### Chapter 4

# Principle of Mathematical Induction

### Solutions (Set-1)

HEL FOURIES Linited

#### Very Short Answer Type Questions :

1. Let P(n) denotes the statement " $2^n \ge n!$ . Show that P(1), P(2) and P(3) are true but P(4) is not true.

**Sol.** Here given that  $P(n) : 2^n > n!$ 

- $\Rightarrow P(1) = 2^1 > 1!$ 
  - ⇒ 2 > 1
- $\therefore$  P(1) is true.

$$P(2) = 2^2 > 2$$

- $\Rightarrow$  4 > 2
- ∴ *P*(2) is true.

Now 
$$P(4) = 2^4 = 16$$

 $\therefore 2^4 \ge 4!$ 

- $\therefore$  P (4) is false.
- 2. Give an example of a statement P(n) which is true for all n.

**Sol.** P(n) : 1 + 2 + 3 + ... +  $n = \frac{n(n+1)}{2}$  is true for all n.

- 3. Let P(n) denote the statement " $2^{3n} 1$  is a multiple of 7". Show that
  - (i) *P*(1), *P*(2) and *P*(3) are true.
  - (ii) If P(m) is true, then P(m + 1) is also true.
- **Sol.** (i)  $P(1) = 2^{3 \times 1} 1 = 7$  is a multiple of 7

 $P(2) = 2^{3\times 2} - 1 = 63$  is a multiple of 7

 $P(3) = 2^9 - 1 = 511$  is a multiple of 7

Hence P(1), P(2) and P(3) are true for the given statement.

Aakash Educational Services Limited - Regd. Office : Aakash Tower, 8, Pusa Road, New Delhi-110005 Ph.011-47623456

of Astash

#### 2 Principle of Mathematical Induction

...(i)

(ii) P(m) is true  $\Rightarrow 2^{3m} - 1$  is a multiple of 7

 $\Rightarrow 2^{3m} - 1 = 7\lambda$ , for some integer  $\lambda$ .  $\Rightarrow 2^{3m} = 7\lambda + 1$ Now,  $2^{3(m+1)} - 1 = 2^{3m+3} - 1 = 2^{3m}$ ,  $2^3 - 1$  $= (7\lambda + 1)8 - 1$ 

=  $56\lambda$  + 7 = 7( $8\lambda$  + 1) is a multiple of 7

Hence if P(m) is true, then P(m + 1) is also true.

- Let P(n) be the statement : "n(n + 1) (n + 2) is a multiple of 12". Show that P(3) and P(4) are true but P(5)4. is not true.
- **Sol.**  $P(3) = "3 \times 4 \times 5$  is a multiple of 12" *i.e* "60 is a multiple of 12", which is true.
  - $P(4) = 4 \times 5 \times 6$  is a multiple of 12
    - = 120 is a multiple of 12, which is true
  - $P(5) = 5 \times 6 \times 7$  is a multiple of 12
    - = 210 is a multiple of 12 which is false.
- Let P(n) denote the statement : " $\frac{n(n+1)}{6}$  is a natural number". Show that P(2) and P(3) are true but P(4) is 5. not true.
- **Sol.**  $P(2) = \frac{2(2+1)}{6} = \frac{6}{6} = 1$  is a natural number, which is true

$$P(3) = \frac{3(3+1)}{6} = \frac{3 \times 4}{6} = 2$$
 is a natural number, which is true

$$P(4) = \frac{4 \times (4+1)}{6} = \frac{20}{6}$$
 is a natural number, which is false.

- Let P(n) denote the statement : " $2^n \ge 3n$ ". Show that if P(m) is true, then P(m + 1) is also true. 6.
- **Sol.** P(m) is true  $\Rightarrow 2^m \ge 3m$ , multiplying both sides by 2 Divisions

 $2^{m+1} \ge 6m$ 

- $\Rightarrow 2^{m+1} \ge 3m + 3m$
- $2^{m+1} \ge 3m+3$ Since  $m \ge 1$  $\Rightarrow$
- $2^{m+1} \ge 3(m+1)$  $\Rightarrow$
- P(m+1) is true  $\Rightarrow$

Let P(n) denote the statement " $n^2 - n + 41$  is prime". Show that P(1) and P(2) are true but P(41) is not true. 7. **Sol.** P(n) :  $n^2 - n + 41$  is prime

- P(1) is "1<sup>2</sup> 1 + 41 is prime
- *i.e* 41 is prime, which is true

 $P(2) = "2^2 - 2 + 41$  is prime"

8.

9.

*i.e* 43 is prime, which is true. So, P(1) and P(2) is true. However, P(41) is " $41^2 - 41 + 41$  *i.e*  $41^2$  is prime, which is not true. Let P(n): "4<sup>*n*</sup> > *n*". Show that if P(m) is true, then P(m + 1) is also true,  $m \in \mathbb{N}$ . **Sol.** Let P(m) be true  $\Rightarrow 4^m > m$ ...(i) To prove : P(m + 1) *i.e*  $4^{m+1} > m + 1$ Multiplying both sides of (i) by 4, we get  $4^m \times 4 > 4m \Rightarrow 4^{m+1} > m + 3m > m + 1$  $\Rightarrow$  4<sup>*m*+1</sup> > *m* + 1  $\Rightarrow$  *P*(*m* + 1) is true. Using the principle of mathematical induction prove that for all  $n \in \mathbb{N}$  $4 + 8 + 12 + \dots$  to *n* terms = 2n(n + 1). **Sol.**  $n^{\text{th}}$  term of series  $t_n = 4 + (n - 1)4 = 4n$ So we have to prove

