
STOICHIOMETRY

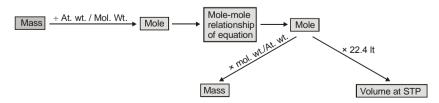
Relative atomic mass (R.A.M) = $\frac{\text{Mass of one atom of an element}}{\frac{1}{12} \times \text{mass of one carbon atom}}$

= Total Number of nucleons

Y-map

Density:

Specific gravity =
$$\frac{\text{density of the substance}}{\text{density of water at } 4^{\circ}\text{C}}$$


For gases:

Absolute density (mass/volume) = $\frac{\text{Molar mass of the gas}}{\text{Molar volume of the gas}}$

$$\Rightarrow \rho = \frac{PM}{RT}$$

Vapour density V.D.=
$$\frac{d_{gas}}{d_{H_2}} = \frac{PM_{gas/RT}}{PM_{H_2/RT}} = \frac{M_{gas}}{M_{H_2}} = \frac{M_{gas}}{2}$$
 $M_{gas} = 2 \text{ V.D.}$

Mole-mole analysis:

Concentration terms:

Molarity (M):

$$\therefore \text{ Molarity (M)} = \frac{\text{w} \times 1000}{\text{(Mol. wt of solute)} \times \text{V}_{inml}}$$

Molality (m):

Molality =
$$\frac{\text{number of moles of solute}}{\text{mass of solvent in gram}} \times 1000 = 1000 \text{ w}_1 / \text{M}_1 \text{w}_2$$

Mole fraction (x):

$$\therefore$$
 Mole fraction of solution $(x_1) = \frac{n}{n+N}$

.. Mole fraction of solvent
$$(x_2) = \frac{N}{n+N}$$

 $x_1 + x_2 = 1$

% Calculation:

(i) % w/w =
$$\frac{\text{mass of solute in gm}}{\text{mass of solution in gm}} \times 100$$

(ii) % w/v =
$$\frac{\text{mass of solute in gm}}{\text{Volume of solution in ml}} \times 100$$

(iii) %
$$v/v = \frac{\text{Volume of solute in mI}}{\text{Volume of solution}} \times 100$$

Derive the following conversion:

1. Mole fraction of solute into molarity of solution M =
$$\frac{x_2 \rho \times 1000}{x_1 M_1 + M_2 x_2}$$

2. Molarity into mole fraction
$$x_2 = \frac{MM_1 \times 1000}{\rho \times 1000 - MM_2}$$

3. Mole fraction into molality m =
$$\frac{x_2 \times 1000}{x_1 M_1}$$

4. Molality into mole fraction
$$x_2 = \frac{mM_1}{1000 + mM_1}$$

5. Molality into molarity M =
$$\frac{m\rho \times 1000}{1000 + mM}$$

 $\rm M_1$ and $\rm M_2$ are molar masses of solvent and solute. ρ is density of solution (gm/mL)

M = Molarity (mole/lit.), m = Molality (mole/kg), x_1 = Mole fraction of solvent, x_2 = Mole fraction of solute

Average/Mean atomic mass:

$$A_x = \frac{a_1 x_1 + a_2 x_2 + \dots + a_n x_n}{100}$$

Mean molar mass or molecular mass :

$$M_{\text{avg.}} = \frac{n_1 M_1 + n_2 M_2 + \dots + n_n M_n}{n_1 + n_2 + \dots + n_n} \qquad \text{or} \qquad M_{\text{avg.}} = \frac{\displaystyle \sum_{j=1}^{j-1} n_j M_j}{\displaystyle \sum_{i=1}^{j-1} n_i}$$

Calculation of individual oxidation number :

Formula : Oxidation Number = number of electrons in the valence shell – number of electrons left after bonding

Concept of Equivalent weight/Mass:

For elements, equivalent weight (E) = $\frac{\text{Atomic weight}}{\text{Valency - factor}}$

For acid/base,
$$E = \frac{M}{Basicity/Acidity}$$

Where M = Molar mass

For O.A/R.A,
$$E = \frac{M}{\text{no. of moles of e}^- \text{ gained/lost}}$$

Equivalent weight (E) =
$$\frac{\text{Atomic or moleculear weight}}{\text{v.f.}}$$

(v.f. = valency factor)

Concept of number of equivalents:

No. of equivalents of solute =
$$\frac{Wt}{Eq. wt.} = \frac{W}{E} = \frac{W}{M/n}$$

No. of equivalents of solute = No. of moles of solute \times v.f.

Normality (N):

Normality (N) =
$$\frac{\text{Number of equivalents of solute}}{\text{Volume of solution (in litres)}}$$

Normality = Molarity × v.f.

Calculation of valency Factor:

n-factor of acid = basicity = no. of H⁺ ion(s) furnished per molecule of the acid.

n-factor of base = acidity = no. of OH^- ion(s) furnised by the base per molecule.

At equivalence point :

$$N_1V_1 = N_2V_2$$

 $n_1M_1V_1 = n_2M_2V_2$

Volume strength of H₂O₂:

20V H_2O_2 means one litre of this sample of H_2O_2 on decomposition gives **20 It. of O_2** gas at **S.T.P.**

Normality of
$$H_2O_2(N) = \frac{Volume, strength of H_2O_2}{5.6}$$

Molarity of
$$H_2O_2(M) = \frac{\text{Volume strength of } H_2O_2}{11.2}$$

Measurement of Hardness:

$$Hardness in ppm = \frac{mass of CaCO_3}{Total mass of water} \times 10^6$$

Calculation of available chlorine from a sample of bleaching powder :

% of
$$Cl_2 = \frac{3.55 \times x \times V (mL)}{W(g)}$$
 where $x = molarity$ of hypo solution

and v = mL. of hypo solution used in titration.