DPP - Daily Practice Problems

Da	ate : Start Time :		End Ti	me :		
	CHEM		STR	Y	CC0 [.]	1
	SYLLABUS : Some Basi			•	(-) I
Ма	ax. Marks : 120 Marking Scheme : + 4 for o	corre	ect & (-1) for incorr	ect	Time : 60 n	nin.
	INSTRUCTIONS : This Daily Practice Problem Sheet contains Darken the correct circle/ bubble in the Response Grid provide			tion only o	ne option is correct.	
1.	In compound A, 1.00g of nitrogen unites with 0.57g of oxygen. In compound B, 2.00g of nitrogen combines with 2.24g of oxygen. In compound C, 3.00g of nitrogen combines with 5.11g of oxygen. These results obey the following law (a) law of constant proportion (b) law of multiple proportion (c) law of reciprocal proportion (d) Dalton's law of partial pressure	3.	 will be consumed in (atomic mass = 10.8) by hydrogen ? (a) 67.2 L (c) 22.4 L 	(d) ogen gas, a obtaining from the re (b) (d)	28.8×10^{-3} 28.8×10^{3} at 273 K and 1 atm. presses 21.6 g of elemental be duction of boron trichlog 44.8 L 89.6 L Na SO 10 H O is	oron
2.	(d) Dalton's law of partial pressure 10^{21} molecules are removed from 200 mg of CO ₂ . The moles of CO ₂ left are :	4.	Number of g of oxyge (a) 20.8 (c) 22.4	(b)	2.24 2.08	

5.	6.02×10^{20} molecules of urea are present in 100 ml of its		(a) 1.45 (b) 1.64
	solution. The concentration of urea solution is		(c) 1.88 (d) 1.22
	(a) 0.02 M (b) 0.01 M	11.	A gas occupies a volume of 300 cc at 27°C and 620 mm
	(c) 0.001 M (d) 0.1 M		pressure. The volume of gas at 47°C and 640 mm pressure
	(Avogadro constant, $N_A = 6.02 \times 10^{23} \text{ mol}^{-1}$)		is:
6.	If we consider that $1/6$, in place of $1/12$, mass of carbon atom		(a) 260 cc (b) 310 cc
	is taken to be the relative atomic mass unit, the mass of one		(c) 390 cc (d) 450 cc
	mole of the substance will	12.	Haemoglobin contains 0.33% of iron by weight. The
	(a) be a function of the molecular mass of the substance	14.	molecular weight of haemoglobin is approximately 67200.
	(b) remain unchanged		The number of iron atoms (at. wt. of $Fe = 56$) present in one
	(c) increase two fold		molecule of haemoglobin is
	(d) decrease twice		-
7.	The weight of NaCl decomposed by 4.9g of H_2SO_4 , if 6 g of		(a) 6 (b) 1
	sodium hydrogen sulphate and 1.825 g of HCl, were		(c) 2 (d) 4
	produced in the reaction is:	13.	The volume of 20 volume H_2O_2 required to get 5 litres of O_2
	(a) 6.921 g (b) 4.65 g		at STP is
	(c) 2.925 g (d) 1.4 g		(a) 250 ml (b) 125 ml
8.	Which one of the following is the lightest?		(c) 100 ml (d) 50 ml.
	(a) 0.2 mole of hydrogen gas	14.	In the reaction,
	(b) 6.023×10^{22} molecules of nitrogen		$2Al(s) + 6HCl(aq) \rightarrow 2Al^{3+}(aq) + 6Cl^{-}(aq) + 3H_2(g)$
	(c) 0.1 g of silver		
	(d) 0.1 mole of oxygen gas		(a) $11.2 \text{ L H}_2(\text{g})$ at STP is produced for every mole HCl(aq)
9.	How many moles of magnesium phosphate, $Mg_3(PO_4)_2$ will		consumed
).	contain 0.25 mole of oxygen atoms?		(b) $6 L HCl(aq)$ is consumed for every $3 L H_2(g)$ produced
	(a) 1.25×10^{-2} (b) 2.5×10^{-2}		(c) $33.6 L H_2(g)$ is produced regardless of temperature and
			pressure for every mole Al that reacts
10	(c) 0.02 (d) 3.125×10^{-2} The density (in a mL ⁻¹) of a 2 60 M subshurie acid solution		(d) 67.2 $H_2(g)$ at STP is produced for every mole Al that

10. The density (in g mL⁻¹) of a 3.60 M sulphuric acid solution that is 29% H_2SO_4 (molar mass = 98 g mol⁻¹) by mass will be (d) 67.2 $H_2(g)$ at STP is produced for every mole Al that reacts.