P(n): "4 + 8 + 12 + ... + 4n = 2n(n + 1)"

$$P(n): "4 + 8 + 12 + ... + 4n = 2n(n + 1)"$$

$$P(m) \text{ is true} \Rightarrow 4 + 8 + 12 + ... + 4m = 2m (m + 1), m \in \mathbb{N}.$$
Adding  $4(m+1)$  to both sides, we get
$$4 + 8 + 12 + ... + 4m + 4(m + 1) = 2m(m + 1) + 4(m + 1)$$

$$= 2(m + 1) (m + 2)$$

$$\therefore P(m + 1) \text{ is true}.$$
Hence  $P(x)$  is true for all  $n \in \mathbb{N}$ .
By the principle of mathematical induction prove that
$$1 + 2 + 3 + .... n = \frac{n(n+1)}{2}, n \in \mathbb{N}.$$
Given that
$$P(n) = 1 + 2 + 3 + ... + n = \frac{n(n+1)}{2}$$
Let  $P(k)$  is true for all  $k \in \mathbb{N}$ .

Adding 4(m+1) to both sides, we get

$$4 + 8 + 12 + ... + 4m + 4(m + 1) = 2m(m + 1) + 4(m + 2)$$

 $\therefore$  P(m + 1) is true.

Hence P(x) is true for all  $n \in \mathbb{N}$ .

10. By the principle of mathematical induction prove that

$$1 + 2 + 3 + \dots n = \frac{n(n+1)}{2}, n \in \mathbb{N}$$

Sol. Given that

$$P(n) = 1 + 2 + 3 + \dots + n = \frac{n(n+1)}{2}$$

Let P(k) is true for all  $k \in \mathbb{N}$ .

*i.e* 
$$1 + 2 + 3 + \dots + k = \frac{k(k+1)}{2}$$

Now, P(k + 1) = P(k) + (k + 1)

$$= \frac{k(k+1)}{2} + (k+1) = (k+1)\left[\frac{k}{2} + 1\right]$$
$$= \frac{(k+1)(k+2)}{2}$$

 $\Rightarrow$  P(k + 1) is true.

Then, by the principle of mathematical induction P(n) is true for all natural number n.

### Short Answer Type Questions :

11. By using PMI, prove that for all  $n \in \mathbb{N}$ ,  $\frac{1}{1 \cdot 4} + \frac{1}{4 \cdot 7} + \frac{1}{7 \cdot 10} + \dots + \frac{1}{(3n-2)(3n+1)} = \frac{n}{3n+1}$ .

Sol. 
$$P(k + 1) = \frac{k}{3k+1} + \frac{1}{(3k+1)(3k+4)} = \frac{1}{(3k+1)} \left[ k + \frac{1}{3k+4} \right]$$
  
$$= \frac{1}{3k+1} \left[ \frac{3k^2 + 4k + 1}{3k+4} \right]$$
$$= \frac{1}{(3k+1)} \left[ \frac{(k+1)(3k+1)}{3k+4} \right]$$
$$= \frac{k+1}{3k+4}$$

Hence P(n) is true for all natural number n.

12. By using PMI, prove that  $10^{2n-1} + 1$  is divisible by 11.

#### Sol. Here

P(n):  $f(n) = 10^{(2n-1)} + 1$  is divisible by 11

P(1): f(1) = 10' + 1 = 11 is divisible by 11

$$\Rightarrow$$
 P(1) is true

Let 
$$P(k)$$
:  $f(k) = 10^{2k-1} + 1$  is divisible by 11

Hence 
$$f(k) = 117$$

Now,

$$P(k + 1) = f(k + 1) = 10^{2(k + 1) - 1} + 1$$
  
= 10<sup>2k + 1</sup> + 1 = 10<sup>2k-1</sup>. 100 + 1  
= (99.10<sup>2k-1</sup>) + (10<sup>2k-1</sup> + 1)  
= 99.10<sup>(2k-1)</sup> + 11\lambda  
= 11 [9.10<sup>2k-1</sup> +  $\lambda$ ] is divisible by  
 $\Rightarrow P(k + 1)$  is also divisible by 11

- :. By the principle of mathematical induction P(n) is true for all natural number n.
- 13. By using PMI, prove that  $5^{2n} 1$  is divisible by 24.

**Sol.** Let P(n) : "5<sup>2n</sup> – 1 is divisible by 24"

Now, P(1) means  $5^{2\times 1} - 1 = 24$  is divisible by 24,

Which is true.

So, P(1) is true.

Let P(k) be true for  $k \in \mathbb{N}$ . *i.e*  $5^{2k} - 1$  is divisible by 24.

$$\Rightarrow 5^{2k} - 1 = 24 \lambda$$

To prove : P(k + 1) is true.

 $\mathbb{N}$  .

