Chapter - 7

Anomalous behaviour of first member of p-Block Elements VSA QUESTIONS (1 - MARK QUESTIONS)

1. In group 15 elements, there is considerable increase in covalent radius from N to P but small increase from As to Bi. Why?

[Hint: Due to completely filled d- and / or f-orbitals in As, Sb and Bi.

2. The tendency to exhibit -3 oxidation state, decreases down the group in group 15 elements. Explain.

[Hint: Due to increase in size and decrease in electronegativity down the groups].

- 3. Maximum covalence of Nitrogen is '4' but the heavier elements of group 15 show covalence greater than '4'. Why?
- 4. Nitrogen exists as a diatomic molecule with a triple bond between the two atoms, whereas the heavier elements of the group do not exist as $\rm E_2$ at room temperature. Assign a reason.

[Hint: $p_{\pi} - p_{\pi}$ multiple bonds are formed by N due to its small size.]

- 5. The ionization enthalpies of group 15 elements are higher than those of corresponding members of group 14 and 16 elements. Assign the reason.
- 6. The boiling point of PH₃ is lesser than NH₃. Why?
- 7. NO₂ dimerises to form N₂O₄. Why?

[Hint: Due to presence of odd electron on N]

- 8. Draw the structure of N_2O_5 molecule.
- 9. How does ammonia solution react with Ag⁺ (aq)? Write the balanced chemical equation.
- 10. Why does NH₃ forms intermolecular hydrogen bonds whereas PH₃ does not?

[Hint: Due to strong electronegativity, small size of Nitrogen atom and presence of lone pair of electrons on N atom]

- 11. Write disproportionation reaction of H₃PO₃?
- 12. How does NH₃ acts as a complexing agent?

[Hint: Metal hydroxides are dissolved in excess of NH₄OH. Ammonia acts as a Lewis base].

13. Why HF is the weakest acid and HI is the strongest.

Hint: Ka: (HF) = 7×10^{-4} (HI) = 7×10^{11}

1

Intermolecular H-bonds in H-F and high bond dissociation enthalpy of H-F makes it weakest and weak bond in H-I makes it strogest.

14. Explain why halogens are strong oxidising agents.

[Hint: Ready acceptance of electron due to more negative eletron gain enthalpy.]

15. Why is Bi(V) a stronger oxidant than Sb(V)?

[Hint: +3 oxidation state is more stable than +5 oxidation state in Bi].

16. Why SF_4 is easily hydrolysed, whereas SF_6 is resistant to hydrolysis? [Hint: Water molecule can not attack 'S' atom due to steric hinderance and 'S' atom is also coordinately saturated in SF_6 molecule.]

- 17. Bond dissociation enthalpy of F₂ is less than that of Cl₂. Why?
- 18. Write the reaction of PCI₅ with heavy water.

 $[\mathbf{Hint}: \mathsf{PCI}_5 + \mathsf{D}_2\mathsf{O} \to \mathsf{POCI}_3 + \mathsf{2DCI}]$

- How many P O P bonds are there in cyclotrimetaphosphoric acid?
 [Hint: 3 bonds]
- 20. In group 16, the stability of +6 oxidation state decreases and that of +4 oxidation state increases down the group. Why?

[Hint: due to inert pair effect]

21. Why we can not prepare HBr by heating KBr with sulphuric acid.

[Hint : As HBr readily reduces H_2SO_4 forming Br_2]

- 24. Fluorine exhibit only –1 oxidation state whereas other halogens exhibit +ve oxidation states also. Explain.
- 25. Arrange the following oxoacids of chlorine in increasing order of acidic strength.

HOCI, HOCIO, HOCIO₃, HOCIO₃

- *26. The majority of known noble gas compounds are those of Xenon. Why?
- *27. "Hypophosphorus acid is a good reducing agent." Justify with an example.

[Hint: $4AgNO_3 + H_3PO_2 + 2H_2O \rightarrow 4Ag + HNO_3 + H_3PO_4$.

*28. Draw the structure of H₄P₂O₇ and find out its basicity?

[Hint: Tetrabasic]

*29. Arrange the following triatomic species in the order of increasing bond angle.

$$[\textbf{Hint}: \left[: \overset{\boldsymbol{\cdot}}{O} - \overset{\boldsymbol{\cdot}}{N} = \overset{\boldsymbol{\cdot}}{O}: \right], \left[: \overset{\boldsymbol{\cdot}}{O} - N = \overset{\boldsymbol{\cdot}}{O} \right]^{+}, \left[: \overset{\boldsymbol{\cdot}}{O} - \overset{\boldsymbol{\cdot}}{N} = \overset{\boldsymbol{\cdot}}{O} \right]^{-}$$

 $\rm NO_2$ has one non-bonding electron, $\rm NO_2^-$ has two non-bonding electrons, $\rm NO_2^+$ has no non-bonding electron on N atom. Bond angle of NO $_2$ is maximum that of $\rm NO_2^-$ minimum].