Response					9. @bCd
Grid	10.@b©d	11.@b©d	12. abcd	13. @bcd	14. @b©d

~ ~ ~ · … ·

15. The concentrated sulphuric acid that is peddled commercial is 95% H_2SO_4 by weight. If the density of this commercial acid is 1.834 g cm⁻³, the molarity of this solution is

(a)	17.8 M	(b)	12.0 M
(c)	10.5 M	(d)	15.7 M

- (c) 10.5 M (d) 15.7 M **16.** What is the mass of precipitate formed when 50 mL of 16.9% solution of AgNO₃ is mixed with 50 mL of 5.8% NaCl solution ? (Ag = 107.8, N = 14, O = 16, Na = 23, Cl = 35.5)
 - (a) 28 g (b) 3.5 g
 - (c) 7 g (d) 14 g
- **17.** Number of valence electrons in 4.2 gram of N_3^- ion is
 - (a) $4.2 N_A$ (b) $0.1 N_A$
 - (c) $1.6 N_A$ (d) $3.2 N_A$
- **18.** A transition metal M forms a volatile chloride which has a vapour density of 94.8. If it contains 74.75% of chlorine the formula of the metal chloride will be
 - (a) MCl_3 (b) MCl_2
 - (c) MCl_4 (d) MCl_5
- **19.** A gaseous hydrocarbon gives upon combustion 0.72 g of water and 3.08 g. of CO_2 . The empirical formula of the hydrocarbon is :
 - (a) C_2H_4 (b) C_3H_4
 - (c) C_6H_5 (d) C_7H_8
- **20.** Following is the composition of a washing soda sample :

Substance	Molecular Wt.	Mass percent
Na ₂ CO ₃	106.0	84.8
NaHCO ₃	84.0	8.4
NaCl	58.5	6.8

On complete reaction with excess HCl, one kilogram of the washing soda will evolve:

- (a) $9 \mod \text{of CO}_2$ (b) $16 \mod \text{of CO}_2$
- (c) $17 \mod \text{of CO}_2$ (d) $18 \mod \text{of CO}_2$
- **21.** Arrange the numbers in increasing no. of significant figures. 0.002600, 2.6000, 2.6, 0.260
 - (a) 2.6<0.260<0.002600<2.6000
 - (b) 2.6000<2.6<0.002600<0.260
 - (c) 0.260 < 2.6 < 0.002600 < 2.6000
 - (d) 0.002600 < 0.260 < 2.6 < 2.6000
- **22.** Dissolving 120 g of a compound (mol. wt. 60) in 1000 g of water gave a solution of density 1.12 g/mL. The molarity of the solution is:
 - (a) 1.00 M (b) 2.00 M
 - (c) $2.50 \,\mathrm{M}$ (d) $4.00 \,\mathrm{M}$
- **23.** A gaseous compound of nitrogen and hydrogen contains 12.5% (by mass) of hydrogen. The density of the compound relative to hydrogen is 16. The molecular formula of the compound is:
 - (a) NH_2 (b) N_3H (c) NH_3 (d) N_2H_4
- 24. The amount of $BaSO_4$ formed upon mixing 100 mL of 20.8% $BaCl_2$ solution with 50 mL of 9.8% H_2SO_4 solution with 50 mL of 9.8% H_2SO_4 solution will be:

(Ba = 137, Cl = 35.5, S = 32, H = 1 and O = 16)

(a)	23.3 g	(b)	11.65 g
(c)	30.6 g	(d)	33.2 g

Response	15.@b©d	16.@b©d	17.@b©d	18.0bcd	19. abcd
Grid	20. ⓐ ⓑ ⓒ ⓓ	21.@b©d	22. abcd	23. abcd	24. abcd