Now, 
$$5^{2(k+1)} - 1 = 5^{2k} \cdot 5^2 - 1$$
  
= 25.5<sup>2k</sup> - 1.  
= (24.5<sup>2k</sup>) + (5<sup>2k</sup> - 1).  
= 24.5<sup>2k</sup> + 24λ  
= 24(5<sup>2k</sup> + λ) is divisible by 24.  
So,  $P(k) \Rightarrow P(k + 1)$ , Also  $P(1)$  is true.  
Therefore, by the principle of mathematical induction  $P(n)$  is true for all  $n \in \mathbb{N}$ .  
14. By using PMI, prove that  $n(n + 1) (2n + 1)$  is divisible by 6.  
Sol.  $P(k) = k(k + 1) (2k + 1) = 6\lambda$   
 $\Rightarrow P(k + 1) = (k + 1) (k + 2) \{2(k + 1) + 1\}$   
 $= (k + 1) (k + 2) \{(2k + 1) + 2\}$   
 $= (k + 1) (k + 2) \{(2k + 1) + 2\}$   
 $= (k + 1) (2k + 1) + 2(k + 1) (k + 2)$   
 $= k(k + 1) (2k + 1) + 2(k + 1) (2k + 1) + 2(k + 1) (k + 2)$   
 $= k(k + 1) (2k + 1) + 2(k + 1) [2k + 1 + k + 2]$   
 $= k(k + 1) (2k + 1) + 6(k + 1) (k + 1)$   
 $= 6[\lambda + (k + 1)^2]$  is divisible by 7.  
Sol.  $P(k)$ :  $2^{3k} - 1$  is divisible by 7  
 $\Rightarrow 2^{3k} - 1 = 7\lambda$ . for some integer  $\lambda$   
 $P(k + 1) = 2^{3(k+1)} - 1 = 2^{3k} \cdot 2^3 - 1$   
 $= 2^{3k} (7 + 1) - 1 = 7 \cdot 2^{3k} + 2^{3k} - 1 = 7 \cdot 2^{3k} + 7\lambda$ .  
 $\Rightarrow P(k + 1) = 7(2^{3k} + \lambda)$   
 $\Rightarrow P(k + 1) = 7(2^{3k} + \lambda)$   
 $\Rightarrow P(k + 1)$  is divisible by 7.  
16. By the help of PMI, prove that  $n(n + 1)$  is multiple of 2 or  $n^2 + n$  is an even number.

- 15. Show that by using PMI,  $2^{3n} 1$  is divisible by 7.
- **Sol.** P(k):  $2^{3k} 1$  is divisible by 7

$$\Rightarrow 2^{3k} - 1 = 7\lambda$$
. for some integer  $\lambda$ 

$$P(k + 1) = 2^{3(k+1)} - 1 = 2^{3k} \cdot 2^3 - 1$$

$$= 2^{3k} (7 + 1) - 1 = 7 \cdot 2^{3k} + 2^{3k} - 1 = 7 \cdot 2^{3k} + 7\lambda$$

$$\Rightarrow P(k+1) = 7(2^{3k}+\lambda)$$

P(k + 1) is divisible by 7.  $\Rightarrow$ 

16. By the help of PMI, prove that n(n + 1) is multiple of 2 or  $n^2 + n$  is an even number. **Sol.** P(k) : k(k + 1) is divisible by 2  $\Rightarrow P(k) = 2\lambda$  for some integer  $\lambda$ 

**Sol.** 
$$P(k)$$
 :  $k(k + 1)$  is divisible by 2

$$\Rightarrow$$
  $P(k) = 2\lambda$  for some integer  $\lambda$ 

$$P(k + 1) = (k + 1) (k + 2)$$
  
= k(k + 1) + 2(k + 1)  
= 2\lambda + 2(k + 1)  
= 2(\lambda + k + 1)

P(k + 1) is divisible by 2.  $\Rightarrow$ 

17. By using the principle of mathematical induction prove that for all  $n \in \mathbb{N}$ 

$$1 + 4 + 7 + \dots + 3n - 2 = \frac{1}{2}n(3n-1)$$

**Sol.** Let 
$$P(n) = 1 + 4 + 7 + ... + (3n - 2) = \frac{1}{2}n(3n - 1)$$

...(i)

$$P(1): 1 = \frac{1}{2} \cdot 1(3 \times 1 - 1) \Rightarrow 1 = \frac{1}{2} \cdot 1 \times 2 \Rightarrow 1 = 1 \text{ which is true.}$$
  
$$\therefore P(1) \text{ is true}$$

Let 
$$P(k) = 1 + 4 + 7 + \dots + (3k - 2) = \frac{1}{2}k(3k - 1)$$
 is true for  $k \in \mathbb{N}$ .

$$P(k + 1) = P(k) + (3k + 1)$$
  
=  $\frac{1}{2}k(3k - 1) + (3k + 1)$   
=  $\frac{1}{2}[3k^2 + 5k + 2] = \frac{1}{2}(k + 1)(3k + 2)$   
=  $\frac{1}{2}(k + 1)[3(k + 1) - 1]$ 

P(k + 1) is also true  $\Rightarrow$ 

P(k) true  $\Rightarrow P(k + 1)$  is true and P(1) is also true, therefore by the principle of mathematical induction *.*... P(n) is true for all  $n \in \mathbb{N}$ . 

