Unit-4 Straight Lines

SUCCESS TIP: Few Weak Chapters does not mean whole subject is Weak

- If a point P moves such that the sum of its distances from two perpendicular lines is less than or equal to 2 and S be the region consisting of all such points P, then area of the region S is
 - (a) 4 sq. units
- (b) 8 sq. units
- (c) 6 sq. units
- (d) none of these
- 2. If $\frac{2}{|\underline{1}|\underline{9}} + \frac{2}{|\underline{3}|\underline{7}} + \frac{1}{|\underline{5}|\underline{5}} = \frac{2^m}{|\underline{n}|}$, then orthocentre of the

triangle having sides x - y + 1 = 0, x + y + 3 = 0 and 2x + 5y - 2 = 0 is

- (a) (2m 2n, m n)
- (b) (2m-2n, n-m)
- (c) (2m n, n + m)
- (d) none of these
- 3. The equation of the line bisecting the obtuse angle between y x = 2 and 2y + x = 5 is

(a)
$$\frac{y-x-2}{\sqrt{2}} = \frac{2y-x-5}{\sqrt{5}}$$
 (b) $\frac{y-x-2}{\sqrt{2}} = \frac{-2y-x+5}{\sqrt{5}}$

(c)
$$\frac{y-x-2}{\sqrt{2}} = \frac{2y+x-5}{\sqrt{5}}$$
 (d) none of these

- **4.** The point on the line 3x 2y = 1 which is closest to the origin is
 - (a) (3/13, -2/13)
- (b) (5/11, 2/11)
- (c) (3/5, 2/5)
- (d) none of these
- 5. The co-ordinates of the orthocentre of the triangle formed by the lines $2x^2 2y^2 + 3xy + 3x + y + 1 = 0$ and 3x + 2y + 1 = 0 are
 - (a) (4/5, 3/5)
- (b) (-3/5, -1/5)
- (c) (1/5, -4/5)
- (d) (2/5, 1/5)
- 6. The value of a for which the image of the point (a, a-1) w.r.t. the line mirror 3x + y = 6a is the point (a2 + 1, a) is
 - (a) 0
- (b) 1
- (c) 2
- (d) none of these
- 7. If a, b, c are in A.P. then the family of lines ax + by + c = 0
 - (a) passes through a fixed point
 - (b) cuts equal intercepts on both the axes
 - (c) forms a triangle with the axes with area

$$=\frac{1}{2}|a+c-2b|$$

(d) none of these

8. A vertex of an equilateral triangle is at (2, 3), and the equation of the opposite side is x + y = 2, then the equation of the other two sides are

(a)
$$y = (2 + \sqrt{3})(x-2); (y-3 = 2\sqrt{3})(x-2)$$

(b)
$$y-3=(2+\sqrt{3})(x-2); y-3=(2-\sqrt{3})(x-2)$$

(c)
$$y+3=(2-\sqrt{3})(x-2)$$
; $y-3=(2-\sqrt{3})(x+2)$

- (d) none of these
- 9. A line through A (-5, -4) meets the lines x + 3y + 2 = 0, 2x + y + 4 = 0 and x - y - 5 = 0 at B, C and D respectively.

If
$$\left(\frac{15}{AB}\right)^2 + \left(\frac{10}{AC}\right)^2 = \left(\frac{6}{AD}\right)^2$$
, then the equation of the

line is

- (a) 2x + 3y + 22 = 0
- (b) 5x 4y + 7 = 0
- (c) 3x 2y + 3 = 0
- (d) none of these
- **10.** Let A(h, k), B(1, 1) and C(2, 1) be the vertices of a right angled triangle with AC as its hypotenuse. If the area of triangle is 1, then the set of the values of k is given by
 - (a) {0, 2}
- (b) {-1, 3}
- (c) $\{-3, -2\}$
- (d) {1, 3}
- 11. Let PS be the median of the triangle with vertices P(2, 2), Q(6, -1) and R(7, 3). The equation of the line passing through (1, -1) and parallel to PS is
 - (a) 2x 9y 7 = 0
- (b) 2x 9y 11 = 0
- (c) 2x + 9y 11 = 0
- (d) 2x + 9y + 7 = 0
- 12. The pair of straight lines $x^2 2pxy y^2 = 0$ and

 $x^2-2qxy-y^2=0$ be such that each pair bisects the angle between the other pair, then

- (a) pq = -1
- (b) p = q
- (c) p = -q
- (d) pq = 1
- 13. If one of the lines given by $6x^2 xy + 4cy^2 = 0$ is 3x + 4y = 0, then c equals
 - (a) 1
- (b) -1
- (c) 3
- (d) -3
- 14. If the sum of the slopes of the lines given by $x^2 2cxy 7y^2 = 0$ is four times their product, then c has the value
 - (a) 1
- (b) -1
- (c) 2
- (d) -2

