Aldehydes, Ketones and Carboxylic Acids

1. Consider the given reaction:

 $CH_3COCH_3 \xrightarrow{dil. Ba(OH)_3} "X"$

The functional groups present in compound "X" are: (2023)

- (a) ketone and double bond
- (b) double bond and aldehyde
- (c) alcohol and aldehyde
- (d) alcohol and ketone

Identify 'X' in above reactions (2023)

(a) B_2H_6

2.

- (b) LiAlH₄
- (c) NaBH₄
- (d) H_2/Pd
- 3. The following conversion is known as:

(2023)

- (a) Stephen reaction
- (b) Gattermann-Koch reaction
- (c) Etard reaction
- (d) Rsenmund reaction
- 4. Reagents which can be used to convert alcohols to carboxylic acids, are
 - (A) $CrO_3 H_2SO_4$
 - (B) $K_2Cr_2O_7 + H_2SO_4$
 - (C) $KMnO_4 + KOH/H_3O^+$
 - (D) Cu, 573 K
 - (E) CrO₃, (CH₃CO)₂O

Choose the most appropriate answer from the options given below: (2023)

- (a) B, C and D only
- (b) B, D and E only
- (c) A, B and C only
- (d) A, B and E only
- 5. The major product formed in the following conversion is _____.

6. Complete the following reaction:

7. Identify the major product obtained in the following reaction:

$$H^{+2[Ag(NH_3)_2]^+}$$

+ 3 OH Δ major product

(2023)

8. Identify the final product [D] obtained in the following sequence of reactions.

$$CH_3CHO \xrightarrow{ii)} H_3O' \xrightarrow{A_2SO_4} A \xrightarrow{Br} Br$$

$$\xrightarrow{\text{HBr}} [C] \xrightarrow{\text{Na/dry ether}} [D]$$

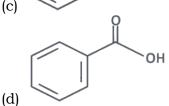
(2023)

(b) C_4H_{10}

(c)
$$HC \equiv C^{\Theta}Na^{+}$$

9. Which of the following reactions is not an example for nucleophilic addition-elimination reaction? (2022)

(a)
$$CH_3CHO + NH_3 \rightleftharpoons CH_3CH = NH + H_2O$$


(b)
$$CH_3CHO + NaHSO_3 \rightleftharpoons CH_3 - C - OSO_2Na$$

(c)
$$CH_3CHO + NH_2OH \rightleftharpoons CH_3CH = N - OH + H_2O$$

(d)
$$CH_3CHO + C_6H_5NHNH_2 \rightleftharpoons CH_3CH = N - NHC_6H_5 + H_2O$$

10. The product formed from the following reaction sequence is

(a) NH₂

11. Match List I with List II:

List I		List II	
(Reaction)		(Product formed)	
A.	Gabriel	1.	Benzaldehyde
	synthesis		
В.	Kolbe synthesis	2.	Ethers
C.	Williamson	3.	Primary
	synthesis		amines
D.	Etard reaction	4.	Salicylic acid

Choose the correct answer from the options given below: (2022)

- (a) A-3, B-4, C-2, D-1
- (b) A-3, B-1, C-2, D-4
- (c) A-2, B-3, C-1, D-4
- (d) A-4, B-3, C-1, D-2
- 12. The incorrect method to synthesize benzaldehyde is: (2022)

13. Given below are two statements:

Statement I: The boiling points of aldehydes and ketones are higher than hydrocarbons of comparable molecular masses because of weak molecular association in aldehydes and ketones due to dipole-dipole interactions.

Statement II: The boiling point of aldehydes and ketones are lower than the alcohols of similar molecular masses due to the absence of H-bonding.

In the light of the above statements, choose the most appropriate answer from the given below. (2022)

- (a) Both Statement I and Statement II are correct.
- (b) Both Statement I and Statement II are incorrect.
- (c) Statement I is correct but Statement II is incorrect.
- (d) Statement I is incorrect but Statement II is correct.
- 14. RMgX + CO₂ $\xrightarrow{\text{dry}}$ Y $\xrightarrow{\text{H}_3\text{O}^+}$ RCOOH

What is Y in the above reaction? (2022)

- (a) RC00⁻Mg⁺X
- (b) $R_3C0^-Mg^+X$
- (c) RC00⁻X⁺

- (d) (RCOO)₂Mg
- 15. Match List I with List II.

