative and cell reaction is spontaneous

Sol. Answer (1, 3)

It is known fact that ΔH and temperature coefficient are related as,

$$\Delta H > 0 \text{ for } \left(\frac{\partial E}{\partial T}\right) > 0$$

and $\Delta H < 0$ for $\left(\frac{\partial T}{\partial T}\right) < 0$

23. The standard emf of the cell

Fe | Fe⁺²(aq) || Cd⁺² | Cd is 0.0372 V and temperature coefficient of emf is -0.125 VK⁻¹. Which is/are correct about the cell (at room temperature)?

(2) $\Delta G^{\circ} = -7.18 \text{ kJ}, \Delta H^{\circ} = 7196.43 \text{ kJ}$

(4) $\Delta S^{\circ} = -24.125 \text{ kJ K}^{-1}$, reaction is spontaneous

- (1) $\Delta G^{\circ} = 7.18 \text{ kJ}, \Delta H^{\circ} = -7196.43 \text{ kJ}$
- (3) $\Delta G^{\circ} = -7.18 \text{ kJ}, \Delta H^{\circ} = -7196.43 \text{ kJ}$

Sol. Answer (3, 4)

The emf of cell

Fe|Fe²⁺||Cd²⁺|Cd, E^o = 0.0372

- $\therefore \Delta G^{\circ} = -nFE^{\circ} = -2 \times 96500 \times 0.0372$
- $\Lambda G^{\circ} = -7179.6 \text{ J} = -7.18 \text{ kJ}$

$$(\Delta S) = nF \left(\frac{\partial E_{cell}}{\partial T}\right)_{F}$$

- $\therefore (\Delta S^{\circ}) = 2 \times F \times (-0.125)$
- $\Rightarrow -7180 = -\Delta H^{\circ} + 298 \{2 \times 96500 \times 0.125\}$
- ∴ ΔH^o = 7196.43 kJ
- 22 21 11 A ARASTERICATION SOMOSSIMILES 24. When a lead-storage battery is discharged, then incorrect option(s) is/are
 - (1) H_2SO_4 is consumed (2) Pb is formed
 - (3) SO₂ is evolved (4) PbSO₄ is consumed
- **Sol.** Answer (2, 3, 4)

Pb is consumed and PbSO₄ is formed. SO₂ is not evolved.

- 25. Which is/are correct about corrosion?
 - (1) Due to corrosion FeO.xH₂O formed
 - (2) Due to corrosion Fe₂O₃.xH₂O formed
 - (3) Presence of air and moisture increases the rate of corrosion
 - (4) Magnesium is used as sacrificial anode

(4) 1.13 V

Sol. Answer (2, 3, 4)

In corrosion

 $Fe \rightarrow Fe^{2+}$ + 2e is formed and the formation of oxide i.e., $Fe_2O_3.xH_2O$ takes place and presence of air and moisture is must.

Mg can be used as sacrificial anode.

SECTION - C

Linked Comprehension Type Questions

Comprehension-I

An electrochemical cell is constructed by immersing a piece of copper wire in 50 ml of 0.1 M $CuSO_4$ solution and zinc strip in 50 ml of 0.1 M $ZnSO_4$ solution

(3) 1.3 V

$$[E^{\circ}_{Cu^{+2}/Cu} = 0.34 \text{ V}, E^{\circ}_{Zn^{+2}/Zn} = -0.76 \text{ V}]$$

1. The emf of cell is

(1) 1.07 V

Sol. Answer (2)

$$\begin{split} & \mathsf{E}^{\circ}_{\mathsf{Cu}^{2^{*}}/\mathsf{Cu}} = 0.34 \; \mathsf{V} \; \text{and} \; \mathsf{E}^{\circ}_{\mathsf{Zn}^{2^{*}}/\mathsf{Zn}} = -0.76 \; \mathsf{V} \\ & \mathsf{E}_{\mathsf{Cell}} = \mathsf{E}^{\circ} - \frac{0.0591}{2} \; \log \; \frac{[\mathsf{Zn}^{2^{+}}]}{[\mathsf{Cu}^{2^{+}}]} \\ & [\mathsf{Zn}^{2^{+}}] = [\mathsf{Cu}^{2^{+}}] = 1\mathsf{M} \\ & \therefore \; \mathsf{E} = \mathsf{E}^{\circ} = \; \mathsf{E}^{\circ}_{\mathsf{Zn}/\mathsf{Zn}^{2^{+}}} + \mathsf{E}^{\circ}_{\mathsf{Cu}^{2^{+}}/\mathsf{Cu}} \\ & \therefore \; \mathsf{E} = (0.76) + (0.34) \\ & \therefore \; \mathsf{E} = \mathsf{E}^{\circ} = 1.1 \; \mathsf{V} \end{split}$$