- If one of the lines $my^2 + (1 m^2) xy mx^2 = 0$ is a bisector of the angle between the lines xy = 0, then m is
 - (a) -2
- (b) 1
- (c) 2
- (d) 1/2
- 16. Angle between the pair of straight lines $y^{2} \sin^{2} \theta - xy \sin^{2} \theta + x^{2} (\cos^{2} \theta - 1) = 0$ is
 - (a) $\pi/3$
- (b) $\pi/4$
- (c) $2\pi/3$
- (d) none of these
- 17. The centroid of the triangled formed by the pair of lines $12x^2 - 20xy + 7y^2 = 0$ and the line 2x - 3y + 4 = 0 is
 - (a) (-7/3, -7/3)
- (b) (-8/3, -8/3)
- (c) (8/3, 8/3)
- (d) (4/3, 4/3)
- 18. The image of the pair of lines represented by $ax^2 + 2hxy + by^2 = 0$ by the line mirror y = 0 is
 - (a) $ax^2 2hxy + by^2 = 0$ (b) $ax^2 2hxy by^2 = 0$

 - (c) $bx^2 2hxy + ay^2 = 0$ (d) $bx^2 + 2hxy + ay^2 = 0$
- **19.** The equation $x^2 + kxy + y^2 5x 7y + 6 = 0$ represents a pair of straight lines, then k is
 - (a) 5/3
- (b) 10/3
- (c) 3/2
- (d) 3/10
- 20. The gradient of one of the lines $ax^2 + 2hxy + by^2 = 0$ is twice that of the other, then
 - (a) $h^2 = ab$
- (b) h = a + b
- (c) $8h^2 = 9ab$
- (d) $9h^2 = 8ab$
- 21. The angle between the straight lines, $x^2 y^2 2x + 1 = 0$, is
 - (a) 75°
- (b) 36°
- (c) 60°
- (d) 90°
- 22. Area of the triangle formed by the lines

$$y^2 - 9xy + 18x^2 = 0$$
 and $y = a$ is

- (a) 27/4
- (b) 0
- (c) a/3
- (d) $a^2/12$
- The value of k such that $3x^2 11xy + 10y^2 7x + 13y + k = 0$ may represent a pair of straight lines is
 - (a) 3
- (b) 4
- (c) 6
- (d) 8

- **24.** The equation of image of pair of lines y = |x-1| in y-axis is
 - (a) $x^2 + y^2 + 2x + 1 = 0$
- (b) $x^2 y^2 + 2x 1 = 0$
- (c) $x^2 y^2 + 2x + 1 = 0$
- (d) none of these
- **25.** Let P = (-1, 0), Q = (0, 0) and $R = (3, 3\sqrt{3})$ be three points.

The equation of the bisector of angle PQR is

(a)
$$x + \frac{\sqrt{3}}{2}y = 0$$

(a)
$$x + \frac{\sqrt{3}}{2}y = 0$$
 (b) $\frac{\sqrt{3}}{2}x + y = 0$

(c)
$$x + \sqrt{3}y = 0$$

(d)
$$\sqrt{3}x + y = 0$$

- 26. If a, b, c are variables such that 21a + 40b + 56c = 0 then the family of lines ax + by + c = 0 passes through
 - (a) (7/14, 9/4)
- (b) (4/7, 3/8)
- (c) (3/8, 5/7)
- (d)(2,3)
- 27. A man starts from the point P(-3, 4) and reaches point Q(0, 1) touching x-axis at R(α , 0) such that PR + RQ is minimum, then α =
 - (a) 3/5
- (b) -3/5
- (c) 3
- (d) none of these
- The line $\ell_1 x + m_1 y + n = 0$ and $\ell_2 x + m_2 y + n = 0$ will cut 28. the co-ordinate axes at concyclic points if
 - (a) $\ell_1 m_1 = \ell_2 m_2$
- (b) $\ell_1 m_2 = \ell_2 m_1$
- (c) $\ell_1 \ell_2 = m_1 m_2$
- (d) $\ell_1 \ell_2 m_1 m_2 = n^2$
- The equation of the line perpendicular to 2x+6y+5=0 and having the length of x-intercept equal to 3 units can be
 - (a) y = 3x + 5
- (b) 2y = 6x + 1
- (c) y = 3x + 9
- (d) none of these
- The distance of the point (1, 2) from the line x + y = 030. measured parallel to the line 3x - y = 2 is
 - (a) 10
- (b) $\frac{3\sqrt{10}}{4}$
- (c) $\frac{3\sqrt{2}}{8}$