CHEMISTRY

Day-1 : Assignment

Chapter(s): Some Basic Concepts Of Chemistry, Structure Of Atom

Some Basic Concepts Of Chemistry

% hydrogen in water and hydrogen peroxide is 11.2 and 5.94 respectively. This data illustrates

- 1) Law of constant proportions
- 2) Law of multiple proportions
- 3) Law of conservation of mass
- 4) Law of equivalent proportions
- 12g of element A combines with 16g of element B to form a compound X. In another experiment 12g of element A combines with 32g of element B to form a compound Y. This illustrates
 - 1) Law of conservation of mass
 - 2) Law of constant proportion

3) Law of multiple proportions4) Law of reciprocal proportion

3. Given the numbers 786, 0.786 and 0.0786cm. The numbers of significant figures for the three numbers respectively are

1) 3, 4 and 5 2) 3, 3 and 3

- 3) 3, 3 and 4 4) 3, 4 and 4
- 4. The number of significant figures in 8.256×10^{-3} is

1) 1 2) 3

- 3) 4 4) infinite
- 5 H₂O₂ acts as both oxidising as well as reducing agent its product is H₂O, when act as oxidising agent and its product is O₂ when act as of reducing agent. The strength of

'10\P means one liter of H₂O₂ solution on

decomposition at S.T.P. condition liberate 10 liters of oxygen gas $(H_2O \rightarrow H_2O + \frac{1}{2}O_2)$ 15 gm MnO4)2

sample containing inert impurity is completely reacting with 100 ml of '11.2 V' H₂O₂, then what will be the % purity of Ba (MnO₄)₂ in the sample ? (Atomic mass Ba = 137, Mn = 55) (1) 5% (2) 10% (3)50% (4) none

- 6 1.2 gm of carbon is burnt completely in oxygen (limited supply) to produce CO and CO_2 . This mixture of gases is treated with solid 1₂0₅ (to know the amount of CO produced), the liberated iodine required 120 ml of 0.1 M hypo solution for complete titration. The % of carbon converted into CO is : (1) 60%(2) 100% (3) 50% (4) 30%
- Nitrogen (N), phosphorus (P) and 7 Potassium (K) are the main fertilizers. nutrients in plant According to industry an convention, the numbers on the label refer to the mass % of N, P_2O_5 and K_2O_2 in that order calculate the N : P : K ratio of a 30 : 10 : 10, fertilizer in terms of moles of each element and express it as x : y : 1. (1) 10 : 0.67 : 1

 $\begin{array}{c} (1) & 10 & : & 0.87 & : & 1 \\ (2) & 20 & : & 0.37 & : & 1 \\ (3) 0.37 & : & 10 & : & 1 \\ (4) & 5 & : & 2 & : & 1 \end{array}$