- 30. With what neutral molecule CIO- is isoelectronic?
- 31. Draw the structure of $H_2S_2O_8$ and find the number of S-S bond if any.
- 32. What is cause of bleaching action of chlorine water? Explain it with chemical equation?

[Hint: Formation of nascent oxygen]

*33. Electron gain enthalpy of fluorine is more negative than that of chlorine.

[Hint.: Due to small size of F atom, there are strong interelectronic repulsions in the relatively smaller 2p orbitals of fluorine. So the incoming electron does experience less attraction than in Cl]

*34. Which one of the following is not oxidised by O_3 . State the reason. KI, $FeSO_4$, K_2MnO_4 , $KMnO_4$

[Hint.: KMnO₄ since Mn is showing maximum oxidation state of +7.]

SA (I) TYPE QUESTIONS (2 - MARK QUESTIONS)

- 2. Why is red phosphorus denser and less chemically reactive than white phosphorus?
- 3. Give chemical reaction in support of the statement that all the bonds in PCl₅ molecule are not equivalent.

$$[Hint : PCl_5 + H_2O \rightarrow POCl_3 + 2HCl]$$

- 4. Account for the following:
 - (a) XeF₂ has linear structure and not a bent structure.
 - (b) Phosphorus show marked tendency for Catenation.
- 5. Draw the structures of BrF₃, XeOF₄, XeO₃ using VSEPR theory.
- 6. Write the conditions that favour the formation of ammonia gas along with the reactions involved in Haber's Process.

- 7. Write the chemical equations of the following reactions
 - (a) Glucose in heated with conc. H₂SO₄.
 - (b) Sodium nitrate is heated with conc. H_2SO_4 .

Complete the following reactions:

- 8. (i) $(NH_4)_2 Cr_2O_7 \xrightarrow{\text{heat}}$
 - (ii) N_4H CI (aq) + $NaNO_2$ (aq) \longrightarrow
- 9. (i) $NH_2CONH_2 + H_2O \longrightarrow$
 - (ii) $FeCl_3$ (aq) + NH_4OH \longrightarrow
- 10. (i) $Ca_3 P_2 + H_2 O (I) \longrightarrow$
 - (ii) $I_2 + HNO_3$ (conc.) \longrightarrow
- 11. (i) $Ba(N_3)_2 \xrightarrow{heat}$
 - (ii) $4H_3PO_3 \xrightarrow{heat}$
- 12. (i) $PH_4I + KOH \longrightarrow$
 - (ii) $HgCl_2 + PH_3 \longrightarrow$
- 13. (i) $PCl_3 + 3H_2O \longrightarrow$
 - (ii) S + H_2SO_4 (conc.) \longrightarrow