2. The emf of cell increases when small amount of concentrated NH₃ is added to

(2) 1.1 V

(1) $ZnSO_4$ solution (2) $CuSO_4$ solution (3) Both (1) & (2) (4) Can't say

Sol. Answer (1)

When NH_3 is added to $ZnSO_4$ solution, NH_3 reacts with Zn^{2+} in the following manner :

$$Zn^{2+} + 4 NH_3 \implies [Zn(NH_3)_4]^{2+}$$

i.e., [Zn²⁺] decreases.

In the equation

$$E = E^{o} - \frac{0.0591}{2} \log \frac{[Zn^{2+}]}{[Cu^{2+}]}$$

If $[Zn^{2+}]$ decreases then $\log \frac{[Zn^{2+}]}{[Cu^{2+}]}$ decreases hence, EMF of cell increases.

3. In a separate experiment, 50 ml of 1.5 M NH₃ is added to CuSO₄ solution. Emf of the cell is

 $[K_f ([Cu(NH_3)_4]^{+2}) = 5.88 \times 10^{13}]$

(1) 0.933 V (2) 1.327 V (3) 1.467 V (4) 0.696 V

124 Electrochemistry

Sol. Answer (4)

Due to the complex formation, [Cu²⁺] decreases & it can be calculated by the reaction,

$$\begin{split} & \underset{50\times0.1}{\overset{C}{}}^{\text{Cu}^{2+}} + \underbrace{4HN_3}_{50\times1.5} \longleftrightarrow [\text{Cu}(\text{NH}_3)_4]^{2+} \\ & [\text{Cu}^{2+}] = \frac{[\text{Cu}(\text{NH}_3)_4]^{2+}}{[\text{NH}_3]^4 \times k_f} = \frac{\underbrace{50\times0.1}{100}}{(0.55)^4 \times 5.88 \times 10^{13}} = 9.3 \times 10^{-15} \text{ M} \\ & \text{E}_{\text{cell}} = 1.1 - \frac{0.0591}{2} \log \left(\frac{0.1}{9.3 \times 10^{-15}}\right) = 0.715 \text{ V} \end{split}$$

Thus, the e.m.f. of cell decreases.

Comprehension-II

Molar conductivity of ions are given as product of charge on ions to their ionic mobilities and Faraday constant $\lambda_{A^{n+}} = n\mu_{A^{n+}}F$ (here μ is the ionic mobility of A^{n+}). For electrolytes say A_xB_y , molar conductivity is given by $\lambda_{m(A_xB_v)} = x n \mu_{A^{n+}} F + y m \lambda_{A^{m-}} F .$

ions	ionic mobility	
K⁺	7.616 × 10 ⁻⁴	
Ca ⁺²	12.33 × 10 ⁻⁴	5
Br⁻	8.09 × 10 ⁻⁴	
SO ₄ ⁻²	16.58 × 10 ⁻⁴	121
The equivalent eer	ductors of CoSO at infinite dilutio	

- 1. The equivalent conductance of CaSO₄ at infinite dilution is
 - (2) 28.51 × 10⁻⁴ (1) 279 (3) 31.82 (4) 306

Sol. Answer (1)

Equivalent conductance of $CaSO_4$ is the sum of ionic conductance of Ca^{2+} & SO_4^{2-} Aedical III Aakash Educati

$$\begin{split} \Lambda^{\infty}_{\text{CaSO}_{4}} &= \Lambda^{\infty}_{\text{Ca}^{2+}} + \lambda^{\infty}_{\text{SO}_{4}^{2-}} \\ \Lambda^{\infty}_{\text{Ca}^{2+}} &= \left(\mu_{\text{Ca}^{2+}}\right) \text{ F} \\ \Lambda^{\infty}_{\text{SO}_{4}^{2-}} &= \left(\mu_{\text{SO}_{4}^{2-}}\right) \text{ F} \\ \mu_{\text{Ca}^{2+}} &\& \mu_{\text{SO}_{4}^{2+}} \text{ are ionic mobilities} \end{split}$$

$$\Lambda_{CaSO_4}^{\infty}$$
 = F {12.33 + 16.58} × 10⁻⁴

 $\Lambda^{\infty}_{\text{CaSO}_4} = 96500 \times 10^{-4} \times 28.91 = 278.98 \approx 279$

 \therefore Equivalent conductance of CaSO₄ is 279.

