Chapter 23

Principles Related to Practical Chemistry

ANALYSIS OF ACIDIC RADICALS

Acidic radicals are categorised into three groups. There is no such scheme which permits the separation of the common anions into major groups. The classification may be studied in two parts :

- 1. Those involving the identification by volatile products obtained on treatment with acids, and
- 2. Those dependent upon reactions in solution.

The part (1) is subdivided into

- (i) Gases evolved with dilute HCl or dil H₂SO₄ and
- (ii) Gases or vapours evolved with conc. H_2SO_4 .

The part (2) is subdivided into

- (i) Precipitation reactions and
- (ii) Oxidation and reduction in solution

Group Category of Acid Radicals

Group I :

Radicals which are detected by dilute H₂SO₄ or dilute HCl, by liberating a gas/volatile material

- (i) Carbonate
- (ii) Sulphite
- (iii) Sulphide
- (iv) Nitrite
- (v) Acetate

Group II :

Radicals which are detected by concentrated H_2SO_4

- (i) Chloride
- (ii) Bromide
- (iii) Iodide
- (iv) Nitrate
- (v) Oxalate

Group III :

Radicals which do not give any characteristic gas with dilute and concentrated $\rm H_2SO_4$

- (i) Sulphate
- (ii) Phosphate
- (iii) Borate
- (iv) Fluoride

Group	Group reagent	Group radicals	Colour & Observation	
1.	Dil. H₂SO₄ or dil HCl	(i) CO ₃ ²⁻	Brisk effervescence in cold with evolution of colourless and odourless gas i.e. CO_2	
		(ii) SO ₃ ²⁻	Colourless gas with suffocating odour (smell of burning sulphur) i.e. SO_2	
		(iii) S ⁻²	A colourless gas with smell of rotten eggs i.e. H_2S	
		(iv) NO ₂ ⁻	A light brown gas i.e. NO ₂	
		(v) CH₃COO ⁻	Colourless vapours with smell of vinegar.	
2.	Conc. H₂SO₄	(i) Cl [−]	Colourless gas with pungent smell which fumes in air.	
		(ii) Br ⁻	Reddish brown fumes which intensify on addition of MnO_2 .	
		(iii) I [−]	Violet pungent fumes evolved which intensify on addition of MnO_2 and condense as black.	
		(iv) NO ₃ ⁻	Light brown vapours with pungent smell and intensify on addition of Cu turnings.	
		(v) C ₂ O ₄ ²⁻	Colourless, odourless gas burns with blue flame at the mouth of test tube and turns lime water milky.	
3.	BaCl₂	SO4 ²⁻	White precipitate of $BaSO_4$, insoluble in conc. HNO_3 .	
	C₂H₅OH and conc. H₂SO₄	BO ₃ ^{3–}	Green edged blue flame of $(C_2H_5)_3BO_3$.	
	Conc. HNO₃ and (NH₄)₂MoO₄	PO4 ³⁻	A canary yellow precipitate of $(NH_4)_3PO_4.12MoO_3$.	
	Sand and conc. H₂SO₄	F ⁻	Waxy white deposit of silicic acid <i>i.e.</i> H ₄ SiO ₄ or Si(OH) ₄ .	

Identification of Acid Radicals

Group	:	I
Group acidic radicals	:	CO ₃ ^{2–} , SO ₃ ^{2–} , S ^{–2} , NO ₂ [–]
Group reagent	:	dil. HCl or dil. H_2SO_4

ANALYSIS OF BASIC RADICALS

Group - II :

Group - II is categorised as group-IIA and Group-IIB. The ions of this group do not react with HCl but precipitate with H_2S in dilute mineral acidic medium.

The Group-IIA sulphides of these cations are insoluble in ammonium polysulphide. The Group-IIB sulphides of these cations are soluble in ammonium polysulphide.

Group-IIAGroup-IIB(i)Mercury (II) ion(i)Arsenic (III) ion(ii)Bismuth (III) ion(ii)Antimony (III) ion(iii)Copper (II) ion(iii)Tin (II) ion

(iv) Cadmium (II) ion (iv) Tin (IV) ion

Group-III :

Group-III cations do not react with dil. HCI or with $\rm H_2S$ in dilute acidic medium.

Group-III cations precipitate with ammonium hydroxide

- (i) Iron (III) ion
- (ii) Aluminium (III) ion
- (iii) Chromium (III) ion

Group-IV :

Group-IV cations form sulphides with H_2S in presence of NH_4OH , these sulphides are insoluble in NH_4OH .

- (i) Zinc (II) ion
- (ii) Manganese (II) ion
- (iii) Cobalt (II) ion
- (iv) Nickel (II) ion

Group-V:

Group-V cations give precipitate with ammonium carbonate in presence of NH₄Cl in neutral or slightly alkaline medium.

- (i) Barium (II) ion
- (ii) Strontium (II) ion
- (iii) Calcium (II) ion

Group-VI :

Group-VI cation reacts with $\mathrm{Na_2HPO_4}$ to form precipitate

- (i) Magnesium (II) ion
- (ii) Sodium (I) ion
- (iii) Potassium (I) ion
- (iv) Lithium (I) ion

Group Zero :

Group zero cation *i.e.* NH_4^+ reacts with NaOH to give NH_3 gas

Group	Group Reagent	Basic Radicals	Colour and Composition of Precipitate
1.	Dil. HCl	Ag ⁺ Pb ⁺² Hg ₂ ²⁺	AgCl—White $PbCl_2$ —White Hg_2Cl_2 —White
2.	H₂S in presence of dil. HCI	Hg ⁺² Pb ⁺² Bi ⁺³ Cu ⁺² Cd ⁺² As ⁺³ Sb ⁺³ Sn ⁺² Sn ⁺⁴	$\begin{array}{llllllllllllllllllllllllllllllllllll$
3.	NH₄OH in presence of NH₄Cl	Fe ⁺³ Cr ⁺³ Al ⁺³	$Fe(OH)_3$ — Reddish Brown Cr(OH)_3 — Green Al(OH)_3 — White
4.	H₂S in presence of NH₄OH	Mn ⁺² Co ⁺² Ni ⁺²	MnS — Buff CoS — Black NiS — Black
5.	$(NH_4)_2CO_3$ in presence of NH_4OH	Ba ⁺² Sr ⁺² Ca ⁺²	$BaCO_3$ — White $SrCO_3$ — White $CaCO_3$ — White
6.	Na₂HPO₄	Mg ⁺²	$Mg(NH_4)PO_4$ — White
Zero	NaOH	NH_4^+	NH₃ gas