	Water Biot I with Biot II.						
List I		List II					
(Product formed)		(Reaction of carbonyl					
		compound with)					
A.	Cyanohydrin	1.	NH ₂ OH				
В.	Acetal	2.	RNH_2				
C.	Schiff's base	3.	Alcohol				
D.	Oxime	4.	HCN				

Choose the correct answer from the options given below. (2022)

- (a) A-3, B-4, C-2, D-1
- (b) A-2, B-3, C-4, D-1
- (c) A-1, B-3, C-2, D-4
- (d) A-4, B-3, C-2, D-1
- 16. Compound X on reaction with O₃ followed by Zn/H₂O gives formaldehyde and 2-methyl propanal as products. The compound X is (2022)
 - (a) 3-Methylbut-1-ene
 - (b) 2-Methylbut-1-ene
 - (c) 2-Methylbut-2-ene
 - (d) Pent-2-ene
- 17. Which one of the following is not formed when acetone reacts with 2-pentanone in the presence of dilute NaOH followed by heating? (2022)

18. CH₃CH₂COO⁻Na⁺ NaOH,+? CH₃CH₃ + Na₂CO₃
Consider the above reaction and identify the missing reagent/chemical. (2021)

- (a) Red Phosphorus
- (b) CaO
- (c) DIBAL-H
- (d) B_2H_6
- 19. Match List-I with List-II.

	List-I		List-II
(A)	CO, HCl Anhyd. AlCl,/CuCl	(i)	Hell-Volhard-Zelin- sky reaction
(B)	$\begin{array}{c} O \\ \parallel \\ R - C - CH_3 + \\ NaOX \rightarrow \end{array}$	(ii)	Gattermann-Koch reaction
(C)	$\begin{array}{c} R - CH_2 - OH \\ + R'COOH \\ \xrightarrow{Conc. H_2SO_4} \end{array}$	(iii)	Haloform reaction
(D)	$ \begin{array}{c} R - CH_2COOH \\ \xrightarrow{\text{(i) } X_2/\text{Red P}} \\ \xrightarrow{\text{(ii) } H_2O} \end{array} $	(iv)	Esterification

Choose the correct answer from the options given below. (2021)

- (a) A-iii B-ii C-i D-iv
- (b) A-i B-iv C-iii D-ii
- (c) A-ii B-iii C-iv D-i
- (d) A-iv B-I C-ii D-iii
- 20. Reaction between benzaldehyde and acetophenone in presence of dilute NaOH is known as: (2020)
 - (a) Cannizzaro's reaction
 - (b) Cross Cannizzaro's reaction
 - (c) Cross Aldol condensation
 - (d) Aldol condensation
- 21. Identify compound X in the following sequence of reactions: (2020)

$$CH_3$$
 Cl_2/hv
 $X \xrightarrow{H_2O}$
 CH_2Cl
 CH_2Cl

22. Which of the following acid will form an (i) Anhydride on heating and (ii) Acid imide on strong heating with ammonia?

(2020 Covid Re-NEET)

23. Identify compound (A) in the following reaction (2020 Covid Re-NEET)

$$A \xrightarrow{H_2/Pd/BaSO_4} A$$

- (a) Toluene
- (b) Acetophenone
- (c) Benzoic acid
- (d) Benzoyl chloride
- 24. The major product of the following reaction (2019)

- 25. Carboxylic acids have higher boiling points than aldehydes, ketones and even alcohols of comparable molecular mass. It is due to their: (2018)
 - (a) Formation of intramolecular H-bonding
 - (b) Formation of carboxylate ion
 - (c) Formation of intermolecular H-bonding
 - (d) More extensive association of carboxylic acid via van der Waals force of attraction
- 26. Compound A, C₈H₁₀O, is found to react with NaOI (produced by reacting Y with NaOH) and yields a yellow precipitate with characteristic smell. and Α Y are respectively: (2018)

(a)
$$H_3C$$
 CH_2 CH_2 OH and I_2

(b) CH_3 CH_3 OH and I_2

(c) CH_3 OH and I_2

(d) OH

27. Of the following which is the product formed cyclohexanone undergoes condensation followed by heating?

(2017-Delhi)