2. If degree of dissociation of CaSO₄ solution is 10% then equivalent conductance of CaSO₄ is

(1) 27.9 (2)
$$2.851 \times 10^{-4}$$
 (3) 3.182×10^{-4} (4) 30.6

Sol. Answer (1)

We know that

$$\alpha = \frac{\Lambda_{\rm C}}{\Lambda^{\infty}}$$

$$\Rightarrow (0.1) = \frac{\Lambda_{\rm C}}{(279)}$$
$$\Lambda_{\rm C} = 279 \times (0.1) = 27.9$$

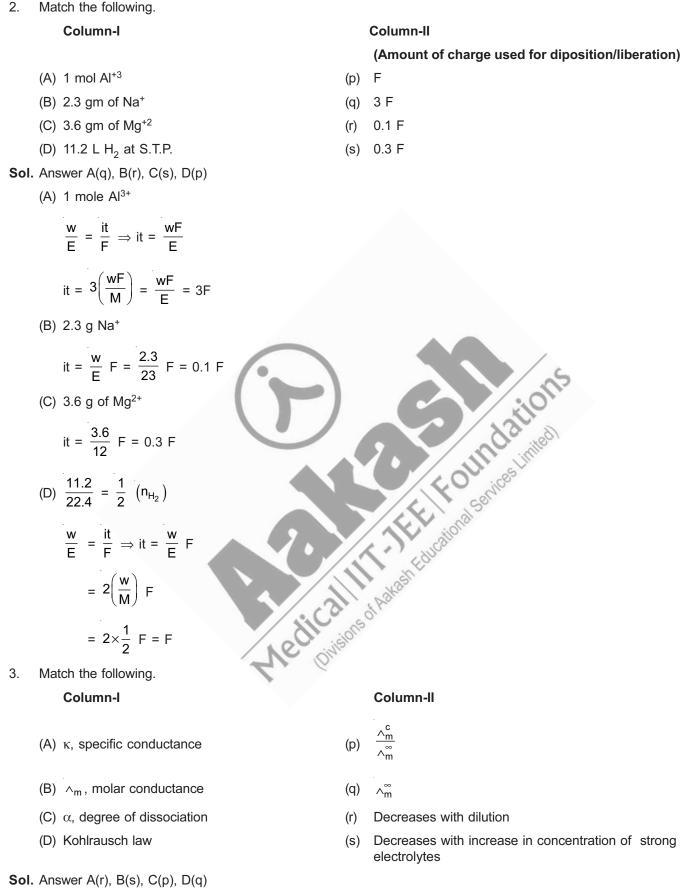
 \Rightarrow Equivalent conductance = 27.9

Comprehension-III

Given below are a set of half-cell reactions (in acidic medium) alongwith their E° (in volt) values.

	$l_2 + 2e^- \longrightarrow 2l^-$	$E^{\circ} = 0.54$		
	$Cl_2 + 2e^- \longrightarrow 2Cl^-$	E°=1.36		
	$Mn^{+3} + e^{-} \longrightarrow Mn^{+2}$	E°=1.50		
	$Fe^{+3} + e^{-} \longrightarrow Fe^{+2}$	E°=0.77		
	$O_2 + 4H^+ + 4e^- \longrightarrow 2H_2O$	E°=1.23		
1.	Among the following, identify the	correct statement		
	(1) Cl ⁻ is oxidised by O_2		(2) Fe ⁺² is oxidised by iodine	
	(3) I ⁻ is oxidised by chlorine		(4) Mn ⁺² is oxidised by chlorine	
So	I. Answer (3)	$\langle \cdot \rangle$		
2.	While Fe ⁺³ is stable, Mn ⁺³ is not	stable in acid solu	ition because	
	(1) O_2 oxidises Mn ⁺² to Mn ⁺³		(2) O_2 oxidises both Mn ⁺² to Mn ⁺³ and Fe ⁺² to Fe ⁺³	
	(3) Fe ⁺³ oxidises H_2O to O_2		(4) Mn^{+3} oxidises H_2O to O_{2O}	
Sol. Answer (4)				
3.	The strongest reducing agent in	aqueous solution is	LOTices	
	(1) ⊢ (2) ((3) Mn ⁺² (4) Fe ⁺²	
So	 3. The strongest reducing agent in aqueous solution is (1) ⊢ (2) C⊢ (3) Mn⁺² (4) Fe⁺² Sol. Answer (1) 			

