	SURFACE	CHE	MISTRY EXERCISE-I
1 . 2 .	 The size of the colloidal particles is in between: (1) 10⁻⁷ - 10⁻⁹ cm. (2) 10⁻⁹ - 10⁻¹¹ cm. (3) 10⁻⁵ - 10⁻⁷ cm. (4) 10⁻² - 10⁻³ cm. Peptization is a process of : (1) Precipitating the colloidal particles (2) Purifying the colloidal sol (3) Dispersing the precipitate into colloidal sol (4) Movement of colloidal particles towards the oppositely charged electrodes Colloids are purified by the colloidal by the colloida	10.	When freshly precipitated $Fe(OH)_3$ is boiled with water in the presence of few drops of dil HCl, a hydrated ferric hydroxide sol is obtained. This method is termed as :-(1) Dialysis(2) Peptization(3) Ultrafiltration(4) Electrodispersion
3. 4.	 (1) Brownian motion (2) Precipitation (3) Dialysis (4) Filtration Flocculation value is expressed in terms of: (1) Millimole per litre 	12.	A colloidal mixture of Fe(OH) ₃ in water is :- (1) A hydrophilic colloid (2) A hydrophobic colloid (3) An emulsion (4) None
5.	 (2) Mol per litre (3) Gram per litre (4) Mol per millilitre Which is kinetic phenomenon? (1) Brownian motion (2) Tyndall effect (3) Both (1) and (2) (4) None of these 	13.	 A catalyst is a substance which : (1) Increases the equilibrium concentration of the product (2) Change the equilibrium constant of the reaction (3) Shortens the time to reach equilibrium (4) Supplies energy to the reaction Which of the following statement is more correct: (1) Catalyst only accelerates the rate of a chemical reaction (2) A catalyst can rate of a chemical
6. 7.	The heats of adsorption in physisorption lie in the range (in KJ mol ⁻¹) :(1) 40-400(2) 40-100(3) 20-40(4) 1-10According to Langmuir adsorption isotherm, the	15.	 (2) A catalyst can relate the rate of a chemical reaction (3) A catalyst does not affect the speed of a reaction (4) A catalyst alters the speed of a reaction Efficiency of the catalyst depends on its :- (1) Molecular weight (2) Number of free valencies
8.	 amount of gas adsorbed at very high pressure : (1) Reaches a constant limiting value (2) Goes on increasing with pressure (3) Goes on decreasing with pressure (4) Increases first and decreases later with pressure Which one of the following is an incorrect statement for physisorption : 	16.	 (2) Rumber of free valencies (3) Physical state (4) Amount used In a reversible reaction, a catalyst :- (1) Increases the rate of forward reaction only (2) Increases the rate of forward reaction to a greater extent that of the backward reaction (3) Increases the rate of forward reaction and
9.	 (1) It is a reversible process (2) It requires less heat of adsorption (3) It requires activation energy (4) It takes place at low temparature Lyophobic colloids are :- (1) Reversible (2) Irreversible 	17.	 (3) Increases the rate of forward reaction and decreases that of the backward reaction (4) alters the rate of forward and backward reaction equally Which is false for catalyst :- (1) A catalyst can initiate a reaction (2) It does not alter the position of equilibrium in a reversible reaction (3) A catalyst remains unchanged in quality and
	(2) Intevensione(3) Water loving(4) Solvent loving		composition at the end of reaction(4) Catalysts are sometimes very specific in respect of a reaction

18.	Shape selective catalysts are so called because	25.
	of : (1) The shares of the establish	
	(1) The snape of the catalysis	
	(2) The specificity of the catalysis	
	(3) The size of the poles of the catalysis which can	
	(1) Their use for only some selected reactions	26
19	(4) Then use for only some selected reactions Which gas will be adsorbed on a solid to greater	
17.	extent	
	(1) A gas having non polar molecule	
	(2) A gas having highest critical temperature (T)	27
	(3) A gas having lowest critical temperature.	
	(4) A gas having highest critical pressure	
20.	The nature of bonding forces in chemisorption	
	(1) purely physical such as Van Der Waal's forces	
	(2) purely chemical	
	(3) both chemical and physical simultaneously.	
	(4) none of these	
21.	The Tyndall effect associated with colloidal particles	28
	is due to	
	(1) presence of electrical charges	
	(2) scattering of light	
	(3) absorption of light	
	(4) reflection of light	29
22.	Which one of the following is not applicable to	
	chemisorption?	
	(1) Its heat of adsorption is high	
	(2) It takes place at high temperature	
	(3) It is reversible	
23	(4) It forms mono-molecular layers Milly is an example of	
23.	(1) emulsion (2) suspension	
	(3) form (4) sol	
21	Colloidal particles in a sol, can be cooquilated by	
2 7.	(1) heating	30
	(2) adding an electrolyte	

- (3) adding oppositely charged sol
- (4) any of the above methods

25. Given below are a few electrolytes, indicate which one among them will bring about the coagulation of a gold sol. quickest and in the least of molar concentration?