(d)

28. Consider the reactions: (2017-Delhi)

$$\begin{array}{c} X \xrightarrow{Cu/573 \text{ K}} A \xrightarrow{[Ag(NH_3)_2]^+} S \text{ Silver mirror} \\ (C_2H_6O) \xrightarrow{OH, \Delta} Y \\ O \\ \downarrow \\ NH_2-NH-C-NH_2 \end{array}$$

Identify A, X, Y and Z

- (a) A-Ethanol, X-Acetaldehyde, Y-Butanone, Z-Hydrazone
- (b) A-Methoxymethane, X-Ethanoic acid, Y-Acetate ion, Z-hydrazine

- (c) A-Methoxymethane, X-Ethanol, Y-Ethanoic acid, Z-Semicarbazide
- (d) A-Ethanal, X-Ethanol, Y-But-2-enal, Z-Semicarbazone
- 29. Consider the following sequence of reactions:

$$\begin{array}{c} \begin{array}{c} \begin{array}{c} \text{CO, HCl} \\ \end{array} \\ \begin{array}{c} \text{Anhydrous} \\ \text{AlCl}_{3}/\text{CuCl} \end{array} \end{array} \\ \begin{array}{c} \text{OH} \\ \text{293K} \end{array} \\ \begin{array}{c} \text{O} \\ \end{array} \\ \begin{array}{c} \text{CH} = \text{CH} - \text{C} \end{array} \\ \end{array}$$

The substance 'B' is: (2017-Gujarat)

- (a) Acetone
- (b) Benzene
- (c) Acetophenone
- (d) Benzaldehyde
- 30. If the rate of the reaction: (2017-Gujarat)

$$R - C / Z + Nu \longrightarrow R - C / Nu + Z \longrightarrow R -$$

is fastest, then Z is:

- (a) OCOCH₃
- (b) C1
- (c) NH₂
- (d) OC_2H_5
- 31. Among the following acids, the strongest acid is: (2017-Gujarat)
 - (a) Cl₃CCOOH
 - (b) NCCH₂COOH
 - (c) O₂NCH₂COOH
 - (d) F₃CCOOH
- 32. The product formed by the reaction of an aldehyde with a primary amine is: **(2016-I)**
 - (a) Aromatic acid
 - (b) Schiff base
 - (c) Ketone
 - (d) Carboxylic acid
- 33. Which of the following reagents would distinguish ciscyclopenta-1, 2-diol from the trans-isomer? (2016-I)
 - (a) MnO₂
 - (b) Aluminium isopropoxide
 - (c) Acetone
 - (d) Ozone
- 34. The correct statement regarding a carbonyl compound with a hydrogen atom on its alpha-carbon, is: (2016-I)
 - (a) A carbonyl compound with a hydrogen atom on its alpha-carbon rapidly

- equilibrates with its corresponding enol and this process is known as carbonylation
- (b) A carbonyl compound with a hydrogen atom on its alpha-carbon rapidly equilibrates with its corresponding enol and this process is known as keto-enol tautomerism
- (c) A carbonyl compound with a hydrogen atom on its alpha-carbon never equilibrates with its corresponding enol
- (d) A carbonyl compound with a hydrogen atom on its alpha-carbon rapidly equilibrates with its corresponding enol and this process is known as aldehydeketone equilibration
- 35. The correct order of strengths of the carboxylic Acids is: (2016-II)

- (a) III > II > I
- (b) II > I > III
- (c) I > II > III
- (d) II > III > I
- 36. Reaction of carbonyl compound with one of the following reagents involves nucleophilic addition followed by elimination of water. The reagent is: (2015 Re)
 - (a) Sodium hydrogen sulphite
 - (b) A Grignard reagent
 - (c) Hydrazine in presence of feebly acidic solution
 - (d) Hydrocyanic acid
- 37. An organic compound 'X' having molecular formula $C_5H_{10}O$ yields phenyl hydrazone and gives negative response to the Iodoform test and Tollen's test. It produces n-pentane on reduction. 'X' could be: (2015)
 - (a) 2-pentanone
 - (b) 3-pentanone
 - (c) n-amyl alcohol
 - (d) Pentanal
- 38. The oxidation of benzene by V_2O_5 in the presence of air produces: (2015 Re)
 - (a) Maleic anhydride
 - (b) Benzoic acid
 - (c) Benzaldehyde
 - (d) Benzoic anhydride