18. By using the principle of mathematical induction, prove that

$$2 + 3 \cdot 2 + 4 \cdot 2^2 + \dots + (n + 1)2^{n-1} = n \cdot 2^n$$
 for all  $n \in \mathbb{N}$ 

**Sol.** Let 
$$P(n)$$
: 2 + 3·2 + 4·2<sup>2</sup> + ... +  $(n + 1)2^{n-1} = n \cdot 2^n$ 

$$P(1)$$
 means 2 = 1.2

- 2 = 2, which is true  $\Rightarrow$
- P(1) is true  $\Rightarrow$

Let us assume that P(k) is true for all  $k \in \mathbb{N}$ 

*i.e* 
$$2 + 3 \cdot 2 + 4 \cdot 2^2 + ... + (k + 1) 2^{k-1} = k \cdot 2^k$$

Now to prove P(k + 1) is true

$$P(k + 1) = P(k) + (k + 2)2^{k}$$

$$= k2^{k} + (k + 2) \cdot 2^{k} = 2^{k}[k + k + 2]$$

$$= (k + 1) \cdot 2^{k} \cdot 2$$

$$= (k + 1)2^{k+1}$$

$$\Rightarrow P(k + 1) \text{ is also true}$$

Hence, by induction, P(n) is true for all  $n \in \mathbb{N}$ .

#### Long Answer Type Questions :

By using the principle of mathematical induction, prove the following for all  $n \in \mathbb{N}$ .

- 19.  $12^{n} + 2 \cdot 5^{n-1}$  is divisible by 7.
- **Sol.** Let P(n) denote the statement:  $12^n + 2 \cdot 5^{n-1}$  is divisible by 7

Now, P(1) means 12 + 2.51-1

Therefore P(1) is true.

Let us assume that P(k) is true *i.e*  $12^{k} + 2 \cdot 5^{k-1} = 7\lambda$ we shall prove that P(k + 1) is also true, *i.e*  $12^{k+1} + 2 \cdot 5k$  is also divisible by 7 Now,  $12^{k+1} + 2 \cdot 5^{k} = 12 \cdot 12^{k} + 2 \cdot 5 \cdot 5^{k-1}$   $= (7 + 5) \cdot 12^{k} + 2 \cdot 5 \cdot 5^{k-1}$   $= 7 \cdot 12^{k} + 5 \cdot 12^{k} + 2 \cdot 5 \cdot 5^{k-1}$   $= 7 \cdot 12^{k} + 5[12^{k} + 2 \cdot 5^{k}]$   $= 7 \cdot 12^{k} + 5[12^{k} + 2 \cdot 5^{k}]$   $= 7 \cdot 12^{k} + 5 \times 7\lambda$  $= 7[12^{k} + 5\lambda]$ 

 $\Rightarrow$  *P*(*k* + 1) is divisible by 7.

Hence, by the principle of mathematical induction. P(n) is true for all  $n \in \mathbb{N}$ .

20. The sum of cubes of three consecutive natural numbers is divisible by 9.

**Sol.**  $P(k + 1) = (k + 1)^3 + (k + 2)^3 + (k + 3)^3$ 

$$= (k + 1)^{3} + (k + 2)^{3} + k^{3} + 9k^{2} + 27k + 27$$
$$= k^{3} + (k + 1)^{3} + (k + 2)^{3} + 9(k^{2} + 3k + 3)$$
$$= P(k) + 9(k^{2} + 3k + 3)$$

Since P(k) is divisible by 9

Therefore  $P(k) + 9(k^2 + 3k + 3)$  is also divisible by 9

$$\Rightarrow P(k + 1)$$
 is divisible by 9

21. 
$$15^{2n-1} + 1$$
 is divisible by 16.

**Sol.** 
$$P(k + 1) = 15^{2k+1} + 1 = 15^2 \times 15^{2k-1} + 1$$

$$= (152 - 1)152k-1 + 152k-1 + = 224 \cdot 152k-1 + (152k-1 + 1)$$

$$= 224 \cdot 15^{2k-1} + P(k)$$

Since P(k) is divisible by 16

Hence  $P(k + 1) = 224 \cdot 15^{2k-1} + P(k)$  is also divisible by 16

22.  $n(n^2 - 1)$  is divisible by 24 where *n* is an odd number greater than 2.

**Sol.**  $P(k + 2) = (k + 2) \{(k + 2)^2 - 1\} = (k + 2) [k^2 + 4k + 3]$ 

$$= k^{3} + 6k^{2} + 11k + 6$$
$$= k(k^{2} - 1) + 6(k + 1)^{2}$$

as k is odd, (k + 1) would be even and  $6(k + 1)^2$  would be divisible by 24.

23.  $(7^{2n} + 2^{3n-1} \cdot 3^{n-1})$  is divisible by 25.

**Sol.** 
$$P(k + 1) = 7^{2k+2} + 2^{3k} \cdot 3^k = 7^{2k} \cdot 49 + 2^{3k-3} \cdot 8 \cdot 3^{k-1} \cdot 3$$

$$= 25 \left[ 2 \cdot 7^{2k} + 2^{3k-3} \cdot 3^{k-1} \right] - \left[ 7^{2k} + 2^{3k-3} \cdot 3^{k-1} \right]$$

Since  $7^{2k} + 2^{3k-3} 3^{k-1}$  is divisible by 25

 $\therefore$  *P*(*k* + 1) is divisible by 25

24. 
$$3 \cdot 2^2 + 3^2 2^3 + 3^3 2^4 + \dots + 3^n 2^{n+1} = \frac{12}{5} (6^n - 1).$$
  
**Sol.**  $P(n): 3 \cdot 2^2 + 3^2 \cdot 2^3 + 3^2 \cdot 2^4 + \dots + 3n \cdot 2^{n+1} = \frac{12}{5} (6^n - 1)$   
 $P(1): 3 \cdot 2^2 = \frac{12}{5} (6 - 1) \implies 12 = 12$ , which is true

Therefore P(1) is true.