SECTION - D


		Matrix-Match Type Questions	
1.	Match the following.	L'ar off	
	Column-I	Column-II	
	Complex (with coordination	number Maximum molar conductivity (S cm ² mol ⁻¹)	
	of Co ³⁺ as equal to six)		
	(A) CoCl ₃ .6NH ₃	(p) 97	
	(B) CoCl ₃ .5NH ₃	(q) 0	
	(C) CoCl ₃ .4NH ₃	(r) 404	
	(D) CoCl ₃ .3NH ₃	(s) 229	
So	I. Answer A(r), B(s), C(p), D(q)		
	[Co(NH ₃) ₆] Cl ₃ will give maxir	um number of ions(4) because of which conductivity is maxim	านท

m *i.e.* 404.

In $[Co(NH_3)_3Cl_3]$ no ions are given.

Hence molar conductivity is zero.

 $[Co(NH_3)_5CI]CI_2 \& [Co(NH_3)_4CI_2] CI$ forms 3 & 2 ions.

(A) Specific conductance decreases with dilution

(B) Molar conductance decreases with increase in concentration of electrolyte

(C)
$$\infty = \frac{\Lambda_m}{\Lambda_m^{\infty}}$$
 and decreases with dilution

- (D) Resistance $\propto \frac{I}{A}$ and decreases with dilution
- 4. Match the following.

Column-I

- (A) Calomel electrode
- (B) $Zn-Cd(C_1) |CdCl_2| Zn-Cd(C_2)$
- (C) Quinhydrone electrode
- (D) $Pt|H_2(1 \text{ atm})|H^+(C_1)||H^+(C_2)|H_2(1 \text{ atm})|Pt$
- Sol. Answer A(q), B(r), C(s), D(p)
- 5. Match the following.

Column-I

(Electrolysis)

- (A) Aqueous solution of NaCl using inert electrodes
- (B) Very dilute aqueous solution of NaCl using mercury cathode
- (C) CuSO₄ using copper electrodes
- (D) 50% H₂SO₄ solution
- Sol. Answer A(q), B(r), C(p), D(s)

Column-II

- (p) Electrolyte concentration cell
- (q) Metal-insoluble anion half cell
- (r) Electrode concentration cell
- (s) Redox half cell

Column-II (Observation)

- (p) Metal loss at anode
- (q) Chlorine gas evolved at anode
- (r) Oxygen gas evolved at anode(s) A compound with peroxide bond is formed

SECTION - E

Assertion-Reason Type Questions

 STATEMENT-1 : The molar conductivity of strong electrolyte decreases with increase in concentration. and

STATEMENT-2 : At high concentration, migration of ion is slow.

Sol. Answer (1)

Molar conductance is given by the following expression

$$\mu = (\mathsf{K} \times \mathsf{V}) = \frac{\mathsf{K} \times 1000}{\mathsf{c}}$$

Here 'c' is the concentration

More is the concentration lesser is the molar conductance

Hence, both statements are correct and statement-2 is the correct explanation of statement-1.

2. STATEMENT-1 : Electrolysis of molten $PbBr_2$ using platinum electrodes produces Br_2 at anode.

and

STATEMENT-2 : Br₂ is obtained in gaseous state at room temperature.

Sol. Answer (3)

 $PbBr_2 \rightarrow Pb^{2+} + 2Br^-$

At cathode :

 $\mathrm{Pb^{2+}} + \mathrm{2e^-} \to \mathrm{Pb}$

At anode :

 $2\text{Br}^-
ightarrow \text{Br}_2$ + 2e^-

 Br_{2} obtained in liquid state at room temperature.

:. Statement-1 is correct and statement-2 is false.

3. STATEMENT-1 : For the concentration cell, $Zn(s) |Zn^{+2}(aq)| |Zn^{+2}(aq)| |Zn$ for spontaneous cell reaction $C_1 < C_2$.

and

STATEMENT-2 : For concentration cell, $E_{cell} = \frac{RT}{nF} \log_e \frac{C_2}{C_1}$ for spontaneous reaction $E_{cell} = +ve \Rightarrow C_2 > C_1$.