25.		vill be the mass % of CO_2^2 in $($	29.	(C_4H_{10}) on complete of	(d) of pro combu	6.4 kg 96 kg pane (C_3H_8) and butane stion at 25° C produced mposition of gas mixture
	(c) 30 (c) 7.5 grams of a gas occupy 5.6 gas is (a) N_2O (c) (c) CO (c) Number of moles of KMnO ₄ re Fe(C ₂ O ₄) in acidic medium is	 ittres of volume at STP. The NO CO₂ 	30.	 (Propane : Butane) (a) 2:1 (c) 1.5:1.5 An organic compound of 	(b) (d) contair	1:2 0.5:2.5 ns 49.3% carbon, 6.84% v is 73. Molecular formula
28.	(a) 0.167 (b) (c) 0.2 (c) What is the weight of oxyget combustion of 2.8 kg of ethyle) 0.4 n required for the complete		(a) $C_{3}H_{5}O_{2}$ (c) $C_{6}H_{10}O_{4}$	(b) (d)	$C_4 H_{10} O_2$ $C_3 H_{10} O_2$

Response Grid	25.abcd 30.abcd	26.@bcd	27. abcd	28. abcd	29. abcd

DAILY PRACTICE PROBLEM DPP CHAPTERWISE 1 - CHEMISTRY						
Total Questions	120					
Attempted						
Incorrect		Net Score				
Cut-off Score	52					
Success Gap = Net Score – Qualifying Score						
Net Score = (Correct × 4) – (Incorrect × 1)						

DAILY PRACTICE PROBLEMS

CHEMISTRY SOLUTIONS

11.

1. (b)

(a) No. of moles = $\frac{Wt. in g}{Mol. wt}$ 2. 200 No. of moles in 200 mg = $\frac{200}{1000 \times 44}$ $= 4.5 \times 10^{-3}$ moles No. of moles in 10^{21} molecules $=\frac{10^{21}}{6.02\times10^{23}}=1.67\times10^{-3}\,\text{moles}$ No. of moles left = $(4.5 - 1.67) \times 10^{-3} = 2.88 \times 10^{-3}$ (a) $2BCl_3 + 3H_2 \rightarrow 2B + 6HCl$ 3. or $BCl_3 + \frac{3}{2}H_2 \rightarrow B + 3HCl$ Now, since 10.8 gm boron requires hydrogen $=\frac{3}{2}$ ~ 22.4L at N.T.P hence 21.6 gm boron requires hydrogen $\frac{3}{2} \cdot \frac{22.4}{10.8} \cdot 21.6 = 67.2$ L at N.T. P. (c) M. Wt of Na_2SO_4 . 10 H₂O is 322 g which contains 224 g 4. oxygen. \therefore 32.2 g will contain 22.4 g oxygen. **(b)** Moles of urea present in 100 ml of sol. = $\frac{6.02 \times 10^{20}}{6.02 \times 10^{23}}$ 5. $\therefore M = \frac{6.02 \times 10^{20} \times 1000}{6.02 \times 10^{23} \times 100} = 0.01M$ [: M = Moles of solute present in 1L of solution] (d) Relative atomic mass = 6. Mass of one atom of the element $1/12^{\text{th}}$ part of the mass of one atom of Carbon -12Mass of one atom of the element or mass of one atom of the C - 12Now if we use $\frac{1}{6}$ in place of $\frac{1}{12}$ the formula becomes Relative atomic mass = Mass of one atom of element ×6 Mass of one atom of carbon Relative atomic mass decrease twice (c) NaCl + H₂SO₄ \longrightarrow NaHSO₄ + HCl 1.8258 7. 1.825 g хg 4.9g 6g According to law of conservation of mass "mass is neither created nor destroyed during a chemical change" Mass of the reactants = Mass of products *.*.. x + 4.9 = 6 + 1.825 $x = 2.925 \,\mathrm{g}$ or

8. (c) (a) Weight of
$$H_2 = \text{mole} \times \text{molecular wt.}$$

= 0.2 × 2 = 0.4 g

(b)
$$6.023 \times 10^{23} = 1$$
 mole
Thus $6.023 \times 10^{22} = 0.1$ mole
Weight of N₂ = 0.1 × 28 = 2.8 g
(c) Weight of silver = 0.1 g
(d) Weight of oxygen = 32 × 0.1 = 3.2 g

