BINOMIAL THEOREM

SELECT THE CORRECT ALTERNATIVE (ONLY ONE CORRECT ANSWER)

1.	If the coefficients of x^7 &	x^8 in the expansion of $\begin{bmatrix} 2 \end{bmatrix}$	$+\frac{x}{2}$ are equal, then the	e value of n is -
	(A) 15	(B) 45	3] (C) 55	(D) 56
2.	The sum of the binomial is -	coefficients of $\begin{bmatrix} 2x + - \\ x \end{bmatrix}$ i	s equal to 256 . The con	stant term in the expansion
	(A) 1120	(B) 2110	(C) 1210	(D) none
3.	The sum of the co-efficien expansion of $(1 + x)^{2n}$ is b		$2x + 5x^2$) ⁿ is 'a' and the su	um of the co-efficients in the
	(A) a = b	(B) $a = b^2$	(C) $a^2 = b$	(D) ab = 1
4.	Given that the term of the equal to -	he expansion $(x^{1/3} - x^{-1/2})^{15}$ wh	iich does not contain x is 5 r	$m \ where \ \ m \ \in \ N \ , \ \ then \ \ m \ is$
	(A) 1100	(B) 1010	(C) 1001	(D) none
5.	The expression $\frac{1}{\sqrt{4x+1}} \left[\left(\frac{1}{\sqrt{4x+1}} \right)^2 \right]$	$\left[\frac{1+\sqrt{4x+1}}{2}\right]^7 - \left[\frac{1-\sqrt{4x+1}}{2}\right]$]] is a polynomial in x c	f degree -
	(A) 7	(B) 5	(C) 4	(D) 3
6.		, if the ratio of the seven is $1/6$, then n is equal to		ing of the expansion to the
	(A) 6	(B) 9	(C) 12	(D) 15
7.	The term independent of x	in the product $(4 + x + 7x^2)$	$\left(x-\frac{3}{x}\right)^{11}$ is -	
	(A) 7. ¹¹ C ₆	(B) 3 ⁶ . ¹¹ C ₆	(C) 3 ⁵ . ¹¹ C ₅	(D) -12. 2 ¹¹
0		•	0	
8.	If 'a' be the sum of the od $(1-x)^n$ is equal to -	d terms & 'b' be the sum of	the even terms in the	expansion of $(1 + x)^n$, then
ο.		d terms & 'b' be the sum of (B) a +b	the even terms in the (C) b – a	expansion of $(1 + x)^n$, then (D) none
o. 9.	(1 - x) ⁿ is equal to - (A) a - b		(C) b – a	(D) none
9.	$(1 - x)^n$ is equal to - (A) a - b The sum of the co-efficien (A) 2 . 6^{10}	 (B) a + b ts of all the even powers of a (B) 3 . 6¹⁰ 	(C) b – a x in the expansion of $(2x^2 - (C) - 6^{11})$	(D) none
	$(1 - x)^n$ is equal to - (A) a - b The sum of the co-efficient (A) 2 . 6^{10} The greatest terms of the o	(B) a + b ts of all the even powers of (B) $3 \cdot 6^{10}$ expansion $(2x + 5y)^{13}$ when	(C) $b - a$ x in the expansion of $(2x^2 - (C) 6^{11})$ x = 10, y = 2 is -	(D) none 3x + 1) ¹¹ is - (D) none
9.	$(1 - x)^n$ is equal to - (A) a - b The sum of the co-efficient (A) 2 \cdot 6 ¹⁰ The greatest terms of the of (A) ${}^{13}C_5 \cdot 20^8 \cdot 10^5$	(B) a + b ts of all the even powers of (B) $3 \cdot 6^{10}$ expansion $(2x + 5y)^{13}$ when (B) ${}^{13}C_6 \cdot 20^7 \cdot 10^4$	(C) $b - a$ x in the expansion of $(2x^2 - (C) 6^{11})$ x = 10, y = 2 is - (C) ${}^{13}C_4 \cdot 20^9 \cdot 10^4$	(D) none 3x + 1) ¹¹ is -