Sol. Answer (1)

The given cell is $\begin{aligned} &Zn|Zn^{2+}(C_1) ||Zn^{2+} (C_2)|Zn \\ &Zn(s) \to Zn^{2+} + 2e^- \\ &E_{Zn/Zn^{2+}} = E_{Zn/Zn^{2+}}^o - \frac{0.0591}{2} \log (C_1) \\ &E_{Zn^{2+}/Zn} = E_{Zn^{2+}/Zn} - \frac{0.0591}{2} \log \left(\frac{1}{C_2}\right) \\ &\therefore E = (E_{Zn/Zn^{2+}}^o + E_{Zn^{2+}/Zn}^o) - \frac{0.0591}{2} \log \left(\frac{C_1}{C_2}\right) \\ &\therefore EMF \text{ of cell} \\ &E = -\frac{0.0591}{2} \log \left(\frac{C_1}{C_2}\right) \\ &\log \left(\frac{C_1}{C_2}\right) \\ &\log \left(\frac{C_1}{C_2}\right) < 0 \text{ for spontaneity} \end{aligned}$

$$\log\left(\frac{C_1}{C_2}\right) < \log 1$$

- \therefore C₁ < C₂.
- :. Statement-1 and statements-2 is correct and it is also the correct explanation.
- 4. STATEMENT-1 : A saturated solution of KCl is used to make salt bridge in concentration cells. and

STATEMENT-2 : Mobility of $\mathsf{K}^{\scriptscriptstyle +}$ and $\mathsf{CI}^{\scriptscriptstyle -}$ are nearly same.

Sol. Answer (1)

Mobilities of ions involved in salt bridge is same which is used in concentration cells.

 STATEMENT-1 : The molar conductance of weak electrolyte at infinite dilution is equal to sum of molar conductances of cations and anions.

and

STATEMENT-2 : Kohlrausch's law is applicable for strong electrolytes.

Sol. Answer (2)

 $\mu_{AB}^{\infty} = \mu_{A^+}^{\infty} + \mu_{B^-}^{\infty}$

Kohlraush law is applicable for weak electrolyte and not for strong electrolyte.

STATEMENT-1 : When a copper wire is placed in a solution of AgNO₃, the solution acquires blue colour.
 and

STATEMENT-2 : E_{RP}^{o} of Cu⁺²/Cu is lesser than $E_{Ag^+/Ag}^{o}$

Sol. Answer (1)

 $Cu + AgNO_3 \rightarrow Cu^{2+} + Ag$

 E^o for reaction is positive because $E^o_{Cu^{2+}/Cu} < E^o_{Ag^+/Ag}$

7. STATEMENT-1 : $\Delta G^{\circ} = -nFE^{\circ}$.

and

```
STATEMENT-2 : E° should be positive for a spontaneous reaction.
```

Sol. Answer (2)

 $\Delta G^{\circ} = - nFE^{\circ}$

But ΔG^o does not decide the spontaneity only ΔG decides the spontaneity of reaction.

- ... Both statements are correct but statement-2 is not the correct explanation.
- STATEMENT-1 : One coulomb of electric charge deposits the weight that is equal to electrochemical equivalent of substance.

and

STATEMENT-2 : One faraday deposits one mole of substance.

Sol. Answer (3)

One faraday deposits one equivalent of substance.

 STATEMENT-1 : If an aqueous solution of NaCl is electrolysed, the product obtained at the cathode is H₂ gas and not Na.

and

STATEMENT-2 : Gases are liberated faster than metals.

Sol. Answer (3)

NaCl = Na⁺ + Cl[−]

 $H_2O \implies H^+ + OH^-$

Among cations, hydrogen has higher standard electrode potential and among anions chlorine has low standard electrode potential. Thus, at cathode preferentially H_2 gas is evolved, and at anode Cl_2 gas is evolved.

10. STATEMENT-1 : $H_2 + O_2$ fuel cell gives a constant voltage throughout its life.

and

STATEMENT-2 : In this fuel cell, H_2 reacts with OH⁻ ions, yet the overall concentration of OH⁻ ions does not change.

Sol. Answer (1)

In H₂ + O₂ fuel cell, **Anode** : $2H_2(g) + 4OH^-(aq) \rightarrow 4H_2O(\ell) + 4e^-$ **Cathode** : $O_2(g) + 2H_2O(\ell) + 4e^- \rightarrow 4OH^-(aq)$ OH⁻ consumed is reformed, so [OH⁻] does not change. Hence, fuel-cell gives constant voltage throughout its life.