9. (d) 1 Mole of $Mg_3(PO_4)_2$ contains 8 mole of oxygen atoms \therefore 8 mole of oxygen atoms = 1 mole of $Mg_3(PO_4)_2$ mole of $Mg_3(PO_4)_2$

 $= 3.125 \times 10^{-2}$ mole of Mg₃(PO₄)₂

0.25 mole of oxygen atom $\equiv \frac{1}{8} \times 0.25$ mole of Mg₃(PO₄)₂

10. (d) Since molarity of solution is 3.60 M. It means 3.6 moles of H_2SO_4 is present in its 1 litre solution. Mass of 3.6 moles of H_2SO_4 = Moles × Molecular mass = 3.6×98 g = 352.8 g \therefore 1000 ml solution has 352.8 g of H_2SO_4 Given that 29 g of H_2SO_4 is present in = 100 g of solution \therefore 352.8 g of H_2SO_4 is present in = $\frac{100}{29} \times 352.8$ g of solution = 1216 g of solution

Density =
$$\frac{Mass}{Volume} = \frac{1216}{1000} = 1.216 \text{ g/ml} = 1.22 \text{ g/ml}$$

(b) From
$$\frac{P_1 V_1}{T_1} = \frac{P_2 V_2}{T_2}$$

 $\frac{V_1 \times 640}{(273 + 47)} = \frac{620 \times 300}{(273 + 27)}$
 $V_1 = \frac{620 \times 300 \times 320}{640 \times 300} = 310 \text{ cc}$

12. (d) Weight of Iron in 67200 =
$$\frac{0.33}{100} \times 67200 = 221.76$$

Number of atoms of Iron =
$$\frac{221.76}{56}$$
 = 3.96 = 4

13. (a) 20 volume H_2O_2 means that 1mL of this H_2O_2 solutions produces 20 mL of O_2 at N.T.P. on decomposition by heat.

:. For 20 mL of O_2 , the volume of 20 volume H_2O_2 required = 1mL For 1 mL of O_2 , the volume of 20 volume

$$I_2O_2$$
 required $=\frac{1}{20}$ ml

For 5000 mL or 5L of O_2 , the volume of 20

volume
$$H_2O_2$$
 required = $\frac{1}{20} \times 5000 \text{ mL} = 250 \text{ mL}$

14. (a) $2Al(s) + 6HCl(aq) \rightarrow 2Al^{3+}(aq) + 6Cl^{-}(aq) + 3H_2(g)$ \therefore 6 moles of HCl produces = 3 moles of H₂ $= 3 \times 22.4 \text{ L of H}_2 \text{ at S.T.P}$

∴ 1 mole of HCl produces =
$$\frac{3 \times 22.4}{6}$$
 L
of H₂ at S.T.P
= 11.2 L of H₂ at STP
15. (a) 95% H₂SO₄ by weight means 100g H₂SO₄ solution
contains 95g H₂SO₄ by mass.
Molar mass of H₂SO₄ = 98g mol⁻¹
Moles in 95g = $\frac{95}{98}$ = 0.969 mole
Volume of 100g H₂SO₄
= $\frac{mass}{density} = \frac{100g}{1.834g cm^{-3}}$
= 54.52 cm³ = 54.52 × 10⁻³ L
Molarity = $\frac{Moles of solute}{Volme of solute in L}$
= $\frac{0.969}{54.52 \times 10^{-3}} = 17.8 \text{ M}$
16. (c) 50 ml of 16.9% solution of AgNO₃
 $\left(\frac{16.9}{100} \times 50\right) = 8.45 \text{ g of Ag NO_3}$
 $n_{mole} = \frac{8.45g}{(107.8 + 14 + 16 \times 3) \text{ g/mol}} = \left(\frac{8.45 \text{ g}}{169.8 \text{ g/mol}}\right)$
= 0.0497 moles
50 ml of 5.8% solution of NaCl contain
 $NaCl = \left(\frac{5.8}{100} \times 50\right) = 2.9 \text{ g}$
 $n_{NaCl} = \frac{2.9g}{(23 + 35.5) \text{ g/mol}} = 0.0495 \text{ moles}$
AgNO₃ + NaCl → AgCl↓ + Na⊕ + Cl⊖
1 mole 1 mole 1 mole
∴ 0.049 mole 0.049 mole 0.049 mole of AgCl
 $n = \frac{w}{M} \rightarrow w = (n_{AgCl}) \times Molecular Mass$
 $= (0.049) \times (107.8 + 35.5)$
 $= 7.02 \text{ g}$
17. (b) Number of valence electrons in a N₃⁻¹ ion = 1
Now, 1 mol or 42 g of N₃⁻¹ has $= 6.023 \times 10^{23} \text{ ions}$
So, 42 g of N₃⁻¹ has $\frac{6.023 \times 1 \times 10^{23}}{42}$ valence e⁻¹
1 g of N₃⁻¹ has $\frac{4.2 \times 6.023 \times 1 \times 10^{23}}{42}$ valence e⁻¹.e.,
 $0.1 N_A \text{ valence e^-.}$
18. (c) 74.75% of chlorine means 74.75g chlorine is present
in 100g of metal = 100g - 74.75g
 $= 25.25g$