9.	$(1 - x)^n$ is equal to - (A) a - b The sum of the co-efficient (A) 2 \cdot 6 ¹⁰ The greatest terms of the of (A) ${}^{13}C_5 \cdot 20^8 \cdot 10^5$	(B) a + b ts of all the even powers of (B) $3 \cdot 6^{10}$ expansion $(2x + 5y)^{13}$ when (B) ${}^{13}C_6 \cdot 20^7 \cdot 10^4$	(C) $b - a$ x in the expansion of $(2x^2 - (C) 6^{11})$ x = 10, y = 2 is - (C) ${}^{13}C_4 \cdot 20^9 \cdot 10^4$	(D) none 3x + 1) ¹¹ is - (D) none
9. 10.	$(1 - x)^n$ is equal to - (A) a - b The sum of the co-efficient (A) 2 \cdot 6 ¹⁰ The greatest terms of the of (A) ${}^{13}C_5 \cdot 20^8 \cdot 10^5$	(B) a + b ts of all the even powers of (B) $3 \cdot 6^{10}$ expansion $(2x + 5y)^{13}$ when	(C) $b - a$ x in the expansion of $(2x^2 - (C) 6^{11})$ x = 10, y = 2 is - (C) ${}^{13}C_4 \cdot 20^9 \cdot 10^4$	(D) none 3x + 1) ¹¹ is - (D) none
9. 10. 11.	$(1 - x)^n$ is equal to - (A) a - b The sum of the co-efficient (A) 2 \cdot 6 ¹⁰ The greatest terms of the of (A) ¹³ C ₅ \cdot 20 ⁸ \cdot 10 ⁵ Number of rational terms in (A) 25	(B) a + b ts of all the even powers of t (B) 3 . 6^{10} expansion $(2x + 5y)^{13}$ when (B) $^{13}C_6$. 20^7 . 10^4 in the expansion of $(\sqrt{2} + 4x)^{13}$	(C) b - a x in the expansion of $(2x^2 - (C) 6^{11})$ x = 10, y = 2 is - (C) ${}^{13}C_4 \cdot 20^9 \cdot 10^4$ $\sqrt{3} \int_{100}^{100}$ is - (C) 27	 (D) none 3x + 1)¹¹ is - (D) none (D) none of these
9. 10. 11.	$(1 - x)^n$ is equal to - (A) a - b The sum of the co-efficient (A) 2 \cdot 6 ¹⁰ The greatest terms of the of (A) ¹³ C ₅ \cdot 20 ⁸ \cdot 10 ⁵ Number of rational terms in (A) 25	(B) a + b ts of all the even powers of (B) $3 \cdot 6^{10}$ expansion $(2x + 5y)^{13}$ when (B) ${}^{13}C_6 \cdot 20^7 \cdot 10^4$ in the expansion of $(\sqrt{2} + \frac{4}{3})^{13}$ (B) 26	(C) b - a x in the expansion of $(2x^2 - (C) 6^{11})$ x = 10, y = 2 is - (C) ${}^{13}C_4 \cdot 20^9 \cdot 10^4$ $\sqrt{3} \int_{100}^{100}$ is - (C) 27	 (D) none 3x + 1)¹¹ is - (D) none (D) none of these
9. 10. 11. 12.	$(1 - x)^n$ is equal to - (A) = a - b The sum of the co-efficient $(A) = 2 \cdot 6^{10}$ The greatest terms of the of $(A) = {}^{13}C_5 \cdot 20^8 \cdot 10^5$ Number of rational terms in (A) = 25 If $\binom{p}{q} = 0$ for $p < q$, when	(B) a + b ts of all the even powers of (B) 3 . 6^{10} expansion $(2x + 5y)^{13}$ when (B) ${}^{13}C_6$. 20^7 . 10^4 in the expansion of $(\sqrt{2} + \frac{4}{3})^{13}$ (B) 26 the p, q \in W, then $\sum_{r=0}^{\infty} {n \choose 2r} = (B) 2^{n-1}$	(C) $b - a$ x in the expansion of $(2x^2 - (C) 6^{11})$ x = 10, y = 2 is - (C) ${}^{13}C_4 \cdot 20^9 \cdot 10^4$ $\sqrt{3}^{100}$ is - (C) 27	 (D) none 3x + 1)¹¹ is - (D) none (D) none of these (D) 28