Let P(k) be true,  $k \in \mathbb{N}$ 

$$3 \cdot 2^2 + 3^2 \cdot 2^3 + \dots + 3^k 2^{k+1} = \frac{12}{5} (6^k - 1)$$

Consider P(k + 1)

$$3 \cdot 2^2 + 3^2 \cdot 2^3 + \dots + 3^k \cdot 2^{k-11} + 3^{k+1} \cdot 2^{k+2} = \frac{12}{5} \left( 6^{k+11} - 1 \right)^{k+1}$$

L.H.S = 
$$\frac{12}{5}(6^{k}-1)+3^{k}\cdot 3\cdot 2^{k}\cdot 2^{2}$$
  
=  $\frac{12}{5}(6^{k}-1)+6^{k}\cdot 12$   
=  $\frac{12}{5}(6^{k}-1+6^{k}\cdot 5)$   
=  $\frac{12}{5}[(5+1)6^{k}-1]$   
=  $\frac{12}{5}[6\cdot 6^{k}-1]=\frac{12}{5}[6^{k+1}-1]$   
 $\therefore P(k) \text{ is true } \Rightarrow P(k+1) \text{ is true}$ 

File Contractions Hence, by the principle of mathematical induction P(n) is true for  $n \in \mathbb{N}$ .

25. 
$$1 + 5 + 9 + 13 + \dots + (4n - 3) = n(2n - 1)$$
.  
Sol.  $P(n)$ :  $1 + 5 + 9 + \dots + (4n - 3) = n(2n - 1)$   
 $P(1)$ :  $1 = 1 \cdot (2 - 1) \Rightarrow 1 = 1$ , which is true.  
Let  $P(k)$  be true, *i.e*,  
 $1 + 5 + 9 + \dots + (4k - 3) = k(2k - 1)$   
To show  $P(k + 1)$  is true  
*i.e.*  $1 + 5 + \dots + (4k - 3) + (4k + 1) = (k + 1) (2k + 1)$   
consider LHS =  $k(2k - 1) + (4k + 1)$   
 $= 2k^2 + 3k + 1$   
 $= 2k^2 + 2k + k + 1$   
 $= 2k(k + 1) + 1(k + 1)$   
 $= (k + 1) (2k + 1) = R.H.S$ 

P(k) is true  $\Rightarrow P(k + 1)$  is true, therefore, by the principle of mathematical induction P(n) is true for  $n \in \mathbb{N}$ . *:*..

26.  $4^n + 15n - 1$  is divisible by 9. **Sol.**  $P(k + 1) \Rightarrow 4^{k+1} + 15(k + 1) - 1$  $= 4^{k} \cdot 4 + 15k + 15 - 1$  $= 4^{k} \cdot 4 + 15k + 14$  $= 4^{k}(9-5) + (90k-75k) + (9+5)$  $= 9 \cdot 4^{k} + 90k + 9 - 5(4^{k} + 15k - 1)$  $= 9(4^{k} + 10k + 1) - 5P(k)$ [Since  $P(k) = 4^k + 15k - 1$ ]  $\Rightarrow$  P(k + 1) is divisible by 9 since P(k) is divisible by 9. 27.  $7^{2n} - 1$  is divisible by 48. **Sol.**  $P(k + 1) = 7^{2k+2} - 1 = 7^{2k} \cdot 49 - 1$  $= 49 (7^{2k} - 1) + 48$  $\Rightarrow$  P(k + 1) is divisible by 48 since  $P(k) = 7^{2k} - 1$  is divisible 48. 28.  $5^{2n+2} - 24n - 25$  is divisible by 576. **Sol.**  $P(k + 1) = 5^{2k+4} - 24k - 49$  $= 25[5^{2k+2} - 24k - 25] + 576 (k + 1)$  $\Rightarrow$  P(k + 1) is divisible by 576 since  $P(k) = 5^{2k+2} - 24k - 25$  is divisible by 5.76 29.  $6^{n+2} + 7^{2n+1}$  is divisible by 43. **Sol.**  $P(k + 1) = 6^{k+1+2} + 7^{2(k+1)+1}$  $= [6^{k+2} + 7^{2k+1}] 6 + 7^{2k+1} \cdot 43$  $\Rightarrow P(k + 1)$  is divisible by 43 since  $P(k) = 6^{k+2} + 7^{2k+1}$  is divisible by 43. 30.  $12^n + 25^{n-1}$  is divisible by 13. **Sol.**  $P(k + 1) = 12^{k+1} + 25^k = 12^k (13 - 1) + 25^{k-1} (26 - 1)$  $= 13(12^{k} + 2 \cdot 25^{k-1}) - [12^{k} + 25^{k-1}]$  $\Rightarrow$  P(k + 1) is divisible by 13 since  $P(k) = 12^{k} + 25^{k-1}$  is divisible by 13. 31. Prove by the method of induction that every even power of every odd integer greater than 1, When divided by 8 leaves the remainder 1. Sol. First odd integer greater than one is 3, general odd integer is (2r + 1). To show  $(2r + 1)^{2n} = 8m + 1$ ,  $m \in \mathbb{N}$ . *i.e*  $(2r + 1)^{2n} - 1$  is divisible by 8 Let P(n) :  $(2r + 1)^{2n} - 1$  $P(1) = (2r + 1)^2 - 1 = 4r^2 + 4r = 4r(r + 1)$ 

As, r(r + 1) is always even, therefore, P(1) is true.

