REDOX REACTION

Question Stem for Question Nos. 1 and 2

Question Stem

A sample (5.6 g) containing iron is completely dissolved in cold dilute HCl to prepare a 250 mL of solution. Titration of 25.0 mL of this solution requires 12.5 mL of 0.03 M KMnO₄ solution to reach the end point. Number of moles of Fe²⁺ present in 250 mL solution is $\mathbf{x} \times 10^{-2}$ (consider complete dissolution of FeCl₂). The amount of iron present in the sample of \mathbf{y} % by weight.

	P	(**	
	of FeCl ₂). The amount of iron present in the sample of y% by weight. (Assume : KMnO ₄ reacts only with Fe ²⁺ in the solution		
	Use: Molar mass of iron as 56 g mol ⁻¹)		[JEE(Advanced) 2021]
1.	The value of x is		
2.	The value of y is		
3.	In the chemical reaction between stoichiometric quantities of KMnO ₄ and KI in weakly basic solution,		
	what is the number of moles of I ₂ released for 4	moles of KMnO ₄ consumed?	[JEE(Advanced) 2020]
4.	An acidified solution of potassium chromate was layered with an equal volume of amyl alcohol. When it		
	was shaken after the addition of 1 mL of 3% H ₂ O ₂ , a blue alcohol layer was obtained. The blue color is		
	due to the formation of a chromium (VI) compound ${}^{\backprime}\! X{}^{\backprime}$. What is the number of oxygen atoms bonded to		
	chromium through only single bonds in a molec	ule of X?	[JEE(Advanced) 2020]
5.	The amount of water produced (in g) in the oxidation of 1 mole of rhombic sulphur by conc.HNO3 to a		
	compound with the highest oxidation state of sulphur is		
	(Given data : Molar mass of water = 18 g mol^{-1}) [JEE(Advanced) 2019]		
6.	To measure the quantity of MnCl ₂ dissolved in an aqueous solution, it was completely converted to		
	KMnO ₄ using the reaction,		
	$MnCl_2 + K_2S_2O_8 + H_2O \rightarrow KMnO_4 + H_2SO_4 + HCl$ (equation not balanced).		
	Few drops of concentrated HCl were added to this solution and gently warmed. Further, oxalic acid		
	(225 g) was added in portions till the colour of the permanganate ion disappeard. The quantity of MnCl ₂		
	(in mg) present in the initial solution is		
	(Atomic weights in g mol^{-1} : $Mn = 55$, $Cl = 35.5$)		[JEE(Advanced) 2018]
7.	In neutral or faintly alkaline solution, 8 moles permanganate anion quantitatively oxidize thiosulphate		
	anions to produce X moles of a sulphur containi	ng product. the magnitude of X	
0	F 4		[JEE(Advanced) 2016]
8.	For the reaction		
	$I^- + ClO_3^- + H_2SO_4 \rightarrow Cl^- + HSO_4^- + I_2$		
	The correct statement(s) in the balanced equation is / are :		[JEE(Advanced) 2014]
	(A) Stoichiometric coefficient of HSO ₄ ⁻ is 6	(B) Iodide is oxidized	
	(C) Sulphur is reduced	(D) H ₂ O is one of the produ	acts
9.	Hydrogen peroxide in its reaction with KlO ₄ and NH ₂ OH respectively, is acting as a		
			[JEE(Advanced) 2014]
	(A) reducing agent, oxidising agent	(B) reducing agent, reducing agent	
	(C) oxidising agent, oxidising agent	(D) oxidising agent, reducing agent	

SOLUTIONS

- 1. Ans. (1.87 or 1.88)
- 2. Ans. (18.75)

Solution for Q.1 & Q.2

Fe + 2HCl
$$\longrightarrow$$
 FeCl₂ + H₂
x mole x mole

Fe⁺² + MnO4⁻

$$\frac{x}{10 \text{ mole}}$$
12.5 ml
$$0.03 \text{ M}$$

$$n_f = 1$$

$$\frac{x}{1000}$$

$$\frac{x}{1000}$$

$$x = 0.01875 \text{ (x = 1.88 or 1.87)}$$
wt of Fe = 1.05g
% Fe = $\frac{1.05}{5.6} \times 100 = 18.75$

- 3. Ans. (6)
- Sol. $KMnO_4 + KI \longrightarrow MnO_2 + I_2$ Eq of $KMnO_4 = Eq$ of I_2 $4 \times 3 = n \times 2$ n = 6
- 4. Ans. (4)

$$\textbf{Sol.} \quad \text{K_2CrO}_4 + \text{H_2O}_2 \xrightarrow{\quad \text{Amyl alcohol} \\ \quad \text{(In acidic medium)}} \quad \text{CrO_5} \\ \quad \text{(Blue liquid)}$$

Here the structure of CrO₅ is :-

$$0 > 0$$
 $Cr < 0$

Here, single bonded O-atoms with Cr is = 04

- 5. Ans. (288.00 to 288.30)
- $\textbf{Sol.} \quad S_8 + 48 \text{ HNO}_3 \longrightarrow 8 H_2 SO_4 + 48 NO_2 + 16 H_2 O$

1 mole of rhombic sulphur produce 16 mole of H₂O i.e. 288 gm of H₂O

6. Ans. (126)

$$\textbf{Sol.} \quad \underset{\text{a mole}}{\text{MnCl}_2} \ + \text{K}_2 \text{S}_2 \text{O}_8 \ + \text{H}_2 \text{O} \ \rightarrow \ \underset{\text{a mole}}{\text{KMnO}_4} + \text{H}_2 \text{SO}_4 + \text{HCl}$$

$$C_2O_4^{--} + MnO_4^{-} \xrightarrow{H^+} CO_2$$

$$m_{eq}$$
 of $C_2O_4^{--} = m_{eq}$ of MnO_4^{-}

$$2 \times 0.225/90 = a \times 5$$

$$a = 1 \times [55 + 71] = 126 \text{ mg}$$

7. Ans. (6)

Sol.
$$MnO_4^{+7} + S_2^{+2}O_3^{2-} \longrightarrow MnO_2 + SO_4^{+6}$$

Equivalents of MnO_4^- = equivalents of SO_4^{2-}

Moles of $MnO_4^- \times n$ -factor = moles of $SO_4^{2-} \times n$ -factor

$$8 \times 3 = X \times 4$$

$$X = 6$$

8. Ans. (A, B, D)

Sol. Oxidation half reaction:

$$2I^{-} \rightarrow I_2 + 2e^{-}$$
(1)

Reduction half reaction

$$6H^{+} + ClO_{3}^{-} + 6e^{-} \rightarrow Cl^{-} + 3H_{2}O$$
(2)

Multiplying equation (1) by 3 and add in (2)

$$6I^{-} + ClO_{3}^{-} + 6H^{+} \rightarrow Cl^{-} + 3I_{2} + 3H_{2}O$$

$$6I^{-} + ClO_{3}^{-} + 6H_{2}SO_{4} \rightarrow Cl^{-} + 3I_{2} + 3H_{2}O + 6HSO_{4}^{-}$$

9. Ans. (A)

+7

Sol.
$$H_2O_2 + KIO_4 \longrightarrow O_2 + I$$
 (with oxidation state lower than 7)

Reducing agent

$$40NH_2OH + 10H_2O_2 \longrightarrow 7H_2O + 20 N_2O_3$$

Oxidising

agent