14.	If $n \in N \& n$ is even, then	$\frac{1}{1,(n-1)!} + \frac{1}{3!(n-3)!} + $	$\frac{1}{5!(n-5)!} + \dots + \frac{1}{(n-1)!}$	=
				1.
	(A) 2 ⁿ (B	$\frac{2^{n-1}}{n!}$	(C) $2^n n!$	(D) none of these
15.	Let $R = (5\sqrt{5} + 11)^{31} = I + f$,	where I is an integer ar	nd f is the fractional part of	FR, then R f is equal to -
	(A) 2 ³¹ (B	a) 3 ³¹	(C) 2 ⁶²	(D) 1
16.	The value of $\sum_{r=0}^{10} {\binom{10}{r}} {\binom{15}{14-r}}$	is equal to -		
	(A) ${}^{25}C_{12}$ (B)		(C) ${}^{25}C_{10}$	(D) ²⁵ C ₁₁
17	$\frac{C_0}{1} + \frac{C_1}{2} + \frac{C_2}{3} + \dots + \frac{C_{10}}{11}$		10	
17.	$\frac{1}{1} + \frac{2}{2} + \frac{3}{3} + \dots + \frac{1}{11}$	is equal to (here $C_r = 100$, , ,)	
	(A) $\frac{2^{11}}{11}$ (B	$\frac{2^{11}-1}{11}$	(C) $\frac{3^{11}}{11}$	(D) $\frac{3^{11}-1}{11}$
	$\frac{n}{2}$ 1 $\frac{n}{2}$ r	11	11	11
18.	If $a_n = \sum_{r=0}^n \frac{1}{{}^nC_r}$, then $\sum_{r=0}^n \frac{r}{{}^nC_r}$	equals -		[JEE 98]
		3) n a _n	(C) n a _n /2	(D) none of these
19.	The last two digits of the nur			
CEL I		43	(C) 29	(D) 01
<u>SELE</u> 20.	If the coefficients of three cor			
20.	n is divisible by -			
		s) 5	(C) 3	(D) 11
21.	In the expansion of $\left(\sqrt[3]{4} + \frac{1}{\sqrt[4]{6}}\right)$	-		
	(A) the number of irrational te	erms = 19	(B) middle term is irrational	1
	(C) the number of rational term		(D) 9 th term is rational	
22.	If $(1 + x + x^2 + x^3)^{100} = a_0$ (A) $a_0 + a_1 + a_2 + a_3 + \dots + a_n$			
	(B) $a_0 + a_2 + a_4 + \dots + a_{30}$			
	(C) coefficients equidistant from			
	(D) $a_1 = 100$			
23.	The number 101 ¹⁰⁰ - 1 is divi (A) 100 (B	isible by - 8) 1000	(C) 10000	(D) 100000
				(D) 100000
24.	If $(9 + \sqrt{80})^n = I + f$ when (A) I is an odd integer	re I, n are integers and		
	(A) I is an odd integer		(B) I is an even integer	
	(C) $(I + f) (1 - f) = 1$		(D) $1 - f = (9 - \sqrt{80})^n$	
25.	In the expansion of $\left(x^{2/3} - \frac{1}{2}\right)$	$\left(\frac{1}{\sqrt{x}}\right)^{30}$, a term containing	ng the power x^{13} -	
	(A) does not exist		(B) exists and the co-efficie	
	(C) exists and the co-efficient	is divisible by 63	(D) exists and the co-efficient	ent is divisible by 65

 ${\bf 26.}$. The co-efficient of the middle term in the expansion of $(1+x)^{2n}$ is -

(A)
$$\frac{1.3.5.7....(2n-1)}{n!} 2^n$$

(C) $\frac{(n+1)(n+2)(n+3)\dots(2n-1)(2n)}{1.2.3\dots(n-1)n}$

(B)
$${}^{2n}C_n$$

(D)
$$\frac{2.6.10.14.....(4n-6)(4n-2)}{1.2.3.4....(n-1).n}$$

	ANSWER KEY										
Que.	1	2	3	4	5	6	7	8	9	10	
Ans.	C	Α	Α	С	D	В	В	A	В	С	
Que.	11	12	13	14	15	16	17	18	19	20	
Ans.	В	В	С	В	С	D	В	С	D	B,D	
Que.	21	22	23	24	25	26					
Ans.	A,B,C,D	A,B,C,D	A,B,C	A,C,D	B,C,D	A,B,C,D					