SECTION - F

Integer Answer Type Questions

48.8

0.115

1. The half cell potentials of a half cell $|A^{(x+n)+}, A^{x+}|$ Pt were found to be as follows:

% of reduced form24.4Half cell potential (V)0.101Determine the value of 'n'.

Sol. Answer (2)

 $A^{(x+n)+} + ne^- \rightarrow A^{x+}$

$$0.101 = \mathsf{E}_{\mathsf{RP}}^{\circ} + \frac{0.059}{n} \log \left(\frac{75.6}{24.4} \right)$$
$$0.115 = \mathsf{E}_{\mathsf{RP}}^{\circ} + \frac{0.059}{n} \log \left(\frac{51.2}{48.8} \right) \quad \Rightarrow n \approx 2$$

- 2. The standard reduction potential of $E_{Bi^{3+}/Bi}^{o}$ and $E_{Cu^{2+}/Cu}^{o}$ are 0.226 V and 0.344 V respectively. A mixture of salts of Bi and Cu at unit concentration each is electrolysed at 25°C. At what value of $-\log[Cu^{2+}]$ does Bismuth starts to deposit during electrolysis?
- Sol. Answer (4)

The passage of current would initially deposit Cu^{2+} till $E_{Cu^{2+}/Cu}$ becomes 0.266 V because then only Bi³⁺ will be deposited.

Thus,
$$E_{Cu^{2+}/Cu} = E_{Cu^{2+}/Cu}^{\circ} + \frac{0.059}{2} \log[Cu^{2+}]$$

 $0.266 = 0.344 + \frac{0.059}{2} \log(Cu^{2+}) \Rightarrow -\log[Cu^{2+}] = 4$

3. A cell is containing two H electrodes. The negative electrode is in contact with a solution of pH = 6. EMF of the cell is 0.118 V at 25°C. Calculate pH at positive electrode.

Sol. Answer (4)

$$E_{cell} = 0.059 \log \frac{[H^+] cathode}{[H^+] anode} = 0.059 [pH anode - pH cathode]$$

0.118 = 0.059 [6 - pH]
pH = 4

- How many faradays of electricity is required to deposit 2 mol copper from CuSO₄ solution? 4.
- Sol. Answer (4)

Equivalent weight of copper = 63.5/2

Hence, 2 mol require 4 F electricity.

5. A current of 3 ampere has to be passed through a solution of AgNO₃ solution to coat a metal surface of 80 cm² with 0.005 mm thick layer for a duration of approximately (y)³ seconds. What is the value of y?

(Density of Ag is 10.5 g/cm³)

Sol. Answer (5)

Volume of surface = 80×0.0005

$$= 0.04 \text{ cm}^2$$

 $W_{Aq} = 0.04 \times 10.5 = 0.42$ gram

$$=\frac{\text{Elt}}{96500}$$

$$\Rightarrow 0.42 = \frac{108 \times 3 \times t}{96500} \Rightarrow t = 125.09 \text{ s} = y^{3}$$
$$\Rightarrow y \approx 5$$

The cost at 5 paise per kWh of operating an electric motor for 8 hours, which takes 15 ampere at 110 V, is 6. 11y paise. Calculate y.

Sol. Answer (6)

=

Total energy consumed for 8 hours = iVt

Total cost = $5 \times 13.2 = 66$ paise

=

Water is reduced to H₂ at 298 K according to the given reaction 7.

$$H_2O(\ell) + e^- \longrightarrow \frac{1}{2}H_2(g) + OH^-(aq)$$

The reduction potential of cell at standard state is -x V, then value of [100x] is, where [] represents greatest integer function Use, $\frac{2.303RT}{2}$ = 0.059 and $\mathrm{K_w}$ = 10^{-14} at 298 K

Sol. Answer (82)