2 In what ratio should a 15% solution 14 8 In the reaction of acetic acid be mixed with a 3% $Na_2S_2O_3 + 4C1_2 + 5H_2O \longrightarrow Na_2SO_4$ solution of the acid to prepare a 10% + H₂SO₄ + 8HCI solution(all percentages are the equivalent weight of Na₂ S₂ O₃ mass/mass percentages) : will be (1) 7 : 3(2)5:7 (1) M/4 (13) M/8 (3) 7 : 5 (4) 7 : 10(3) M/1 (4) W/2(M= molecular weight of $Na_2S_2O_3$) 9 105 ml of pure water at 4°C saturated Which of the following equations is 15 with NH₃ gas yielded a solution of a balanced onedensity 0.9 g/ml and containing 30% $5Bi03 + 22H^+ + 2M^{n2} \rightarrow 5Bi^{03+} +$ (1) NH by mass. Find the valume of 7H₂0 + 2MnO⁻₄ resulting NH₃ solution. (2) 5BiO3 + 14H⁺ + Mn2⁺ -> 5Bi⁰³⁺ + (1) 66.67 ml (2) 166.67 ml $7H_20 + 2MnO4_4$ (3) 133.33 ml (4) 266.67 ml (3) $26103 + 4H^+ + 2M^{n_{2+}} --> 6Bi^{3+} +$ $2H_20 + MnO4_4$ 10 The equivalent mass of H₃BO₃ (M = (4) 6BiO3 + 12H⁺ + 2Mn²⁺ 6Bi³⁺ + Molar mass of H₃BO₃) in its reaction $6H_20 + 2MnO4_4^$ with NaOH to from Na₂B₄O₇ is equal to – The following equations are 16 (2) $\frac{M}{2}$ balanced atomwise and chargewise. (1) M $Cr_2O_7^{2-} + 8H_7 + 2H_2O_2 \longrightarrow$ (i) $2Cr^{3} + 7H_{2}O + 2O_{2}$ M (3) $Cr_2O_7^{2-} + 8H_7 + 5H_2O_2 \longrightarrow$ (ii) x gram of pure As₂S₃ is completely 11 $2Cr^{3+} + 9H_20 + 4O_2$ oxidised to respective highest $Cr_2O_7^{2-} + 8H + + 7H_2O_2 \longrightarrow$ (iii) oxidation states by 50 ml of 0.1 M $2Cr + 11H_20 + 50_2$ hot acidified KMnO₄ then x mass of The precise equationleguations As₂S₃ taken is : (Molar mass of As₂S₃ representing the oxidation of H₂O₂ = 246) is/are (1) 22.4 g (2) 43.92 q (1) (i) only (2) (ii) only (3) 64.23 g (4) None (3) (iii) only (4) all the three 12 The number of moles of ferrous 17 An excess of NaOH was added to oxalate oxidised by one mole of 100 mL of a ferric chloride solution. KMn0₄ is This caused the precipitation of $\frac{5}{2}$ (2) $\frac{2}{5}$ 1,425 g of Fe(OH)₃. Calculate the (1) normality of the ferric chloride (4) $\frac{5}{3}$ solution (3) $\frac{3}{5}$ (1) 0.20 N (2) 0.50 N 13 How many moles of KMnO4 are (3) 0.25 N (4) 0.40 N needed a mixture of 1 mole of each 18 In the reaction $CrO_5 + H_2SO_4 \rightarrow$ FeSO4 & FeC2O4 in acidic medium $Cr_2(SO_4)_3 + H_2O + O_2$ one mole of CrO_5 will liberate how many moles of O₂ (1) $\frac{4}{5}$ (1) 5/2(2) 5/4(4) none of these (3) 9/2(3) $\frac{3}{4}$

19	0.4g of a polybasic acid H _n A (all the		how many mole of I ₂ could be reduced
	hydrogens are acidic) requires 0.5g		by the resulting solution if it is
	of NaOH for complete neutralization.		further oxidised to V0 ²⁺ ions ?
	The number of replaceable hydrogen		[Assume no change in state of
	atoms in the acid and the molecular		-
			Zn ² +ions] (V = 51, 0 = 16, I = 127) : (1) 0.11 male of 1 (2) 0.22 male of 1
	weight of 'A' would be : (Molecular		(1) 0.11 mole of 1_2 (2) 0.22 mole of 1_2
	weight of the acid is 96 gms.)		(3) 0.055 mole of 1_2 (4) 0.44 mole of 12
	(1) 1, 95 (2)2,94		
	(3) 3, 93 (4) 4,92	25	0.70 g of mixture (NH ₄) ₂ SO ₄ was
20	A solution of Na ₂ S ₂ O ₃ is standardized		boiled with 100 mL of 0.2 N Na0H
	iodimetrically against 0.1262 g of		solution till all the NH ₃ (g) evolved and
	Mr% This process requires 45 mL of		get dissolved in solution it self. The
	the Na ₂ S_2O_3 solution. What is the		remaining solution was diluted to 250
	strength of the Na ₂ S ₂ O ₃ ?		mL. 25 mL of this solution was
	(1) 0.2M (2) 0.1 M		neutralized using 10 mL of a 0.1 N
	(3) 0.05M (4)0.1 N		H_2SO_4 solution. The percentage
			purity of the $(NH_4)_2$ SO sample is
21	25.0 g of FeSO ₄ .7H ₂ O was dissolved		(1) 94.3 (2) 50.8
۱ ک	in water containing dilute H ₂ SO ₄ ,		(1) 94.5 (2) 50.8 (3) 47.4 (4) 79.8
		24	
	and the volume was made up to 1.0	26	A mixed solution of potassium
	L. 25.0 mL of this solution required 20		hydroxide and sodium carbonate
	mL of an N/10 KMnO ₄ solution for		required 15 mL. of an N/20 HCI
	complete oxidation. The percentage		solution when titrated with
	of FeSO ₄ $7H_2O$ in the acid solution		phenolphthalein as an indicator. But
	is		the same amount of the solution
	(1) 78% (2)98%		when titrated with methyl orange as
	(3) 89% (4) 79%		an indicator required 25 mL of the
22	1.0 mol of Fe reacts completely with		same acid. The amount of KOH
	0.65 mol of O_2 to give a mixture of		present in the solution is
	only FeO and Fe_2O_3 . The mole ratio of		(1) 0.014g (2) 0.14g
	ferrous oxide to ferric oxide is		(3) 0.028g (4) 1,4 g
	(1) 2 : 2(2) 4:2 (3)1:2 (4)2: 7	27	The percentage of copper in a copper
23	25 mL of a solution containing HCf		(II) salt can be determined by using a
	and H_2SO_4 required 10 mL of a 1 N		thiosulphate titration. 0.305 gm of a
	NaOH solution for neutralization. 20		copper (II) salt was dissolved in water
	mL of the same acid mixture on being		and added to, an excess of potassium
	treated with an excess of AgNO ₃ gives		iodide solution liberating iodine
	0.1425 g of AgCf. The normality of		according to the following equation
	the HC and the normality of the		
	H_2SO_4 are respectively		2Cu² (aq) + 4I⁻ (aq) 2Cul(s) +
	(1) 0.40 N and 0.05 N		$I_2(aq)$
	(2) 0.05 N and 0.25 N		The iodine liberated required 24.5cm ³
	(3) 0.50 N and 0.25 N		of a 0.100 mole dm ⁻³ solution of
	(4) 0.40 N and 0.5 N		sodium thiosulphate
			-
ว ⊿	If 10 am of V_{2} is dissolved in acid		$2S_2O_3^{2-}(aq) + I_2(aq) \longrightarrow 2I^-(aq) + S_4O_6^{2-}$
24	If 10 gm of V_2O_5 is dissolved in acid		(aq)
	and is reduced to V ²⁺ by zinc metal,	l	