EXTRA PRACTICE QUESTIONS ON BINOMIAL THEOREM

SELE	LECT THE CORRECT ALTERNATIVES (ONE OR MORE THAN ONE CORRECT ANSWERS)								
1.	The coefficient of x^r (0 \leq	$\leq r \leq n-1$) in the expression	n :						
	$(x + 2)^{n-1} + (x + 2)^{n-2}$. $(x + 1)^{n-2}$) + $(x + 2)^{n-3}$. $(x + 1)$ +	+ $(x + 1)^{n-1}$ is -						
	(A) ${}^{n}C_{r}(2^{r}-1)$	(B) ${}^{n}C_{r}(2^{n-r}-1)$	(C) ${}^{n}C_{r}(2^{r}+1)$	(D) ${}^{n}C_{r}(2^{n-r}+1)$					
2.	If $(1 + x + x)^{25} = a_0 + a_1 x + a_2 x$	$a_2 x + \dots + a_{50} \cdot x^{50}$ then	$a_0 + a_2 + a_4 + \dots + a_{50}$	is -					
	(A) even		(B) odd & of the form 3r	1					
	(C) odd & of the form (3r	n — 1)	(D) odd & of the form (3)	n + 1)					
3.	The co-efficient of x^4 in the	e expansion of (1 – x + $2x^2$) ¹² is -						
	(A) ${}^{12}C_3$	(B) ¹³ C ₃	(C) ${}^{14}C_4$	(D) ${}^{12}C_3 + 3 {}^{13}C_3 + {}^{14}C_4$					
4.	Let $(1 + x^2)^2 (1 + x)^n = A_0$	$+ A_1 x + A_2 x^2 + \dots$ If A_0	, A_1 , A_2 are in A.P. then the	ne value of n is -					
	(A) 2	(B) 3	(C) 5	(D) 7					
	n – r								
5.	If $\sum_{k=1}^{n-r} {}^{n-k}C_r = {}^{k}C_y$ then \cdot								
	(A) $x = n + 1$; $y = r$		(B) $x = n$; $y = r + 1$						
	(C) $x = n$; $y = r$		(D) $x = n + 1$; $y = r + 1$	1					
6.	Co-efficient of α^t in the exp	pansion of (α + p) ^{m-1} + (α +	$p)^{m-2} (\alpha + q) + (\alpha + p)^{m-3} (\alpha$	$(\alpha + q)^2 + (\alpha + q)^{m-1}$ where					
	$\alpha \neq -q$ and $p \neq q$ is -								
	${}^{m}C_{t}\left(p^{t}-q^{t}\right)$	${}^{m}C_{\star}(p^{m-t}-q^{m-t})$	${}^{m}C_{+}(p^{t}+q^{t})$	${}^{m}C_{t}\left(p^{m-t}+q^{m-t}\right)$					
	(A) $\frac{p-q}{p-q}$	(B) $\frac{p-q}{p-q}$	(C) $\frac{{}^{\mathrm{m}}\mathrm{C}_{\mathrm{t}}\left(\mathrm{p}^{\mathrm{t}}+\mathrm{q}^{\mathrm{t}}\right)}{\mathrm{p}-\mathrm{q}}$	(D) $\frac{1}{p-q}$					
7.	The co-efficient of x^{401} in	the expansion of $(1 + x + x)$	x^{2} + + x^{9}) $^{-1}$, ($ x < 1$) is	-					
••	(A) 1	(B) -1	(C) 2	(D) – 2					
			() -	(-) -					
8.	Number of terms free from	n radical sign in the expansi	on of $(1 + 3^{1/3} + 7^{1/7})^{10}$ is	-					
	(A) 4	(B) 5	(C) 6	(D) 8					
-		(15) (30)(15)	(30)(15)						
9.	The value r for which $\begin{pmatrix} 0 \\ r \end{pmatrix}$	$\left(\begin{pmatrix} r \\ r \end{pmatrix} + \begin{pmatrix} 0 \\ r-1 \end{pmatrix} \begin{pmatrix} 1 \\ 1 \end{pmatrix} + \dots + \begin{pmatrix} 0 \\ r-1 \end{pmatrix} \right) \right)$	$+\binom{30}{0}\binom{15}{r}$ is maximum is/	are -					
	(A) 21	(B) 22	(C) 23	(D) 24					
		(D) 22	(C) 23	D) 24					
10.	If the 6 th term in the exp	coansion of $\left(\frac{3}{2} + \frac{x}{2}\right)^n$ when	n x = 3 is numerically grea	test then the possible integral					
	value(s) of n can be -	(2 5)							
	(A) 11	(B) 12	(C) 13	(D) 14					
11.		$(1 + y)^n (1 + z)^n$, the sum	n of the co-efficients of the te						
	(A) $n^3 C_r$	(B) ⁿ C _{r³}	(C) ${}^{3n}C_r$	(D) 3. ${}^{2n}C_r$					
	\mathcal{C}_r	$(D) = C_{r^3}$	$(\mathbf{C}) = \mathbf{C}_{\mathbf{r}}$	$(D) \ 0. \ C_r$					
1.0	$\binom{35}{6} + \sum_{r=0}^{10} \binom{45-r}{5} = \binom{x}{y}$								
12.	$\begin{pmatrix} 6 \end{pmatrix} \begin{pmatrix} 2 \\ r=0 \end{pmatrix} \begin{pmatrix} 5 \end{pmatrix} \begin{pmatrix} -1 \\ y \end{pmatrix}$, then x – y is equal to -							
	(A) 39	(B) 29	(C) 52	(D) 40					
	s n								
13.	The value of $\sum_{r=0}^{s} \sum_{s=1}^{n} {}^{n}C_{s}^{s}C_{s}$	C _r is -							
	$\begin{array}{c} r=0 \ s=1 \\ r\leq s \end{array}$								
	(A) 3 ⁿ - 1	(B) $3^n + 1$	(C) 3 ⁿ	(D) $3(3^n - 1)$					