1.
$$H_2O(I) \implies H^+(aq) + OH^-(aq),$$
 $\Delta G_1^\circ = -RT InK_w$

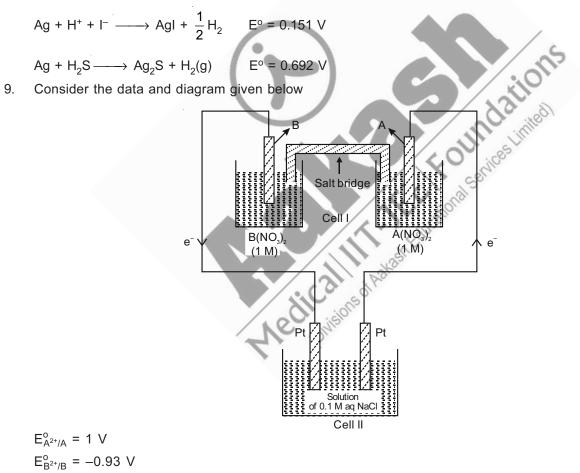
2. H⁺ + e⁻ →
$$\frac{1}{2}$$
 H₂(g), $\Delta G_2^{\circ} = 0$
3. H₂O(I) → $\frac{1}{2}$ H₂(g) + OH⁻(aq), $\Delta G_3^{\circ} = -nFE_{H_2O/H_2}^{\circ}$
 $\Delta G_3^{\circ} = \Delta G_1^{\circ} + \Delta G_2^{\circ}$
 $-nFE_{H_2O/H_2}^{\circ} = -RT lnK_w$
 $E_{H_2O/H_2}^{\circ} = \frac{0.059}{1} log(10^{-14}) = -0.826$
 $\therefore 100x \approx 82.6$, [100x] = 82

8. Consider the following standard reduction potentials

Electrode

	Liectione	
(a)	$AgCI(s) + e^{-} \longrightarrow Ag + CI^{-}$	0.222 V
(b)	$AgBr(s) + e^{-} \longrightarrow Ag + Br^{-}$	0.03 V
(c)	$AgI(s) + e^{-} \longrightarrow Ag + I^{-}$	–0.15 V
(d)	$Ag_2S(s) + 2e^- \longrightarrow 2Ag + S^{2-}$	–0.69 V
(e)	$AgNO_3(aq) + e^- \longrightarrow Ag + NO_3^-$	+0.8 V

On the basis of this information, how many acids from the following can produce $H_2(g)$ on reaction with Ag(s)?


Potential E^o

HCI, HBr, HI, H₂S, HNO₃

[Assume H₂S completely dissociates into 2H⁺ and S²⁻]

Sol. Answer (2)

If E_{cell}^{o} is positive then H_2 is produced.

 $1 \text{ F} = 96500 \text{ C mol}^{-1}$ T = 298 K

Molar conductivity of 0.1 M aq. NaCl solution is found 1 S cm² mol⁻¹ when measured in a conductivity cell that has cell constant 0.1 cm^{-1} . A constant current from cell I (electrochemical cell) flows to cell II (electrolytic cell) for 10^5 second. (Assume that potential of cell I is maintained constant during the operation).

If the mass of H_2 liberated at cathode in cell II is a \times 10^{-b} kg (scientific notation), then the value of a^2 + b^2 is

Sol. Answer (40) V = E.M.F of electrochemical cell $E.M.F = E^{\circ} = 1.93 V$ $\mathsf{R} = \frac{1}{\kappa} \left(\frac{\ell}{\mathsf{A}} \right)$ $1 = \frac{1000 \times K}{0.1}$, $K = 10^{-4} \text{ S cm}^{-1}$ $R = \frac{1}{10^{-4}} \times 0.1 = 1000 \Omega$ $i = \frac{1.93}{1000}$ $Q = i \times t = \frac{1.93 \times 10^5}{1000} = 193 C$ $Q(in Farad) = \frac{193}{96500} = 0.002$ Mol of $H_2 = 0.001$ Mass of $H_2 = 0.002 \text{ g} = 2 \times 10^{-3} \text{ g} = 2 \times 10^{-6} \text{ kg}$ a = 2, b = 6 \Rightarrow a² + b² = 40 10. Consider the concentration cell Pt | $H_2(1 \text{ atm})$, $H^+(a_{H^+} = x)||H^+(a_{H^+} = 0.1)$, $H_2(1 \text{ atm})|$ Pt E at 298 K is 0.118 V. Calculate the pH of the unknown solution Sol. Answer (3) $E = -\frac{0.059}{1}\log \frac{x}{0.1}$ $0.118 = 0.059 \log \frac{0.1}{2}$

$$\log\left(\frac{0.1}{x}\right) = 2 \implies \frac{0.1}{x} = 10^2$$
$$x = 10^{-3}$$

pH = 3

- 11. How many statements are correct?
 - (i) At equilibrium, E_{cell} = zero is always satisfied.
 - (ii) Electrical conductance of metal depends on valence electrons per atom.
 - (iii) Electrical conductivity of graphite is more than diamond.
 - (iv) In conductivity cell, alternating current is used.
 - (v) Product of electrolysis is also dependant on the metal used as electrode.
 - (vi) As concentration increases, molar conductivity of weak electrolyte decreases more sharply than strong electrolyte.