Equivalent weight $=\frac{\text{weight of metal}}{\text{weight of chlorine}} \times 35.5$ $=\frac{25.25}{74.75}\times35.5=12$ Valency of metal = $\frac{2 \times V.D.}{Equivalent wt. of metal + 35.5}$ $=\frac{2 \times 94.8}{12 + 35.5} = 4$ \therefore Formula of compound = MCl₄ **19.** (d) \therefore 18 gm, H₂O contains = 2 gm H $\therefore 0.72 \, \text{gm} \, \tilde{\text{H}}_2 \text{O} \, \text{contains}$ $=\frac{2}{18} \times 0.72 \text{ gm} = 0.08 \text{ gm H}$ \therefore 44 gm CO₂ contains = 12 gm C \therefore 3.08 gm CO₂ contains $=\frac{12}{44}\times 3.08=0.84$ gmC $\therefore \mathbf{C}:\mathbf{H} = \frac{0.84}{12}:\frac{0.08}{1}$ = 0.07 : 0.08 = 7 : 8 \therefore Empirical formula = C₇H₈ **20.** (a) $\operatorname{Na_2CO_3} + 2\operatorname{HCl} \longrightarrow 2\operatorname{NaCl} + \operatorname{H_2O} + \operatorname{CO_2}_{1 \operatorname{mol}}$ $NaHCO_3 + HCl \longrightarrow NaCl + H_2O + CO_2$ 1 mol 1 mol $Na_2CO_3 + NaHCO_3 + NaCl + HCl \longrightarrow$ 848g 84g 68g (excess) 8 mol 1mol 1 kg washing soda $\longrightarrow \underset{fromNa_2CO_3}{\text{BCO}_2} + \underset{fromNaHCO_3}{\text{CO}_2}$ Thus, on complete reaction with HCl, 1kg of washing soda will evolve 9 mol of CO_2 . 21. (a) 2.6 has two significant figures. 0.260 has three significant figures. 0.002600 has four significant figures. 2.6000 has five significant figures. 22. (b) Given mass of solute (w) = 120 g mass of solvent (w) = 1000 gMol. mass of solute = 60 gdensity of solution = 1.12 g/ ml From the given data, Mass of solution = 1000 + 120 = 1120 g \therefore $d = \frac{\text{Mol. mass}}{V}$ or $V = \frac{\text{Mol. mass}}{d}$ Volume of solution $V = \frac{1120}{1.12} = 1000$ ml or = 1 litre Now molarity (M) = $\frac{W}{Mol. mass \times V(lit)} = \frac{120}{60 \times 1} = 2M$ 23. (d) In an unknown compounds containing N and H given % of H = 12.5%

 \therefore % of N = 100 - 12.5 = 87.5%

Element	Percentage	Atomic ratio	Simple ratio
Н	12.5%	$\frac{12.5}{1} = 12.5$	$\frac{12.5}{6.25} = 2$
Ν	87.5	$\frac{87.5}{14} = 6.25$	$\frac{6.25}{6.25} = 1$