14.	In the expansion of $(x^3 + 3)$.	$2^{-\log_{\sqrt{2}}\sqrt{x^3}}\Big)^{11}$ -					
	(A) there appears a term with	n the power x ²					
	(B) there does not appear a te	term with the power x^2					
	(C) there appears a term with	1 the power $$ x $^{-3}$					
	(D) the ratio of the co-efficient	of x^3 to that of x^{-3} is	$\frac{1}{3}$				
15.	The sum of the series $(1 + 1)$	1).1! + (2 + 1).2! + (3 + 1).	.3! +	+ (n + 1).n! is -			
	(A) (n + 1) . (n + 2)! (E				(D)	non	e of these
16.	The binomial expansion of $\left(x \right)$	$\left[x^{k} + \frac{1}{x^{2k}}\right]^{3n}$, $n \in N$ co	ontaii	ns a term independent c	fx-		
	(A) only if k is an integer		(B)	only if k is a natural n	umber	ſ	
	(C) only if k is rational		(D)	for any real k			
17.	Let $n \in N$. If $(1 + x)^n = a_0^n + a_0^n$	$a_1x + a_2x^2 + \dots + a_nx^n$	and	$a_{n-3}, a_{n-2}, a_{n-1}$ are in AP	, ther	1 -	
	(A) $a_1^{}$, $a_2^{}$, $a_3^{}$ are in AP			$a_1^{}$, $a_2^{}$, $a_3^{}$ are in HP			
	(C) $n = 7$			n = 14			
18.	Set of values of r for which,	${}^{18}C_{r-2} + 2 \ . \ {}^{18}C_{r-1} + {}^{18}C_{r}$	≥ 20	C ₁₃ contains -			
	(A) 4 elements (E	B) 5 elements	(C)	7 elements	(D)	10	elements

ANSWER KEY										
Que.	1	2	3	4	5	6	7	8	9	10
Ans.	В	А	D	A,B	В	В	В	С	B,C	B,C,D
Que.	11	12	13	14	15	16	17	18		
Ans.	С	D	А	B,C,D	В	D	A,C	С		