(2) MgSO₄

 $(4) K_4[Fe(CN)_6]$

6. The minimum concentration of an electrolyte required to cause coagulation of a sol is called (1) flocculation value (2) gold number (3) protective value (4) none of these

- **27.** Which one of following statements is not correct in respect of lyophilic sols?
 - (1) There is a considerable interaction between the dispersed phase and dispersion medium
 - (2) These are quite stable and are not easily coagulated
 - (3) They need stabilizing agent
 - (4) The particle are hydrated
- **28.** At the critical micelle concentration (CMC) the surfactant molecules
 - (1) decompose
 - (2) dissociate
 - (3) associate

(1) NaCl

 $(3) Al_2(SO_4)_3$

- (4) become completely soluble
- **29.** Although nitrogen does not adsorb on surface at room temperature, it adsorbs on surface at 83K. Which one of the following statements is correct -
 - (1) At 83K, there is formation of monomolecular layer
 - (2) At 83K, there is formation of multimolecular layer
 - (3) At 83K, nitrogen molecules are held by chemical bonds
 - (4) At 83K, nitrogen is adsobed as atoms.

30. The volume of a colloidal particle V_c , volume of a solute particle in a true solution V_t , the volume of suspension particle is V_s can be arranged (1) $V_c = V_t = V_s$ (2) $V_s < V_c < V_t$

-/	• C	• t	• S	$(-)$ \cdot	
(3)	$V_{\rm S} >$	$V_{\rm C}$ >	> V,	(4) $V_{c} > V_{s} > V_{t}$	

				ANSWER KEY			Exercise-I			
Que.	1	2	3	4	5	6	7	8	9	10
Ans.	3	3	3	1	1	3	1	3	2	2
Que.	11	12	13	14	15	16	17	18	19	20
Ans.	3	2	3	4	2	4	1	1	2	2
Que.	21	22	23	24	25	26	27	28	29	30
Ans.	2	3	1	4	3	1	3	3	2	3
2				•			•			

PREVIOUS YEARS' QUESTIONS

- Gold numbers of protective colloids A, B, C and D are 0.50, 0.01, 0.10 and 0.005 respectively. The correct order of their protective power is :-[AIEEE-2008]
 - (1) D < A < C < B(2) C < B < D < A(3) A < C < B < D(4) B < D < A < C
- Which of the following statements is incorrect regarding physissorptions ? [AIEEE-2009]
 (1) Under high pressure it results into result.
 - Under high pressure it results into multi molecular layer on adsorbent surface
 - (2) Enthalpy of adsorption ($\Delta H_{adsorption}$) is low and positive
 - (3) It occurs because of Van der Waal's forces
 - (4) More easily liquefiable gases are adsorbed readily
- - (1) Na₂SO₄
 - (2) CaCl₂
 - (3) $Al_2(SO_4)_3$
 - (4) NH_4Cl
- The correct statement(s) pertaining to the adsorption of a gas on a solid surface is (are) [IIT-2011]
 - (1) Adsorption is always exothermic
 - (2) Physisorption may transform into chemisorption at high temperature
 - (3) Physisorption increases with increasing temperature but chemisorption decreases with increasing temperature
 - (4) Chemisorption is more exothermic than physisorption, however it is very slow due to higher energy of activation
- 5. According to Freundlich adsorption isotherm, which of the following is correct ? [AIEEE-2012]
 - (1) $\frac{x}{m} \propto p^0$

(2)
$$\frac{\mathbf{x}}{\mathbf{m}} \propto \mathbf{p}^1$$

- (3) $\frac{x}{m} \propto p^{1/n}$
- (4) All the above are correct for different ranges of pressure

6. If x is the mass of the gas adsorbed on mass m of the absorbent at pressure p, Freundlich adsorpton isotherm gives a straight line on plotting :-

[AIEEE-2012 (Online)]

(1)
$$\frac{x}{m}$$
 vs p (2) log $\frac{x}{m}$ vs log p

(3)
$$\log \frac{x}{m}$$
 vs p (4) $\frac{x}{m}$ vs $\frac{1}{p}$

7. Fog is a colloidal solution of :-

8.