14. (i)
$$Al_2O_3(s) + NaOH (aq) + H_2O(l)$$

(ii) HCl + O₂
$$\xrightarrow{\text{CuCl}_2}$$

15. (i)
$$Ca(OH)_2 + Cl_2 \longrightarrow$$

(ii)
$$XeF_4 + H_2O \longrightarrow$$

16. (i)
$$Na_2SO_3 + Cl_2 + H_2O \longrightarrow$$

17. (i)
$$XeF_6 + H_2O \xrightarrow{Complete \\ hydrolysis}$$

(ii)
$$XeF_6 + H_2O \xrightarrow{Partial hydrolysis}$$

18. (i)
$$NO_3^- + Fe^{2+} + H^+ \longrightarrow$$

(ii) Zn +
$$HNO_3$$
 (dil) \longrightarrow

19. (i)
$$Zn + HNO_3$$
 (conc) \longrightarrow

(ii)
$$P_4 + HNO_3$$
 (conc) \longrightarrow

20. (i)
$$NH_3 + O_2 \xrightarrow{Pt/Rh}$$

(ii)
$$P_4$$
 + NaOH + H_2 O \longrightarrow

21. (i)
$$P_4 + SOCl_2 \longrightarrow$$

(ii)
$$P_4 + SO_2Cl_2 \longrightarrow$$

- 22. (i) PbS + O_3 \longrightarrow
 - (ii) KI + $H_2O + O_3 \longrightarrow$
- 23. (i) $MnO_4^- + SO_2 + H_2O \longrightarrow$
 - (ii) $Zn + HNO_3 \longrightarrow$ (dil)
- 24. (i) NH_3 (Excess) + CI_2 \longrightarrow
 - (ii) $NH_3 + Cl_2$ (Excess) \longrightarrow
- 25. (i) Cl_2 + NaOH (cold and dil) \longrightarrow
 - (ii) Cl_2 + NaOH (hot & conc) \longrightarrow
- - (ii) $Cl_2 + F_2$ (Excess) \longrightarrow
- 27. (i) U + $CIF_3 \longrightarrow$
 - (ii) $FeSO_4 + H_2SO_4 + Cl_2 \longrightarrow$
- 28. (i) What is the covalency of N in N_2O_5 ?
 - (ii) Explain why phosphorus forms pentachloride whereas nitrogen and bismuth do not?
- 29. (i) The acidic character of hydrides of group 15 increases from H_2O to H_2Te . Why?
 - (ii) Dioxygen is a gas while sulphur (S_8) is a solid. Why?

- 30. (i) Interhalogen compounds are more reactive than halogens except F_2 . Why?
 - (ii) Give one important use of CIF₃.
- 31. (i) Write the composition of bleaching powder.
 - (ii) What happens when NaCl is heated with conc. H₂SO₄ in the presence of MnO₂. Write the chemical equation.
- 32. Arrange the following in the decreasing order of their basicity. Assign the reason :

$$PH_3$$
, NH_3 , SbH_3 , AsH_3 , BiH_3 .

- *33. A colourless and a pungent smelling gas which easily liquifies to a colourless liquid and freezes to a white crystalline solid, gives dense white fumes with ammonia. Identify the gas and write the chemical equation for its laboratory preparation.

 [Hint: HCI]
- *34. Complete following disproportionation reactions.

(a)
$$P_4$$
 + NaOH + H_2O \longrightarrow

(b)
$$HNO_2 \xrightarrow{H^+}$$

- 35. Arrange the following trichlorides in decreasing order of bond angle ${\rm NCl_3}$ ${\rm PCl_3}$, ${\rm AsCl_3}$, ${\rm SbCl_3}$
- 36. Suggest reason why only known binary compounds of noble gases are fluorides and oxides of Krypton, Xenon.

[Hint: F and O are most electronegative elements. Kr and Xe both have low lonisation enthalpies.]

37. Which fluorinating agent are oftenly used instead of F₂? Write two chemical equations showing their use as fluorinating agents.

$$\begin{aligned} & [\mathbf{Hint}: \mathsf{BrF}_5 + 3\mathsf{H}_2\mathsf{O} \rightarrow \mathsf{HBrO}_3 + 5\mathsf{HF} \\ & 2\mathsf{IF}_7 + \mathsf{SiO}_2 \rightarrow 2\mathsf{IOF}_5 + \mathsf{SiF}_4] \end{aligned}$$

- 38. (a) Hydrolysis of XeF₆ is not regarded as a redox reaction. Why?
 - (b) Write a chemical equation to represent the oxidising nature of XeF_4 .

[Hint: (b)
$$XeF_4 + 2H_2 \rightarrow Xe + 4HF$$
)]

- 39. Write Chemical equation:
 - (a) XeF₂ is hydrolysed
 - (b) PtF₆ and Xenon are mixed together.

SA (II) TYPE QUESTIONS (3 - MARK QUESTIONS)

- 1. (i) How is HNO₃ prepared commercially?
 - (ii) Write chemical equations of the reactions involved.
 - (iii) What concentration by mass of HNO₃ is obtained?
- 2. (i) How does O_3 react with lead sulphide? Write chemical equation.
 - (ii) What happens when SO₂ is passed in acidified KMnO₄ solution?
 - (iii) SO₂ behaves with lime water similar to CO₂.
- 3. Assign reason for the following:
 - (i) Sulphur in vapour state exhibits paramagnetism.
 - (ii) F₂ is strongest oxidising agent among halogens.
 - (iii) In spite of having same electronegativity, oxygen forms hydrogen bond while chlorine does not.
- 4. Give appropriate reason for each of the following:
 - (i) Metal fluorides are more ionic than metal chlorides.
 - (ii) Perchloric acid is stronger than sulphuric acid.
 - (iii) Addition of chlorine to KI solution gives it a brown colour but excess of ${\rm Cl_2}$ makes it colourless.