Let P(k) be true *i.e*  $(2r + 1)^{2k} - 1$  is divisible by 8

 $\Rightarrow (2r + 1)^{2k} = 8m + 1$  for  $m \in \mathbb{N}$ .

Consider P(k + 1):  $(2r + 1)^{2(k+1)} - 1$  is divisible by 8 consider

- $(2r + 1)^{2k} \cdot (2r + 1)^2 1$
- = (8m + 1) (8p + 1) 1
- = 64mp + 8m + 8p + 1 1
- = 8[8mp + m + p], which is divisible by 8.
- $\therefore$  *P*(*k*) is true  $\Rightarrow$  *P*(*k* + 1) is true.

Hence, by the principle of mathematical Induction P(n) is true for all  $n \in \mathbb{N}$ .





## Chapter 4

# Principle of Mathematical Induction

### Solutions (Set-2)

- 1. Let P(n) be a statement and let  $P(n) \Rightarrow P(n + 1)$  for all natural numbers *n*, then P(n) is trure
  - (1) For all  $n \in \mathbb{N}$ .
  - (3) For all *n* > 1
- Sol. Answer (4)
- 2. The statement  $(n + 3)^2 > 2^{n+3}$  is true.
  - (1) For all n
  - (3) For all  $n \ge 2$
- Sol. Answer (4)
- 3. A student was asked to prove a statement P(n) by using the principal of mathematical induction. He proved that  $P(n) \Rightarrow P(n + 1)$  for all  $n \in \mathbb{N}$  and also that P(4) is true:

On the basis of the above he can conclude that P(n) is true

- (1) For all  $n \in \mathbb{N}$
- (3) For all  $n \ge 4$
- Sol. Answer (3)
- 4. Let P(n):  $n^2 n + 41$  is a prime number, then
  - (1) P(1) is not true (2) P(5) is not true
  - (3) *P*(9) is not true (4) *P*(41) is not true
- Sol. Answer (4)
- 5. Let P(n) be a statement such that  $P(n) \Rightarrow P(n+1)$  for all  $n \in \mathbb{N}$ . Also, if P(k) is true,  $k \in \mathbb{N}$ , then we can conclude that
  - (1) P(n) is true for all n (2) P(n) is true for all  $n \ge k$
  - (3) P(n) true for any n < k (4) None of these
- Sol. Answer (2)

- (2) For all n > m, *m* being a fixed positive integer
- (4) Nothing can be said.
- (2) For all  $n \ge 3$