39. Which one of the following esters gets hydrolysed most easily under alkaline (2015 Re)

40. Reaction by which Benzaldehyde cannot be (2013)prepared:

(a)
$$CH_3 + CrO_2Cl_2$$
 in CS_2 followed by H_3O^+

(b)
$$+ H_2 \text{ in presence of Pd-BaSO}_4$$

$$+ CO + HCl \text{ in presence of anhydrous} + AlCl_3$$

$$+ Zn/Hg \text{ and concentration HCl}$$

$$(d)$$

41. The order of stability of the following tautomeric compounds is: (2013)

OH O | CH₂=C-CH₂-C-CH₃
$$\Longrightarrow$$
(I)

 CH_3 -C-CH₂-C-CH₃ \Longrightarrow
(II)

 CH_3 -C-CH₂-C-CH₃ \Longrightarrow
(III)

 CH_3 -C-CH-C-CH₃
(III)

- (b) II > III > I
- (c) I > II > III
- (d) III > II > I

Answer Key

- S1. Ans. (d)
- S2. Ans. (a)
- S3. Ans. (d)
- S4. Ans. (c)
- S5. Ans. (a)
- S6. Ans. (c)
- S7. Ans. (b)
- S8. Ans. (d)
- S9. Ans. (b)
- S10. Ans. (c)
- S11. Ans. (a)
- S12. Ans. (a)
- S13. Ans. (a)
- S14. Ans. (a)
- S15. Ans. (d)
- S16. Ans. (a)
- S17. Ans. (b)
- S18. Ans. (b)
- S19. Ans. (c)
- S20. Ans. (c)
- S21. Ans. (b)

- S22. Ans. (d)
- S23. Ans. (d)
- S24. Ans. (b)
- S25. Ans. (c)
- S26. Ans. (d)
- S27. Ans. (c)
- S28. Ans. (d)
- S29. Ans. (c)
- S30. Ans. (b)
- S31. Ans. (d)
- S32. Ans. (b)
- S33. Ans. (c)
- S34. Ans. (b)
- S35. Ans. (d)
- S36. Ans. (c)
- S37. Ans. (b)
- S38. Ans. (a)
- S39. Ans. (d)
- S40. Ans. (d)
- S41. Ans. (d)

S1. Ans. (d)

Functional groups present in product are alcohol and ketone.

S2. Ans. (a)

$$R-COOH \xrightarrow{\text{(i) } B_2H_b} R-CH_2OH$$

$$R-CH=CH_2 \xrightarrow{(i) B_2H_6} R-CH_2-CH_2-OH$$

S3. Ans. (d)

Resenmend reaction

S4. Ans. (c)

$$R - CH_2 - OH \frac{CrO_3 - H_2SO_4}{K_2Cr_2O_7 - H_2SO_4} \frac{or}{or} R-COOH$$

$$KMnO_4 + KOH / H_3O^+$$
[Strong oxidising agents]

S5. Ans. (a)

S6. Ans. (c)

[C] (Hydrolysis of Cyanide) & (dehydration of alcohol)

S7. Ans. (b)

S8. Ans. (d)

$$CH_{3}-CH=0 \xrightarrow{\text{LiAlH}_{4}} CH_{3}-CH_{2}-CH_{2} \xrightarrow{\text{CH}_{2}} CH_{2}-CH_{2}$$

$$CH_{3}-CH_{3} \xrightarrow{\text{CH}_{3}} CH_{3}-CH_{2}-Br \xrightarrow{\text{HBr}}$$

$$CH_{3}-CH_{3} \xrightarrow{\text{CH}_{3}} CH_{3}-CH_{2}-Br \xrightarrow{\text{HBr}}$$

$$CH_{3}-CH_{3}-CH_{3}-CH_{2}-Br \xrightarrow{\text{HBr}}$$

$$CH_{3}-CH_{3$$

S9. Ans. (b)

It is an example of nucleophilic addition reaction

$$CH_3$$
 $C = O + NaHSO_3$ CH_3 $CH_$

Bisulphite addition product

S10. Ans. (c)

Cyanohydrin

Cyanohydrin

Cyanohydrin

Cyanohydrin

Cyanohydrin

NaOH and CaO,
$$\Delta$$

Decarbosylation

COO

S11. Ans. (a)

- Gabriel phthalimide synthesis is used for preparation of aliphatic primary amines.
- Kolbe synthesis with phenol gives salicylic acid.
- Williamson synthesis gives ether on reaction of alkyl halide and alcoxide.
- Etard reaction gives benzaldehyde from benzene.