	a i an i an i na i na i na i an i an i	4		******
the percent	tage of copper, by	mass in		Fe^{3+}
the copper	tage of copper, by (II) salt is. [Atom 63.5] (2) 51.0 (4) 25.5 $\rightarrow 3Cu(NO_3)_2 + 2No^2$	nic mass		Cu^{2+}
of copper =	63.5]			1) F
(1) 64.2	(2) 51.0		31. V	•
(3) 48.4	(4) 25.5			arra
$20. \ 3Cu + \delta H NO_3$	$\rightarrow 3Cu(NO_3)_2 + 2NO_3$	$0 + 4H_2O$		οχία
1) <i>Cu</i> is oxid	tatement for the ized	above		1) N
1) <i>Cu</i> is oxid 2) <i>HNO</i> ₃ is r 3) <i>Cu</i> is redu 4) <i>Cu</i> acts as				2) H
3) <i>Cu</i> is redu	iced			3) So
4) <i>Cu</i> acts as	s reducting agen		-	4) I
8	uimolar mixture		32. F	MnO₄
6	te and ferrous o			he o
will lequile	e x mole of <i>KMn</i> (•		bala
oxidation,	ium for complet x is	5		MnC
1) 0.5 mole	2) 0.9 mo	le	•	1) 2
3) 1.2 mole	4) 4.5 mo	le	•	2)16
30. The more p	ositive the value	-		3)5 4) 2
the tenden	cy of the species	-	(·	+) ∠
electrode p	sing the standar otential of redox			
couples giv	en below, find o			
which of th	ne following is th			
strongest o	xidizing agent?	E^0		
values:		l		
will require acidic med oxidation, 1) 0.5 mole 3) 1.2 mole 30. The more por the tenden reduced. Ur electrode p couples giv which of th strongest o values:				
1) 2 2) 3	3) 2 4) 3	5) 3	6) 4	7)
11) 2 12) 4	13) 1 14) 2	2 15) 2	16) 1	1
21) 3 22) 2	23) 2 24)	1 25) 1	26) 1	2
31) 4 32) 1				
HINTS A	ND SOLUTION	NS	% pur	ity o
HINTS A 5 $N = \frac{11.2}{5.6}$ Milli equivalents of 2×1			10	
5 1 5.6			10	H ₃
Milli equiv	alents Ba(MnO ₄) ₂ r	eacted \Rightarrow		So
$\Rightarrow 2 \times 10^{-10}$	of H_2O_2 reacted 100 $\Rightarrow 200 \mathrm{me}$	$a^n \rightarrow$		
\rightarrow 2^{\wedge}	$\rightarrow 200 \text{ mm}$	~y →	11	~ •