 $2 \times$ vapour density = Mol. wt = mol wt. = $16 \times 2 = 32$. Molecular formula = $n \times$ empirical formula mass

$$n=\frac{32}{16}=2$$

	\therefore Molecular formula of the compound will be = (NH ₂) ₂							$NH_2)_2$
	$= N_2 H_4$							
24.	(a)	$BaCl_2$	+	H_2SO_4	\longrightarrow	BaSO ₄	+	2HCl
		208 g		98 g		233 g		73 g
		20.8 g		9.8 g		23.3 g		7.3 g
25.	(c)	5CO+1	20	$\rightarrow 5CO_2$	$_{2} + I_{2}$			

Moles of
$$I_2O_5 = \frac{25.4}{254}$$

= 0.01 = 0.05 moles of CO
Weight of CO = 0.05 × 28 = 1.4 g;
Weight of CO₂ = 2 - 1.4 = 0.6 g
Hence % of CO₂ = $\frac{0.6}{2}$ × 100 = 30%

26. (b)
$$PV = nRT$$
 $\therefore 5.6 \times 1 = \frac{7.5}{M.Wt.} \times 0.0821 \times 273$

M. Wt =
$$30.12$$
 Hence gas is NO.
27. (b) The required equation is

$$2KMnO_4 + 3H_2SO_4 \longrightarrow K_2SO_4 + 2MnSO_4 + 3H_2O + 5[O]$$
nascent oxygen

$$2\operatorname{Fe}(\operatorname{C}_2\operatorname{O}_4) + 3\operatorname{H}_2\operatorname{SO}_4 + 3[O] \longrightarrow$$
$$\operatorname{Fe}_2(\operatorname{SO}_4)_3 + 2\operatorname{CO}_2 + 3\operatorname{H}_2O$$

[O] required for 1 mol. of $Fe(C_2O_4)$ is 1.5, 5 [O] are obtained from 2 moles of $KMnO_4$ \therefore 1.5 [O] will be obtained from

$$= \frac{2}{5} \times 1.5 = 0.6 \text{ moles of KMnO}_4.$$
(c) $C_2H_4 + 3O_2 \longrightarrow 2CO_2 + 2H_2O$
 $28 \text{ g } 96 \text{ g}$
 $\therefore 28 \text{ g of } C_2H_4 \text{ undergo complete combustion by}$
 $= 96 \text{ g of } O_2$
 $\therefore 28 \text{ kg of } C_2H_4 \text{ undergo complete combustion by}$

 \therefore 2.8 kg of C₂H₄ undergo complete combustion by = 9.6 kg of O₂.

29. (a)
$$C_3H_8 + 5O_2 \rightarrow 3CO_2 + 4H_2O_3$$

a 3a

28.

$$C_{4}H_{10} + \frac{13}{2}O_{2} \rightarrow 4CO_{2} + 5H_{2}O$$
(3 - a) 4 (3 - a)
But, 3a + 4 (3 - a) = 10

$$\therefore$$
 a = 2 (Propane) and 3 – 2 = 1 (Butane)

30. (c)	Element	%	Relative no. of atoms	Simplest ratio of atoms
	С	49.3	49.3/12 = 4.1 $1.5 \times 2 = 3$	4.1/2.74 = 1.5
	Н	6.84	$6.84/1 = 6.84 = 2.5 \times 2 = 5$	6.84/2.74=2.5
,	0	43.86	43.86/16 = 2.74 $1 \times 2 = 2$	2.74/2.74 = 1

$$\therefore \quad \text{Empirical formula} = C_3 H_5 O_2$$

Empirical formula mass
$$= (3 \times 12) + (5 \times 1) + (2 \times 16) = 36 + 5 + 32 = 73$$

Molecular mass
$$= 2 \times \text{Vapour density}$$
$$= 2 \times 73 = 146$$

$$n = \frac{\text{molecular mass}}{\text{molecular mass}} = 146/73 = 2$$

 $n = \frac{146}{\text{empirical formula mass}} = 146/73 = 2$ Molecular formula = Empirical formula × 2 = (C₃H₅O₂)×2=C₆H₁₀O₄