S12. Ans. (a)

S13. Ans. (a)

- The boiling points of aldehydes and ketones are higher than hydrocarbons of comparable molecular masses due to weak molecular association in aldehydes and ketones arising out of the dipole-dipole interaction.
- Alcohol involved intermolecular hydrogen bonding, because of which the boiling point of aldehydes and ketones are lower than the alcohols of similar molecular masses.

S14. Ans. (a)

Here Y is RC00⁻Mg⁺Y

S15. Ans. (d) A-4, B-3, C-2, D-1

$$CH_{3} - C - H + R - OH \xrightarrow{H^{+}} CH_{3} - C - H$$

$$Alcohol \qquad OR$$

$$OR$$

$$Acetal$$

$$CH_{3} - C - H + R - NH_{2} \longrightarrow CH_{3} - C = N - R$$

$$H$$

$$Schiff's base$$

$$CH_3 - C - H + NH_2 - OH \longrightarrow CH_3 - C = N - OH$$

$$H$$
Oxime

S16. Ans. (a)

2-Methylpropanal

Formaldehyde

The given reaction is the reductive ozonolysis of an alkene. The alkene will be

$$(i) O_3 (ii) Zn/H_2O$$
 H + H - H

S17. Ans. (b)

Cross Aldol condensation reaction:

Both reactants contain α -Hydrogens, so multiple products are possible.

S18. Ans.(b)

$$\begin{split} & \text{CH}_{3} - \text{CH}_{2}\text{COONa} + \frac{\text{NaOH} + \text{CaO}}{\text{Heat}} \\ & \text{CH}_{3} - \text{CH}_{3} + \text{Na}_{2}\text{CO}_{3} \\ & \text{CH}_{3} - \text{CH}_{2} - \text{COONa} + \frac{\text{NaOH} + \text{CaO}}{\text{Heat}} \\ & \text{CH}_{3} - \text{CH}_{3} + \text{Na}_{2}\text{CO}_{3} \end{split}$$

Decarboxylation takes place by Sodalime (NaOH + CaO)

S19. Ans.(c)

(a)
$$+ \frac{\text{CO,HCl}}{\text{Anhyd}} \rightarrow \text{Gattermann - Koch reaction}$$

$$+ \frac{\text{AlCl,/CuCl}}{\text{Alcl, CuCl}} \rightarrow \text{Gattermann - Koch reaction}$$

$$(b) R - C - CH_3 + NaOX \rightarrow Haloform reaction$$

$$(d) \; \mathbf{R} - \mathbf{CH_2COOH} \; \xrightarrow{\;\; (\mathbf{i}) \; \mathbf{X_2/RedP} \;\; } \\ \text{Hell-Volhard Zelinsky} \\ \text{reaction}$$

S20. Ans.(c)

Reaction between benzaldehyde and acetophenone in presence of dilute NaOH is known as Cross Aldol condensation

$$\begin{array}{c|c}
\hline
 & C \\
 & C \\
\hline
 & C \\
 & C \\$$

$$-H_2O$$
 CH=CH-C

S21. Ans.(b)

$$\begin{array}{c} CH_{3} \\ CH_{3} \\ CH_{2} \\ CH_{2} \\ CH_{3} \\ CH_{2} \\ CH_{2} \\ CH_{2} \\ CH_{2} \\ CH_{2} \\ CH_{3} \\ CH_{2} \\ CH_{3} \\ CH_{3} \\ CH_{4} \\ CH_{5} \\ CH_{5$$

S22. Ans.(d)

COOH
$$(i) \xrightarrow{\Delta} \xrightarrow{-H_2O} C$$
(Phthalic anhydride)
$$(ii) \xrightarrow{COOH} \xrightarrow{NH_3} \xrightarrow{\Delta} NH$$
(Phthalimide)

S23. Ans.(d)

$$(A) \xrightarrow{\text{COCl}} \xrightarrow{\text{CHO}}$$

The given reaction is Rosenmund reaction.