Sol. Answer (6)

At equilibrium, $E_{cell} = 0$

$$E^{o} = \frac{0.059}{n} \log k$$

12. Experiment I: Molten solution of LiH is electrolysed by using inert electrode. If 1 F charge is given then x and y g of metal or gas is deposited / liberated at respective electrode.

Experiment II : Aqueous solution of NaNO3 is electrolysed by using inert electrodes. If 1 F charge is given then p and z g of metal or gas is deposited/liberated at respective electrode. Find the value of x + y + p + z if molar mass of Li, H₂, O₂, Na and N₂ are 7 g/mol, 2 g/mol, 32 g/mol, 23 g/mol and 28 g/mol respectively.

Sol. Answer (17)

```
Anode H^- \longrightarrow \frac{1}{2}H_2 + 1e^-
For experiment I :
                                     Mass of H_2 = 1 g
                                     Cathode Li^+ + 1e^- \longrightarrow Li(s)
                                     Mass of Li = 7 g
                                                                                        Houndations
100al Services Limited
                                     Anode H_2O \longrightarrow \frac{1}{2}O_2 + 2H^+ + 2e
For experiment II :
                                     Mass of O_2 = \frac{1}{4} \times 32 = 8 \text{ g}
                                     Cathode H_2O \longrightarrow \frac{1}{2}H_2 + OH^- + 1e^-
                                     Mass of H<sub>2</sub> = \frac{1}{2} \times 2 = 1 g
```

- 13. A saturated solution in PQ(s) and PR(s) has conductivity of 290 × 10⁻¹⁰ Scm⁻¹. If K_{SP} of PQ(s) and PR(s) are 3 × 10⁻¹⁴ and 1 × 10⁻¹⁴ respectively. The limiting molar conductivity of P⁺, Q⁻ and R⁻ are 50 Scm² mol⁻¹, x Scm² mol⁻¹ and 200 Scm² mol⁻¹ respectively. The value of x is dical here
- Sol. Answer (60)

$$PQ(s) = P^{+}(aq) + Q^{+}(aq)$$

$$PR = P^{+}(aq) + R^{+}(aq)$$

$$S_{1}+S_{2} = 3$$

$$S_{1} = 3[S_{2}]$$

$$S_{2} = \sqrt{\frac{10^{-14}}{4}} = 5 \times 10^{-8} M$$

$$S_{1} = 15 \times 10^{-8} M \qquad (S_{1} + S_{2}) = 20$$

$$K = \sum c_{i}\lambda_{i}$$

Aakash Educational Services Limited - Regd. Office : Aakash Tower, 8, Pusa Road, New Delhi-110005 Ph.011-47623456

× 10⁻⁸ M

$$10 \times 10^{-10} = \frac{20 \times 10^{-8} \times 50}{1000} + \frac{x \times 15 \times 10^{-8}}{1000} + \frac{200 \times 5 \times 10^{-8}}{1000}$$

290 = 100 + 1.5x + 100

90 = 1.5x

 $x = 60 \text{ S cm}^2 \text{ mol}^{-1}$

14. Consider the following cell

 $Ag(s) | AgCl(s) | KCl(1M) | H^{+}(1M) | H_{2}(g) (1 atm) | Pt(s)$

e.m.f of cell is decreased by how many of the factors given below?

- (i) On increasing concentration of H⁺ in cathodic compartment
- (ii) On decreasing concentration of H⁺ in cathodic compartment
- (iii) On increasing concentration of Cl⁻ in anodic compartment
- (iv) On decreasing concentration of (Cl⁻) in anodic compartment
- (v) On increasing Ag(s) in anodic compartment
- Redicalities of Adress Foundational Services Linited The Services of Adress Foundational Services Linited The Serv (vi) On increasing pressure of H₂ in cathodic compartment

Sol. Answer (3)

Factor (ii), (iv) and (vi)

 $\mathsf{E}_{\mathsf{cell}} = \mathsf{E}_{\mathsf{Ag}^+/\mathsf{Ag}}^{\mathsf{o}} + 0.059 \log \left(\frac{\mathsf{CI}^- \times \mathsf{H}^+}{\mathsf{K}_{\mathsf{sp}} \times \mathsf{pH}_{\mathsf{sp}}} \right)$