[AIEEE-2012 (Online)]

- (1) Gaseous particles dispersed in a liquid
 (2) Solid particles dispersed in a liquid
 (3) Liquid particles dispersed in gas
 (4) Solid particle dispersed in gas
 The coagulating power of electrolytes having ions

influence of an electric potential is called :

[JEE (MAIN) 2013 (Online)]

- (1) Electrophoresis(2) Cataphoresis(3) Electroosmosis(4) Sedimentation
- 10. Smoke is an example of :[JEE (MAIN) 2013 (Online)]
 - (1) Solid dispersed in solid
 - (2) Solid dispersed in gas
 - (3) Gas dispersed in solid
 - (4) Gas dispersed in liquid
- 11. For a linear plot of log(x/m) versus log p in a Freundlich adsorption isotherm, which of the following statements is correct ? (k and n are constants) [JEE (MAIN) 2016]
 (1) log (1/n) appears as the intercept
 (2) Both k and 1/n appear in the slope term
 (3)1/n appears as the intercept
 (4) Only 1/n appears as the slope
 12. Gold numbers of some colloids are :
 - Gelatin : 0.005 0.01, Gum Arabic : 0.15 - 0.25; Oleate : 0.04 - 1.0, Starch : 15 - 25. Which among these is a better protective colloid ?

	[JEE (MAIN) 2016 (Online)]
(1) Oleate	(2) Gelatin
(3) Gum-Arabic	(4) Starch

EXERCISE-II

- 13. A particular adsorption process has the following characteristics: (i) It arises due to van der Waals forces and (ii) it is reversible. Identify the correct statement that describes the above adsorption process :
 [JEE (MAIN) 2016 (Online)]
 - (1) Enthalpy of adsorption is greater than 100 kJ mol-1
 - (2) Energy of activation is low.
 - (3) Adsorption is monolayer
 - (4) Adsorption increases with increase in temperature.
- 14. For a linear plot of log(x/m) versus log p in a Freundlich adsorption isotherm, which of the following statements is correct ? (k and n are constants) [JEE (MAIN) 2016 (Offline)]
 - (1) $\log (1/n)$ appears as the intercept
 - (2) Both k and 1/n appear in the slope term
 - (3) 1/n appears as the intercept
 - (4) Only 1/n appears as the slope
- The Tyndall effect is observed only when following conditions are satisfied :- [JEE (MAIN) 2017]
 - (a) The diameter of the dispersed particles is much smaller than the wavelength of the ligh used.
 - (b) The diameter of the dispersed particle is not much smaller than the wavelength of the light used.
 - (c) The refractive indices of the dispersed phase and dispersion medium are almost similar in magnitude.
 - (d) The refractive indices of the dispersed phase and dispersion medium differ greatly in magnitude.
 - (1) (a) and (d) (2) (b) and (d)
 - (3) (a) and (c) (4) (b) and (c)

16. Among the following, correct statement is :

[JEE-Main (online)2017]

- (1) One would expect charcoal to adsorb chlorine more than hydrogen sulphide.
- (2) Brownian movement is more pronounced for smaller particles than for bigger-particles.
- (3) Hardy Schulze law states that bigger the size of the ions, the greater is its coagulating power
- (4) Sols of metal sulphides are lyophilic
- 17. Adsorption of a gas on a surface follows Freundlich

adsorption isotherm. Plot of $\text{log}\frac{x}{m}$ versus log p gives

a straight line with slope equal to 0.5, then :

[JEE-Main (online)2017]

 $(\frac{x}{m}$ is the mass of the gas adsorbed per gram of

adsorbent)

- (1) Adsorption is proportional to the square of pressure.
- (2) Adsorption is independent of pressure.
- (3) Adsorption is proportional to the pressure.
- (4) Adsorption is proportional to the square root of pressure.
- 18. Which one of the following is not a property of physical adsorption [JEE-Main (online)2018]
 (1) Unilayer adsorption occurs
 - (2) Greater the surface area, more the adsorption
 - (3) Lower the temperature, more the adsorption
 - (4) Higher the pressure, more the adsorption

PREVIOUS YEARS QUESTIONS				ANSWER KEY			Exercise-II			
Que.	1	2	3	4	5	6	7	8	9	10
Ans.	3	2	3	1,2,4	4	2	3	2	3	
Que.	11	12	13	14	15	16	17	18		•
Ans.	4	2	2	4	2	2	4	1		
4							•			