- $/Fe^{2+} = +0.77; I_2(g)/I^- = +0.54;$ $^{2+}/Cu = +0.34; Ag^+/Ag = +0.80V$ 2) $I_2(g)$ 3) Cu^{2+} 4) Ag^+ Fe^{3+}
- ch of the following have been anged in decreasing order of dation number of sulphur? $Na_2S_4O_6 > H_2S_2O_7 > Na_2S_2O_3 > S_8$ $H_2SO_4 > SO_2 > H_2S > H_2S_2O_8$
 - $SO_2^{2+} > SO_4^{2-} > SO_3^{-2} > HSO_4^{-1}$
 - $H_2SO_5 > H_2SO_3 > SCl_2 > H_2S$
- the redox reaction, $D_4^- + C_2 O_4^{2-} + H^+ \longrightarrow Mn^{2+} + CO_2 + H_2O$ correct coefficeint for the anced reaction are

MnO_4^-	$C_2 O_4^{2-}$	H^{+}
(1) 2	5	16
(2)16	5	2
(3)5	16	2
(4) 2	6	5

1) 2	2) 3	3) 2	4) 3	5) 3	6) 4	7) 1	8) 3	9) 2	10) 1
11) 2	12) 4	13) 1	14) 2	15) 2	16) 1	17) 4	18) 4	19) 3	20) 4
21) 3	22) 2	23) 2	24) 1	25) 1	26) 1	27) 2	28) 3	29) 2	30) 4
31) 4	32) 1								

0.2 eqⁿ Moles of Ba(MnO₄)₂ $\Rightarrow \frac{0.2}{10} = 0.02$ wt. of Ba(MnO₄)₂ = 0.02×375 . *.*..

of Ba(MnO₄)₂ = $\frac{375 \times 0.02}{15} \times 100 = 50\%$

BO3 is a mono basic acid $\frac{M}{1}$ = equivalent mass

11. $5As_2S_3 + 28KMnO_4 + H^+ \longrightarrow 10H_3AsO_4 +$ $28Mn^{2+} + SO_4^{2-}$ mmoles of $KMn0_4 = 50 \ge 0.1 = 5$ 28 mmoles of KMnO₄ \longrightarrow 5 Moles of As₂S₃

1 mmoles of KMnO₄ \longrightarrow 5/28 moles of As_2S_3 Mass of As₂S₃ = x = 246 x $\frac{5}{28}$ g = 43.92 g 12 Equivalents of FeC_2O_4 = equivalents of KMnO₄ x (mole) x $3 = 1 \times 5$ $x = \frac{5}{2}$ 13. Equivalents of $KMnO_4$ = equivalent of $FeSO_4$ + equivalent of FeC₂O₄ $x \times 5 = 1 \times 1 + 1 \times 3$ $x = \frac{4}{5}$ mole $Na_2 \xrightarrow{^{+2}}{s_2O_3} \longrightarrow Na_2 \xrightarrow{^{+6}}{s_2O_4} O_4$ 14 see the total change in oxidation number $= 4 \times 2 = 8$ $E_{Na_2S_2O_3} = \frac{mol. wt.}{V f} = \frac{M}{8}$ *.*.. <u>Reduction</u> $\operatorname{BiO}_{3^{-}} + \operatorname{Mn}^{2_{+}} \longrightarrow \operatorname{Bi}^{3_{+}} + \operatorname{MnO}_{4}^{-}$ 15 Oxidation (i) $2e + 6H^+ + BiO_3^- \longrightarrow Bi^{3+} + 3H_2O$ (ii) $4H_2O + Mn^{2+} \longrightarrow MnO_4^- + 8H^+ + 5e^-$ (i) \times 5 + (ii) \times 2 we get 14 H⁺ + 5 BiO₃⁻ + 5Mn²⁺ \longrightarrow 5Bi³⁺ + $2MnO_{4}^{-} + 7H_{2}O$ is the correct balanced reaction. 17. $3 \text{ NaOH} + \text{FeCl}_3 \longrightarrow \text{Fe(OH)}_3 + 3 \text{NaCl}$ m.e. of NaOH = me.e of $Fe(OH)_3$ 100 Ν х = $\frac{W}{E} \times 1000 \left(E_{Fe(OH)_3} = \frac{mol. wt.}{3} \right)$ $N = \frac{1.425 \times 10 \times 3}{107} = 0.3999 = 0.4 N$ 18 The balance reaction is $4CrO_5 + 2H_2SO_4 \longrightarrow 2 Cr_2 (SO_4)_3 + 2H_2O + O_2$ 1 mole CrO5 can liberate only $\frac{1}{4}$ mole O₂ *.*..