(2) For all n > 4

(4) For all n < 4

(4) No  $n \in \mathbb{N}$ 

| 6.   | Let $P(n)$ : $n^2 + n$ is odd, then $P(n) \Rightarrow P(n + 1)$ for all $n$ . and $P(1)$ is not true.                                 |          |                                           |                                            |  |  |  |  |  |  |
|------|---------------------------------------------------------------------------------------------------------------------------------------|----------|-------------------------------------------|--------------------------------------------|--|--|--|--|--|--|
|      | From here, we can conclude that                                                                                                       |          |                                           |                                            |  |  |  |  |  |  |
|      | (1) $P(n)$ is true for all $n \in \mathbb{N}$                                                                                         | (2)      | P(n) is true for all $n$                  | ≥ 2                                        |  |  |  |  |  |  |
|      | (3) $P(n)$ is false for all $n \in \mathbb{N}$                                                                                        | (4)      | P(n) is true for all $n$                  | ≥ 3                                        |  |  |  |  |  |  |
| Sol. | ol. Answer (3)                                                                                                                        |          |                                           |                                            |  |  |  |  |  |  |
| 7.   | Consider the statement $P(n)$ : $n^2 \ge 100$ . Here.                                                                                 |          |                                           |                                            |  |  |  |  |  |  |
|      | $P(n) \Rightarrow P(n + 1)$ for all <i>n</i> . Does it mean that                                                                      |          |                                           |                                            |  |  |  |  |  |  |
|      | (1) $P(n)$ is true for all $n$                                                                                                        | (2)      | P(n) is true for all $n$                  | ≥ 2                                        |  |  |  |  |  |  |
|      | (3) $P(n)$ is true for all $n \ge 3$                                                                                                  | (4)      | None of these                             |                                            |  |  |  |  |  |  |
| Sol. | Sol. Answer (4)                                                                                                                       |          |                                           |                                            |  |  |  |  |  |  |
| 8.   | The statement $x^n - y^n$ is divisible by $(x - y)$ where <i>n</i> is a positive integer is                                           |          |                                           |                                            |  |  |  |  |  |  |
|      | (1) Always true                                                                                                                       | (2)      | Only true for $n < 10$                    |                                            |  |  |  |  |  |  |
|      | (3) Always false                                                                                                                      | (4)      | Only true for $n > 10$                    |                                            |  |  |  |  |  |  |
| Sol. | . Answer (1)                                                                                                                          |          |                                           |                                            |  |  |  |  |  |  |
| 9.   | $9^n - 8n - 1$ is divisible by 64 is                                                                                                  | P)       |                                           | ion                                        |  |  |  |  |  |  |
|      | (1) Always true                                                                                                                       | (2)      | Always false                              | 20                                         |  |  |  |  |  |  |
|      | (3) Always true for rational values of <i>n</i>                                                                                       | (4)      | Always true for irration                  | ays true for irrational values of <i>n</i> |  |  |  |  |  |  |
| Sol. | Answer (1)                                                                                                                            |          | · · · · ·                                 | es l'                                      |  |  |  |  |  |  |
| 10.  | For all natural number $n$ , $3^{2n} - 1$ is divisible by                                                                             |          | Columna Columna                           |                                            |  |  |  |  |  |  |
|      | (1) 3 (2) 5                                                                                                                           | (3)      | 6                                         | (4) 8                                      |  |  |  |  |  |  |
| Sol. | Answer (4)                                                                                                                            |          | - Jucall                                  |                                            |  |  |  |  |  |  |
| 11.  | Let $P(n) = 10n + 3$ is a prime number. $P(n)$ is true $\forall n \in N$ , such that                                                  |          |                                           |                                            |  |  |  |  |  |  |
|      | (1) $n > 2$ (2) $n > 3$                                                                                                               | (3)      | <i>n</i> < 4                              | (4) <i>n</i> ≤ 2                           |  |  |  |  |  |  |
| Sol. | Answer (4)                                                                                                                            | Cr. nsoi |                                           |                                            |  |  |  |  |  |  |
| 12.  | " $x^n - y^n$ is divisible by $(x + y)$ " is true when $n \in N$ is of the form $(k \in N)$                                           |          |                                           |                                            |  |  |  |  |  |  |
|      | (1) $4k + 1$ (2) $4k + 3$                                                                                                             | (3)      | 4 <i>k</i> + 7                            | (4) 2 <i>k</i>                             |  |  |  |  |  |  |
| Sol. | Answer (4)                                                                                                                            |          |                                           |                                            |  |  |  |  |  |  |
| 13.  | The statement which is correct for all $n \in N$ , is                                                                                 |          |                                           |                                            |  |  |  |  |  |  |
|      | (1) $2^n > 2n + 1$                                                                                                                    | (2)      | (2) $x^n - y^n$ is divisible by $(x + y)$ |                                            |  |  |  |  |  |  |
|      | 3) $x^n - y^n$ is divisible by $(x - y)$ (4) $1 + \frac{1}{4} + \frac{1}{9} + \frac{1}{16} + \dots + \frac{1}{n^2} < 2 - \frac{1}{n}$ |          |                                           |                                            |  |  |  |  |  |  |
| Sol. | . Answer (3)                                                                                                                          |          |                                           |                                            |  |  |  |  |  |  |
| 14.  | . $n(n + 1) (n + 2)$ is divisible by k for $\forall n \in N$ . The largest k is                                                       |          |                                           |                                            |  |  |  |  |  |  |
| 0.1  | (1) 2 (2) 3                                                                                                                           | (3)      | 6                                         | (4) 12                                     |  |  |  |  |  |  |
| 201  | Answer (3)                                                                                                                            |          |                                           |                                            |  |  |  |  |  |  |

