FLOT

- 1. What is the difference between change in enthalpy and change in internal energy at constant volume:
 - (A) 0

- (B) VdP
- (C) -VdP
- (D) PdV
- 2. The work done in an adiabatic process on an ideal gas by a constant external pressure would be:
- (B) ΔE
- (C) ΔH
- (D) q
- 3. Which of the following is correct option for free expansion of an ideal gas under adiabatic condition?
 - (A) $q = 0, \Delta T \neq 0, w = 0$

(B) $q \ne 0$, $\Delta T = 0$, w = 0

(C) q = 0, $\Delta T = 0$, w = 0

- (D) $q = 0, \Delta T < 0, w \neq 0$
- 4. Consider the cyclic process $R \to S \to R$ as shown in the fig. You are told that one of the path is adiabatic and the other one isothermal. Which one of the following is(are) true?
 - (A) Process $R \rightarrow S$ is isothermal
 - (B) Process $S \rightarrow R$ is adiabatic
 - (C) Process $R \rightarrow S$ is adiabatic
 - (D) Such a graph is not possible

- 5. Calculate the heat needed to raise the temperature of 20 g iron from 25°C to 500°C, if specific heat capacity of iron is $0.45 \text{ JK}^{-1}\text{g}^{-1}$.
 - (A) 4275 J
- (B) 225 J
- (C) 15.66 J
- (D) 2250 J
- 6. The ratio of slopes of P-V plots for reversible adiabatic process and reversible isothermal process of an ideal gas is equal to:

- (B) 1γ
- (C) $(\gamma 1)$
- (D) $1/\gamma$
- For an ideal gas having molar mass M, specific heat at constant pressure can be given as: 7.
 - (A) $\frac{\gamma RM}{\gamma 1}$
- (B) $\frac{R}{M(\gamma-1)}$
- (C) $\frac{RM}{v-1}$
- (D) $\frac{\gamma R}{M(\gamma-1)}$
- 8. P-V plots for two gases during an adiabatic process are given in the figure :

Plot A and plot B should correspond to: (Assume ideal behaviour)

- (A) He and O₂
- (B) SO, and Ar
- (C) O, and He
- (D) Both (B) and (C)
- 9. An ideal gas with $C_v = 3R$ expands adiabatically into a vacuum thus doubling its volume. The final temperatue is given by:
 - (A) $T_2 = T_1[2^{-1/3}]$

- (B) $T_2 = T_1$ (C) $T_2 = 2T_1$ (D) $T_2 = \frac{T_1}{2}$
- A monoatomic ideal gas $(C_v = \frac{3}{2} R)$ is allowed to expand adiabatically and reversibly from initial volume of 8 10. L at 300 K to a volume of V_2 at 250 K. V_2 is : (Given $(4.8)^{1/2} = 2.2$)
 - (A) 10.56 L

(B) 17.6 L

(C) 11.52 L

(D) Expansion not possible since temperature has decreased

- *11. An ideal gas is expanded from volume V_0 to $4V_0$ by following two ways: (from same initial state)
 - (a) Ist using reversible isothermal expansion from V_0 to $2V_0$, then using reversible adiabatic expansion from $2V_0$ to $4V_0$.
 - (b) Ist using reversible adiabatic expansion from V_0 to $2V_0$, then from $2V_0$ to $4V_0$ using reversible isothermal expansion.

Then which of the following options is correct:

- (A) Work done in (a) process > work done in (b) process
- (B) Work done in (b) process > work done in (a) process
- (C) Work done in (b) process = work done in (a) process
- (D) Work done in both processes cannot be compared
- 12. One mole of an ideal monoatomic gas is caused to go through the cycle shown in figure. Then the change in the internal energy of gas from a to b and b to c is respectively:

- (A) $\frac{9P_{o}V_{o}}{2}$, 6 RT_o (B) $\frac{9P_{o}V_{o}}{2}$, 10 RT_o
- (C) $\frac{15P_{o}V_{o}}{2}$, 6 RT_o (D) $\frac{15P_{o}V_{o}}{2}$, 10 RT_o
- *13. q, W, ΔE and ΔH for the following process ABCD on an ideal monoatomic gas are (moles = 2):
 - (A) $W = -2 P_0 V_0 \ln 2$, $q = 2 P_0 V_0 \ln 2$, $\Delta E = 0$, $\Delta H = 0$
 - (B) $W = -P_0 V_0 \ln 2$, $q = P_0 V_0 \ln 2$, $\Delta E = 0$, $\Delta H = 0$

 - (C) $W = -2 P_0 V_0 \ln 2$, q = 0, $\Delta E = -2 P_0 V_0 \ln 2$, $\Delta H = \frac{-10}{3} P_0 V_0 \ln 2$ (D) $W = -2 P_0 V_0 (\frac{1}{4} + \ln 2)$, $q = 2 P_0 V_0 \ln 2$, $\Delta E = \frac{-P_0 V_0}{2}$, $\Delta H = \frac{-5P_0 V_0}{6}$

*14. P-V plots for three gases (assuming ideal behaviour and similar condition) for reversible adiabatic compression are given in the figure below:

Plots X, Y and Z should correspond to respectively:

(A) CO₂, Cl₂ and Ne

(B) SO₂, N₂O and He

(C) He, N, and O₃

- (D) NH₂, H₂S and Ar
- **Assertion:** The increase in internal energy (ΔE) for the vaporisation of one mole of water at 1 atm and 373 K 15. is zero.

Reason : For all isothermal processes on perfect gases, $\Delta E = 0$.

- (A) Both Assertion and Reason are true and Reason is the correct explanation of Assertion.
- (B) Both Assertion and Reason are true but Reason is not correct explanation of Assertion.
- (C) Assertion is true but Reason is false.
- (D) Assertion is false but Reason is true.
- When the gas is an ideal one and expansion process is isothermal, then the correct relation is/are: 16.
 - (A) $P_1V_1 = P_2V_2$
- (B) $\Delta E = 0$
- (C) W = 0
- (D) $\Delta H = 0$
- **17.** An ideal gas undergoes adiabatic expansion against constant external pressure. Which of the following are correct:
 - (A) Internal energy of the gas remains unchanged
 - (B) Temperature of the system decreases.
 - (C) $\Delta E + P\Delta V = 0$
 - (D) Internal energy of the gas decreases.

Answers

RACE # 45

1. (B) **2.** (B) **3.** (C) **4.** (D) **5.** (A) **6.** (A) **7.** (D) **8.** (D) **9.** (B) **10.** (A)

11. (A) **12.** (A) **13.** (A) **14.** (B) **15.** (D) **16.** (ABD) **17.** (BCD)