So 'A' is benzoyl chloride

S24. Ans.(b)

COO'NH
$$_{4}^{+}$$

$$+NH_{3} \Longrightarrow COO'NH_{4}^{+}$$

$$-2H_{2}O \Delta$$

$$COONH_{2}$$

$$-NH_{3} \mid Strong heating$$

$$O \mid COO'NH_{4}^{+}$$

$$-NH_{3} \mid Strong heating$$

$$O \mid COO'NH_{4}^{-}$$

$$-NH_{3} \mid Strong heating$$

S25. Ans.(c)

Due to formation of intermolecular H-bonding in carboxylic acid, association occurs. Hence boiling point increases and become more than the boiling point of aldehydes, ketones and alcohols of comparable molecular masses.

S26. Ans.(d)

Option (d) is secondary alcohol which on oxidation gives phenylmethyl ketone (Acetophenone). This on reaction with I_2 and NaOH form iodoform and sodium benzoate.

$$2\text{NaOH} + \text{I}_2 \rightarrow \text{NaOI} + \text{NaI} + \text{H}_2\text{O}$$

$$CH - \text{CH}_3 \xrightarrow{\text{NaOI}} OH \xrightarrow{\text{O}} C - \text{CH}_3 \xrightarrow{\text{O}} OH \xrightarrow{\text{O}} CH - \text{CH}_3 \xrightarrow{\text{O}} OH - \text{CH}_3$$

S27. Ans.(c)

$$\begin{array}{c} O \\ H \\ O \\ H \end{array}$$

S28. Ans.(d)

$$\begin{array}{c} \text{CH}_{3}\text{CH}_{2}\text{OH} \xrightarrow{\text{Cu}} \text{CH}_{3} \longrightarrow \text{CH}_{3} \longrightarrow \text{C} \longrightarrow \text{H} \\ \text{(X)} & \text{(A)} & \text{(C)} \longrightarrow \text{CH}_{3} \longrightarrow \text{CH} \longrightarrow \text{CH} \longrightarrow \text{C} \longrightarrow \text{CH}_{2} & \text{(A)} & \text{(A)} & \text{(A)} & \text{(A)} & \text{(C)} & \text{(A)} & \text{(C)} & \text{(C)} & \text{(A)} & \text{(C)} & \text{(C$$

: It is a substitution reaction.

S29. Ans.(c)

S30. Ans.(b)

Because Cl⁻ is a better leaving group Reactivity order during nucleophilic acyl substitution.

S31. Ans.(d)

-CF₃ is the strongest withdrawing group. Therefore; F₃CCOOH is the strongest acid, among the given acid

S32. Ans.(b)

Aldehyde + 1° amine
$$\longrightarrow$$
 Schiff's base

 $R - C - H + R^{1} - NH_{2} \xrightarrow{-H_{2}O} R - C = NR^{1}$
 $R - C = O + H_{2}N - R$
 $R - C = O + H_{2}N - R$

S33. Ans.(c)

Trans isomer does not react with acetone.

S34. Ans.(b)

Keto - enol tautomerism:

Keto Form

S35. Ans.(d)

R-O-R bond (ether) exhibits – I effect and order for increasing acidic character goes as:

S36. Ans.(c)

Carbonyl compound + Hydrazine

Options A, B & C are Etard's reaction, Rosenmund reaction, Gatterman-Koch reaction and forms benzaldehyde.

Clemmensen reduction, will not form benzaldehyde.

S37. Ans.(b)

If negative response to iodoform test is observed,

Then CH₃—C— group is missing, among 4 options.

3 – Pentanone will not give iodoform test.

S38. Ans.(a)

S39. Ans.(d)

Reactivity of nucleophilic substitution reaction ∝ Electron withdrawing Group. And – NO₂ is a strong electron withdrawing group

S40. Ans.(d)

S41. Ans.(d)

$$H_{3}C - C - CH_{2} - C - CH_{3}$$
 $O - H - O - CH_{3}$
 $H_{3}C - C = CH - C - CH_{3}$

Enol form

Stable due to intermolecular H – Bonding.