5

19 Eq of Acid = eq of base $n \times \frac{0.4}{96} = \frac{0.5}{40}$ $n = \frac{1}{80} \times \frac{96}{0.4} = \frac{96}{32} = 3$ wt of A = 96 - 3 = 93. $\operatorname{Na}_{2} \overset{2_{+}}{\operatorname{S}}_{2} \operatorname{O}_{3} + \operatorname{K} \overset{+5}{\operatorname{B}} \operatorname{rO}_{3} \longrightarrow \operatorname{Br}^{-} + \operatorname{Na}_{2} \overset{+2.5}{\operatorname{S}}_{4} \operatorname{O}_{6}$ 20 v.f = 1 $v_{.} = 6$ by m.e. of $Na_2S_2O_3 = m.e.$ of KBrO₃ molarity of $Na_2S_2O_3 = 0.1 M$ 21 M.e. of FeSO₄ \cdot 7H₂O in 25 ml = m.e. of $KMnO_4$ used = 2 m.e. M.e. of FeSO₄ \cdot 7H₂O in 1000 ml = 80 m.e. mass of FeSO₄ \cdot 7H₂O in solution = $\frac{80}{1} \times 2787 \times \frac{1}{1000} = 22.24 \,\mathrm{gm}$ % of FeSO₄ \cdot 7H₂O = $\frac{22.24}{25}$ × $100 = 88.96\ 89\%$ 22. Let moles of FeO and Fe₂O₃ in the mixture is a and b respectively, then by POAC we get following two equation. $a + 3b = 0.65 \times 2 = 1.3$...(i) a + 2b = 1...(ii) by solving (i) & (ii) we get a : b = 4 : 323. Let normality of HC ℓ is N₁ and H₂SO₄ is N₂. \therefore M.e. of HC ℓ + M.e. of H₂SO₄ = M.e of NaOH $25 \times N_1 + 25 \times N_2 = 10 \times 1$... (1) $N_1 + N_2 = 0.4 \dots (1)$ BY POAC Moles of $C\ell$ = moles of AgC ℓ $\frac{20 \times N_1}{1000} = \frac{0.1435}{143.05} = 10^{-3}$ $N_1 = 0.05 N$ $N_2 = 0.35 N$ 24. $6e^{-} + 10H^{+} + V_2O_5 \longrightarrow 2V2^{+} + 5H_2O_5$ $\begin{array}{c} Zn \longrightarrow Zn^{2+} + 2e^{-} 3 \times 3 \\ V_2O_5 + 3 \overline{Zn} + 10 \ H^+ \longrightarrow 3 \overline{Zn^{2+}} + \end{array}$ $2V^{2+} + 5H_2O$... (1) Now $H_2O + V^{2+} \longrightarrow VO^{2+} + 2H^+ + 2e^{-1}$

 $2e^{-} + I_2 \longrightarrow 2r^{-}$ $V^{2+}+I_2+H_2O \longrightarrow 21^-+VO^{2+}+2H^+$ so we have 12 moles of V_2O_5 will reduce 2 moles of iodine so $\left(\frac{10}{102+80}\right) \times 2$ moles of will be reduced by given amount of $V_2O_5 = 0.11$ moles of 1_2 M.e. of $NH_3 = 10$ m.e. of NH3 = 10m.mole of $(NH_4)_2SO_4 = 5$ wt. of $(NH_4)_2 SO_4 = 5$ wt. of (NH4)2 SO4 = $\frac{5}{1000} \times 132 = 0.66$ gm % of $(NH_4)_2 SO_4 = \frac{0.66}{0.7} \times 100 =$ 94.28 % $KOH + Na_2aO_3$ a M.e. b.M.e. $a + \frac{b}{2} = 15 \times \frac{1}{20}$ 2a + b = 1.5... (i)(in presence of phenolphthalein) $a + b = 25 \times \frac{1}{20} = 1.25$... (ii) (in presence of Methyl orange) by solving (i) & (ii) a = 0.25 m.e mass of K0H = $\frac{0.25}{1000} \times 56 = 0.014$ gm From given reactions mmoles of hypo = mmoles of iodine $\times 2$

25.

26

27.

 $= \text{ mmoles of } \text{Cu}^{2+} \text{ ions}$ = 24.5 × 0.1 mmoles So mass of copper = 24.5 × 0.1 × 10-3 × 63.5 gm So % of copper = $\frac{24.5 \times 0.1 \times 10^{-3} \times 63.5}{0.305} \times 100\% \square 51.0\%$

6