

COORDINATION CHEMISTRY

Addition compound simple salt combining with fixed proportion of mass) (two or m

(two or more simple salt combining with	tixed proportion of mass)				
Double salt * Loose their idenity in aqueous solution eg. KCl.MgCl ₂ .6H ₂ O carnalite salt K ₂ SO ₄ .Al ₂ (SO ₄) ₃ .24H ₂ O potash alum	C-ordination compound * Retain their indenity in aqeous solution eg. K₄[Fe(CN) ₆] Potassium hexacynidoferrate (II)				
REPRESENTATION OF COMPLEX COMPOUND					
	ligand				
co-ordination sphere $$	n±← charge on coordination sphere				
central metal ion7	number of ligand				
Co-ordination number = Number of electron pair	r accepted by central metal ion.				
LIGAND	* Calssification on the basis of electron				
Chemical species which can donates electron pair.	donating and accepting tandency Classsical ligand : H ₂ O, NH ₂ etc.				
Calssification of the basis of denticity	Non-calssical ligand : CN ⁻ , NO ⁺ , NO, CO,				
(Denticity : = Number of electron pair donated by central metal atom or ion)	PPh ₃ etc $\Rightarrow \pi$ -donor ligand $\Rightarrow C_2H_4, C_2H_2$ etc.				
Monodentate (denticity = 1) :	BONDING IN COORDINATION COMPOUND Effective atomic number & Sidgwick rule :				
eg. H $^{\!\!-},$ X $^{\!\!-},$ Py, $N_2^{},$ $N^{3-}_{},$ $N_2^{}H_4^{}$ etc.	Total number of electron present on central metal atom or ion after accepting the electron pair from				
Bidentate (denticity = 2) :	ligand.				
eg. en, pn, bn, ox^{2-} , $acac^{-1}$, gly^{-1} , dmg^{-1}	$K_4 [Fe(CN)_6]$				
Polydentate (denticity = >2):	EAN = 26 - (+2) + 6(2) = 36				
eg. dien, imda ⁻² , trien, nta ³⁻ , EDTA ⁴⁻	\Rightarrow If EAIN value is equal to atomic number of inode gas then complex follow sidgwick rule of EAN.				
Ambidentate : Ligand which have more than one donor site but at the time of donation only atom can donate electron pair.	⇒ In carbonyl complex if EAN value = Atomic number of Noble gas then carbonyl complex is more stable.				
eg. : $(CN^{-}, NC^{-}), (NO_{2}^{-}, ONO^{-}), (SCN^{-}, NCS^{-}), (OCN^{-}, NCO^{-}), (S_{2}O_{3}^{-2}, SO_{2}S^{2}^{-})$	eg. [V(CO) ₆] [Cr(CO) ₆] [Mn(CO) ₆] act as oxidising stable act as reducing agent complex agent				
Flexidentate ligand : Show more than one type of denticity.	⇒ Brown ring complex 37 Sodium nitroprusside 36 Zeise's Salt 84				
eg. : CO_3^{2-} , SO_4^{2-} , CH_3COO^-	$ \begin{array}{ccc} \operatorname{Mn}_2(\operatorname{CO})_{10} & 36 \\ \operatorname{Fe}_2(\operatorname{CO})_9 & 36 \end{array} $				
Note : Bidentate and Polydentate are also called	Co ₂ (CO) ₈ 36				

chelating ligand.

WERNER'S CO-ORDINATION THEORY :

- \Rightarrow Metals possesses two types of valencies PV & SV.
- \Rightarrow PV is non-directional, represent by (doted line) is satisfied by negative charge species.
- \Rightarrow SV is directional, represent by _____ (solid line) and satisfied by negative or neutral species.
- \Rightarrow Now a days primary valency and secondary valency is consider as oxidation & co-ordination number respectively.

VBT :

- \Rightarrow Metal provoide hybridised vacant orbital for the acceptence of lone pair from ligand.
- \Rightarrow Hybridisation, shape and magnatic behaviour of complex depends upon the nature of ligand.
- \Rightarrow Strong field ligand pair up the unpaired e⁻ of central metal atom where as weak field ligand does not.
- \Rightarrow If unpaired e^- present in complex then complex is paramagnatic. If unpaired e^- is absent then diamagnatic. eg. CN4

 $[NiCl_4]^{2-}$

∫sp³

CO CO CO CO

xx xx xx xx

- \rightarrow Diamagnatic
- \rightarrow Outer Orbital complex

STRUCTURAL ISOMERISM

- (i) **Ionisation isomerism :** Counter ion as a ligand & ligand act as counter ion. **[Co (H**₂O)₅Cl] SO₄ \leftrightarrow [Co(H₂O)₅SO₄] Cl
- (ii) **Hydrate isomersim :** Number of water molecule inside & outside the co-ordinate sphere are different.

 $[Cr(H_2O)_{f_1}]Cl_3 \leftrightarrow [Cr(H_2O)_5Cl]Cl_2.H_2O \leftrightarrow [Cr(H_2O)_4Cl_2]Cl.2H_2O$

iv) Linkage : Exihibit when ambidentate ligand is present in co-ordination sphere.

 $[\mathrm{NC} \rightarrow \mathrm{Ag} \leftarrow \mathrm{CN}]^{-} \leftrightarrow [\mathrm{NC} \rightarrow \mathrm{Ag} \leftarrow \mathrm{NC}]^{-} \leftrightarrow [\mathrm{CN} \rightarrow \mathrm{Ag} \leftarrow \mathrm{NC}]^{-}$

(iv) **Co-ordination isomerism :** Exihibit when both are cationic & anionic complex $[Pt(NH_3)_4]$ $[PtCl_4] \leftrightarrow [Pt(NH_3)_3Cl]$ $[Pt(NH_3)Cl_3]$

STEREO ISOMERISM

STEREO ISOMERISM IN CO-ORDINATION COMPOUND

CN-4				
Square planar complex does not show optical	*	Tetrahedral complex $[Mabcd]^{n^{\pm}}$, $[M(AB)cd]^{n^{\pm}}$		
isomerism. Square planar complex show optical activity if the co-ordinated ligand having chiral center. Square planar complex	÷	[M(AB)(CD)] ^{n[±]} show optical isomerism Tetrahdral complex does not show geometrical isomerism.		
$[Ma_2b_2]^{n^{\pm}}$, $[Ma_2bc]^{n^{\pm}}$, $[Mabcd]^{n^{\pm}}$, $[M(AB)cd]^{n^{\pm}}$, $[M(AB)(CD)]^{n^{\pm}}$ show geometrical isomerism				
$[Mabcd]^{n^{\pm}}$ form two cis and one trans.				

CN-6

NUMBER OF POSSIBLE ISOMERS FOR SPECIFIC COMPLEXES

Formula	Number of stereoisomers	Pairs of Enantiomers	Number of G.I.
Ma ₄ b ₂	2	0	2
Ma ₄ bc	2	0	2
Ma ₃ b ₃	2	0	2
Ma ₃ b ₂ c	3	0	3
Ma ₃ bcd	5	1	4
$Ma_2b_2c_2$	6	1	5
Ma_2b_2cd	8	2	6
Ma ₂ bcde	15	6	9
Mabcdef	30	15	15
M(AA)(BC)de	10	5	5
M(AB)(AB)cd	11	5	6
M(AB)(CD)ef	20	10	10
M(AB) ₃	4	2	2

Note: Uppercase letters represent chelating ligands and lowercase letters represent monodentate ligands.