[Hint:

- (i) According to Fajan's Rule, bigger ions more are polarised than the smaller ion by a particular cation.
- (ii) CIO_4^- is more resonance stabilised than $SO_4^{\ 2^-}$ since dispersal of negative charnge is more effective in CIO_4^- as compared with $SO_4^{\ 2^-}$
- (iii) 2KI + Cl₂ \rightarrow 2KCI + I₂ Excess 5Cl₂ + I₂ + 6H₂O \rightarrow 2HIO₃ + 10 HCl (Colourless).
- 5. Explain why:
 - (i) No chemical compound of helium is known.
 - (ii) Bond dissociation energy of fluorine is less than that of chlorine.
 - (iii) Two S-O bonds in SO₂ are identical.
- 6. Out of the following hydrides of group 16 elements, which will have :

- (a) lowest boiling point
- (b) highest bond angle
- (c) highest electropositive hydrogen.
- 7. (i) How is XeO₃ prepared from XeF₆? Write the chemical equation for the reaction.
 - (ii) Draw the structure of XeF₄.
- 8. (i) Thermal stability of hydrides of group 16 elements decreases down the group. Why?
 - (ii) Compare the oxidising powers of F₂ and Cl₂ on the basis of bond dissociation enthalpy, electron gain ethalpy of hologens and hydration enthalpy of halide ions.
 - (iii) Write the chemical equation for the reaction of copper metal with conc. HNO₃.
- *9. An unknown salt X reacts with hot conc. H₂SO₄ to produce a brown coloured gas which intensifies on addition on copper turnings. On adding dilute ferrous sulphate solution to an aqueous solution of X and then carefully adding conc. H₂SO₄ along the sides of the test tube, a brown complex Y is formed at the interface between the solution and H₂SO₄. Identify X and Y and write the chemical equation involved in the reaction.

[Hint: X is NO₃ salt].

- 10. Assign reason to the following:
 - (i) Noble gases have large positive values of electron gain enthalpy.
 - (ii) Helium is used by scuba divers.
- 11. Arrange the following in the order of the property indicated for each set-
 - (a) F_2 , Cl_2 , Br_2 , l_2 (Increasing bond dissociation energy).
 - (b) HF, HCl, HBr, HI (decreasing acid strength).
 - (c) NH₃, PH₃, ASH₃, SbH₃, BiH₃ (decreasing base strength).

[Hint:

- (a) F₂ has exceptionally low bond dissociation enthalpy. Lone pairs in F₂ molecule are much closer to each other than in Cl₂ molecule. Larger electron–electron repulsions among the lone pairs in F₂ molecule make its bond dissociation enthalpy exceptionally low.
- (b) Depends upon H–X bond dissociation enthalpy as the size of atom increases, bond dissociation enthalpy of H–X decreases.

- (c) Electron availability on the central atom 'E' in EH₃ decreases down the group.
- *12. A transluscent while waxy solid (A) on heating in an inert atmosphere is converted to its allotropic form (B), Allotrope (A) on reaction with very dilute aqueous NaOH liberates a highly poisonous gas (C) having a rotten fish smell, with excess of chlorine forms D which hydrolyses to form compound (E). Identify the compounds (A) to (E).

A: White phosphorus, B: Red phosphorus, C: PH3, D: PCl3, E: H3PO4

- 13. Write balanced equation for the following reactions :
 - (a) Zn is treated with dilute HNO₃.
 - (b) NaCl is heated with H₂SO₄ in the presence of MnO₂.
 - (c) Iodine is treated with conc. HNO₃.
- 14. X₂ is a greenish yellow gas with pungent offensive smell used in purification of water. It partially dissolves in H₂O to give a solution which turns blue litmus red. When X₂ is passed through NaBr Solution, Br₂ is obtained.
 - (a) Identify X_2 , name the group to which it belongs.
 - (b) What are the products obtained when $\rm X_2$ reacts with $\rm H_2O$? Write chemical equation.
 - (c) What happens when X₂ reacts with hot and conc. NaOH? Give equation.
- 16. Assign the appropriate reason for the following:
 - (a) Nitrogen exists as diatomic molecule and phorphorous as P₄, Why?
 - (b) Why does $R_3P = 0$ exist but $R_3N = 0$ does not ? (R = an alkyl group).
 - (c) Explain why fluorine forms only one oxoacid, HOF.

