

PHYSICAL CHEMISTRY

1. Some Basic Concepts of Chemistry

- Molecular Mass = $\frac{\text{Average relative mass of one molecule}}{\frac{1}{12} \times \text{mass of } C 12 \text{ atom}}$
- \triangleright Molecular mass = 2 × VD
- $Eq. wt. of metal = \frac{wt. of metal}{wt. of H_2 displaced} \times 1.008$
- $Eq. wt. of metal = \frac{wt. of metal}{wt. of oxygen combined} \times 8$

$$= \frac{\text{wt. of metal}}{\text{wt. of chlorine combined}} \times 35.5$$

- ➤ Molecular formula = (Empirical formula)_n
- ightharpoonup 1 amu = 1.66 × 10⁻²⁴ g (amu atomic mass unit)
- ightharpoonup n = $\frac{W}{M}$

where w is weight of substance and M is molar mass of substance, n is number of moles

- > Average atomic mass

$$= \frac{(RA \times At.mass)_1 + (RA \times At.mass)_2}{RA(1) + RA(2)}$$

where RA is relative abundance.

- ightharpoonup 1 gram atom = N_A atoms = 6.023 × 10²³ atoms
 - = Gram atomic mass
- \triangleright 1 gram molecule = N_{Δ} molecules
 - = 6.023×10^{23} molecules = Gram molecular mass
- Mass % of an element
 - $= \frac{\text{Mass of that element in the compound} \times 100}{\text{Molar mass of the compound}}$
- The value of n can be obtained by the following relationship

$$n = \frac{Molecular \ mass}{Empirical \ formula \ mass}$$

- Normality (N)
 - $= \frac{\text{Gram equivalent of the solute}}{\text{Volume of the solution in litre}} = \frac{W \times 1000}{\text{GEM} \times \text{V in mL}},$ where GEM is gram equivalent mass of solute.

- Equivalent mass of a salt

$$= \frac{\text{Formula mass}}{\text{Total +ve or } - \text{ve charge}}$$

> Equivalent mass of an oxidising agent

$$= \frac{\text{Molecular mass}}{\text{Total change in oxidation number}}$$

- ➤ Molarity × GMM (solute) = Normality × GEM (solute), where GMM is gram molecular mass.
- Normality and molarity equations :

$$N_1 V_1 = N_2 V_2$$

$$M_1V_1 = M_2V_2$$
 (For dilution)

$$\frac{M_1 V_1}{n_1} = \frac{M_2 V_2}{n_2}$$

(For reaction where n_1 and n_2 are no. of moles of the two reactants in a balanced chemical equation)

$$M_3(V_1 + V_2) = M_1V_1 + M_2V_2$$

(Final molarity on mixing two non-reacting solutions)

- Number of millimoles = Molarity × V in mL
- Number of equivalents = Normality × V in L
- > Number of milliequivalents
 - = Normality \times V in mL
- Number of gram atoms or mole of atoms

$$= \frac{\text{Mass of element in gram}}{\text{Gram atomic mass}}$$

1 mole = mass of 6.023 × 10²³ particles (atoms/molecules)

- ➤ 1 mole atoms = Gram atomic mass (or 1 g atom) = 6.023×10^{23} atoms
- 1 mole molecules = Gram molecular mass (or 1 g molecule) = 6.023 × 10²³ molecules
 = 22.4 L at STP
- 1 mole ionic compound = Gram formula mass = 6.023×10^{23} formula units

- No. of gram equivalents
 - $= \frac{\text{Weight of the solute(in g)}}{\text{Equivalent weight of the solute}}$
- No. of milliequivalents
 - $= \frac{\text{Weight of the solute(in g)}}{\text{Equivalent weight of solute}} \times 1000$
- Strength of a solution
 - $= \frac{\text{Wt. of the solute (in g)}}{\text{Vol. of solution (in litres)}}$
- Parts per million (ppm) of substance A (ppm)

$$= \frac{\text{Mass of A}}{\text{Mass of solution}} \times 10^6 \quad \text{or}$$

$$= \frac{\text{Vol. of A}}{\text{Vol. of solution}} \times 10^6$$

Molality (m) =
$$\frac{M}{\rho - \frac{MM_2}{1000}}$$
 or

Molarity (M) =
$$\frac{m\rho}{\left(1 + \frac{mM_2}{1000}\right)}$$

where M_2 = molecular mass of solute, ρ = density

$$M = \frac{n_1}{(n_1 M_1 + n_2 M_2)/\rho}$$

Here, n_1M_1 = mass of solute, n_2M_2 = mass of solvent i.e., $n_1M_1 + n_2M_2$ = mass of solution.