| 15.                                                                                                     | Mathematical induction is                                             | Athematical induction is a tool or technique which is used to prove a proposition about all |                 |                                                                         |                      |                     |  |  |  |  |
|---------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------|---------------------------------------------------------------------------------------------|-----------------|-------------------------------------------------------------------------|----------------------|---------------------|--|--|--|--|
|                                                                                                         | (1) Number                                                            | (2) Integers                                                                                | (3)             | Whole number                                                            | (4)                  | None of these       |  |  |  |  |
| Sol.                                                                                                    | Answer (4)                                                            |                                                                                             |                 |                                                                         |                      |                     |  |  |  |  |
| 16.                                                                                                     | For each $n \in N$ , $3^{2n} - 1$ is divisible by                     |                                                                                             |                 |                                                                         |                      |                     |  |  |  |  |
|                                                                                                         | (1) 8                                                                 | (2) 16                                                                                      | (3)             | 32                                                                      | (4)                  | 10                  |  |  |  |  |
| Sol.                                                                                                    | Answer (1)                                                            |                                                                                             |                 |                                                                         |                      |                     |  |  |  |  |
| 17.                                                                                                     | The statement $n! > 2^{n-1}$ , $n \in N$ is true for                  |                                                                                             |                 |                                                                         |                      |                     |  |  |  |  |
|                                                                                                         | (1) <i>n</i> > 1                                                      | (2) <i>n</i> > 2                                                                            | (3)             | All <i>n</i>                                                            | (4)                  | No <i>n</i>         |  |  |  |  |
| Sol.                                                                                                    | Answer (2)                                                            |                                                                                             |                 |                                                                         |                      |                     |  |  |  |  |
| 18.                                                                                                     | For each $n \in N$ , $3 \cdot (5^{2n+1})$                             | + $2^{3n+1}$ is divisible by                                                                |                 |                                                                         |                      |                     |  |  |  |  |
|                                                                                                         | (1) 17                                                                | (2) 19                                                                                      | (3)             | 21                                                                      | (4)                  | 23                  |  |  |  |  |
| Sol.                                                                                                    | Answer (1)                                                            |                                                                                             |                 |                                                                         |                      |                     |  |  |  |  |
| 19. If b and $c \in N$ and $b < c$ then values of b and c in terms of $n \in N$ such that the statement |                                                                       |                                                                                             |                 |                                                                         |                      |                     |  |  |  |  |
|                                                                                                         | " $3.6 + 6.9 + 9.12 + + 3n(3n + 3) = 3nbc$ " is true for all n        |                                                                                             |                 |                                                                         |                      |                     |  |  |  |  |
|                                                                                                         | (1) $b = n, c = n$                                                    |                                                                                             | (2)             | b = n + 1, c = n + 2                                                    | 2                    |                     |  |  |  |  |
|                                                                                                         | (3) $b = n, c = n + 1$                                                |                                                                                             | (4)             | b = n + 1, c = n + 2                                                    | 1                    | 10                  |  |  |  |  |
| Sol.                                                                                                    | Sol. Answer (2)                                                       |                                                                                             |                 |                                                                         |                      |                     |  |  |  |  |
| 20.                                                                                                     | The proposition among the                                             | e following that is not true fo                                                             | r all           | $n \in N$ , is                                                          | K                    | 0.                  |  |  |  |  |
|                                                                                                         | (1) $2^n > n$                                                         |                                                                                             | (2)             | $2^n > n^2$                                                             | Ì                    | 160.                |  |  |  |  |
|                                                                                                         | (3) $1 + 2 + 3 + \dots + n < n$                                       | $(2n + 1)^2$                                                                                | (4)             | $(2n+7) < (n+3)^2$                                                      |                      | CINO                |  |  |  |  |
| Sol.                                                                                                    | Answer (2)                                                            |                                                                                             |                 | 10                                                                      | 05                   |                     |  |  |  |  |
| 21.                                                                                                     | 21. If 7 + 77 + 777 + upto <i>n</i> <sup>th</sup> term                |                                                                                             |                 |                                                                         |                      |                     |  |  |  |  |
|                                                                                                         | $=\frac{7}{81}[a.10^{n+1}-bn-c]$ is                                   | true $\forall n \in N$ , then                                                               |                 | KK ational                                                              |                      |                     |  |  |  |  |
|                                                                                                         | (1) $a = 1, b = 9, c = 9$                                             |                                                                                             | (2)             | a = 1, b = 9, c = 10                                                    | )                    |                     |  |  |  |  |
|                                                                                                         | (3) $a = 1, b = -9, c = -9$                                           |                                                                                             | (4)             | a = 1, b = -9, c = -                                                    | 10                   |                     |  |  |  |  |
| Sol.                                                                                                    | Answer (2)                                                            |                                                                                             | 592             | P.                                                                      |                      |                     |  |  |  |  |
| 22.                                                                                                     | The proposition that is no                                            | t true for $n > 1$ ( $n \in N$ ), is                                                        | <sup>3</sup> 0, |                                                                         |                      |                     |  |  |  |  |
|                                                                                                         | (1) $1 + \frac{1}{4} + \frac{1}{9} + \dots + \frac{1}{n^2} <$         | $2-\frac{1}{n}$                                                                             | (2)             | $1 + \frac{1}{\sqrt{2}} + \frac{1}{\sqrt{3}} + \dots +$                 | $\frac{1}{\sqrt{n}}$ | $>\sqrt{n}$         |  |  |  |  |
|                                                                                                         | (3) $\frac{1}{n+1} + \frac{1}{n+2} + \dots + \frac{1}{2}$             | $\frac{1}{2n} > \frac{13}{24}$                                                              | (4)             | $\frac{1}{2} \cdot \frac{3}{4} \cdot \frac{5}{6} \dots \frac{2n-1}{2n}$ | >                    | $\frac{1}{(3n+1)}$  |  |  |  |  |
| Sol. Answer (4)                                                                                         |                                                                       |                                                                                             |                 |                                                                         |                      |                     |  |  |  |  |
| 23.                                                                                                     | Which of the following is tr                                          | ue for $n \in N$ ?                                                                          |                 |                                                                         |                      |                     |  |  |  |  |
|                                                                                                         | (1) $\frac{1}{2} + \frac{1}{4} + \frac{1}{8} + \dots + \frac{1}{2^n}$ | <1                                                                                          | (2)             | $\frac{1}{n+1} + \frac{1}{n+2} + \dots$                                 | + <del>3</del> 1     | $\frac{1}{n+1} < 1$ |  |  |  |  |
|                                                                                                         | (3) $n^4 > 10^n$                                                      |                                                                                             | (4)             | $^{2n}C_n > \frac{4^n}{n+1}$                                            |                      |                     |  |  |  |  |

Sol. Answer (1)

24. For all  $n(> 1) \in N$ , by using mathematical induction or otherwise  $1 + \frac{1}{2} + \frac{1}{3} + \ldots + \frac{1}{n}$  in its lowest form is

(1) Odd integer

(2) Even integer

(3) Odd integer Even integer

- Even integer
- (4) Odd integer

- Sol. Answer (3)
- 25. The sum of the squares of three consecutive odd numbers increased by 1 is divisible by (use mathematical induction)
  - (1) 12 as well as 24
  - (3) Neither by 12 nor by 24

- (2) 12 but not 24
- (4) By all multiples of 12

Sol. Answer (2)