[Hint:

- (a) Due to its small size and high electronegativity N forms $p_{\pi}-p_{\pi}$ multiple bond (N \equiv N). whereas P does not form $p_{\pi}-p_{\pi}$ bonds but forms P P single bond.
- (b) Due to the absence of d-orbitals, N cannot expand its covalence beyond four.
 - In $R_3N = 0$, N should have a covalence of 5 so the compound $R_3N = 0$ does not exist since maximum covalence shown by N cannot exceed 4.

(c) F does not form oxoacids in which the oxidation state of F would be +3, +5, +7, it forms one oxoacid, because of unavailability of d orbitals in its valence shell.

LONG ANSWER TYPE QUESTIONS (5 - MARK QUESTIONS)

 How is PH₃ prepared in the laboratory? How is it purified? How does the solution of PH₃ in water react on irradiation with light and on absorption in CuSO₄? How can you prove that PH₃ is basic in nature?

Write the chemical equations for all the reactions involved.

- 2. Assign a possible reason for the following:
 - (a) Stability of +5 oxidation state decreases and that of +3 oxidation state increases down the group 15 elements.
 - (b) H₂O is less acidic than H₂S.
 - (c) SF₆ is inert while SF₄ is highly reactive towards hydrolysis.
 - (d) H₃PO₂ and H₃PO₃ act as good reducing agents while H₃PO₄ does not.
 - (e) Noble gases have comparatively large size in their respective periods.
- 3. (a) How is XeF₆ prepared from the XeF₄? Write the chemical equation for the reaction.
 - (b) Deduce the structure of XeF₆ using VSEPR theory.
 - (c) How does XeF₂ reacts with PF₅?
 - (d) Give one use each of helium and neon.
 - (e) Write the chemical equation for the hydrolysis of XeF₄.
- 4. (a) Why does nitrogen show anomalous behaviour? Discuss the trend of chemical reactivity of group 15 elements with.
 - (a) oxygen (b) halogens (c) metals
 - (b) H₃PO₃ is a dibasic acid. Why?
- 5. (a) Arrange the following in the order of their increasing acid strength.
 - (a) Cl_2O_7 , SO_2 , P_4O_{10}
 - (b) How is N₂O gas prepared? And draw its structure.
 - (c) Give one chemical reaction to show O₃ is an oxidising agent.

*6. Identify A, B, C, D and E in the following sequence of reactions

$$A \xrightarrow{Cl_2} B \xrightarrow{H_2O} C$$

$$\downarrow \text{Colourless Oily liquid}$$

$$\downarrow \text{CH}_3\text{COOH}$$

$$E \text{ (Acid)} \xrightarrow{H_2O} D \xrightarrow{CH_3\text{COOH}} CH_3\text{COCI}$$

$$\text{(Yellowish White solid)}$$

Complete the reactions of the above mentioned sequence.

[Hint : A is P_{λ}].

- *7. A white waxy, translucent solid, M, insoluble in water but soluble in CS₂, glows in dark. M dissolves in NaOH in an inert atmosphere giving a poisonous gas (N). Also M catches fire to give dense white fumes of Q:
 - (a) Identify M, N and Q and write the chemical equations of the reactions involved.
 - (b) M exists in the form of discrete tetrahedral molecules. Draw its structure.
 - (c) M on heating at 573 K is changed into other less reactive form, Q, which is non-poisonous, insoluble in water as well as in CS₂ and does not glow in dark, Identify Q and draw its structure.
- 8. Write the structure of A, B, C, D and E in the following sequence of reactions :

$$NH_3 + O_2 \xrightarrow{Pt/Rh} A + H_2O$$

$$A + O_2 \longrightarrow B \text{ (brown fumes)}$$

$$B + H_2O \longrightarrow C + A \text{ (C is an oxoacid)}$$

$$C + I^- \longrightarrow D \text{ (Violet vapours)}$$

Complete reactions of the above mentioned sequence and name the process by which 'C' is obtained.

[Hint.: A is NO and Ostwald process for the manufacture of HNO₃].

- 9. Give reason for each of the following:
 - (a) NH₃ is more basic than PH₃.
 - (b) Ammonia is a good complexing agent.
 - (c) Bleaching by SO₂ is temporary.
 - (d) PCI₅ is ionic in solid state.
 - (e) Sulphur in vapour state exhibits paramagnetism.
- 10. Knowing the electrons gain enthalpy value for O \rightarrow O– and O⁻ \rightarrow O²⁻ as –141 and 720 kJ mol⁻¹ respectively, how can you account for the formation of large number of oxides having O²⁻ species and not O⁻?

[Hint : Latlice enthalpy of formation of oxides having O^{2-} more than compensates the second $\Delta_{\rm ed}H$ of oxygen.