Topicwise Questions

Quadratic Equation & Nature of Roots

1.	If $a + b + c = 0$, and $a, b, c \in R$, then the roots of the equation $4ax^2 + 3bx + 2c = 0$ are						
	(a) Equal	(b) Imaginary					
	(c) Real	(d) Both (a) and (b)					
2.		uation $2(a^2 + b^2)x^2 + 2(a + b)$					
	x + 1 = 0 are						
	[Where $a \neq b$]						
	(a) Rational	(b) Irrational					
	(c) Real	(d) Imaginary					
3.	If a, b, $c \in Q$, then roots of the equation						
	$(b+c-2a)x^2+(c+a-2b)x^2$	· · · · · · · · · · · · · · · · · · ·					
	(a) Rational	(b) Non-real					
	(c) Irrational	(d) Equal					
4.							
	$kx^2 + 1 = kx + 3x - 11x^2$ has real and equal roots are (a) -11,-3 (b) 5,7						
		` ′ ′					
5	(c) 5,-7 $y^2 + y + 1 + 2k(y^2 - y - 1) =$	(d) -7,25					
Э.	$x^2 + x + 1 + 2k(x^2 - x - 1) = 0$ is a perfect square for how many values of k						
	(a) 2	(b) 0					
	(c) 1	(d) 3					
6.	If $x^2 - 3x + 2$ be a factor of $x^4 - px^2 + q$, then $(pq) =$						
	(a) (3,4)	(b) (4,5)					
	(c) (4,3)	(d) (5,4)					
7.	The roots of the equation (b-	$-c) x^2 + (c-a) x + (a-b) = 0$ are					
	(a) $\frac{c-a}{b-c}$, 1	(b) $\frac{a-b}{b-c}$, 1					
	o c	b-c, 1					
	(c) $\frac{b-c}{a-b}$, 1	(d) $\frac{c-a}{a-b}$, 1					
Q	u o	a - b, $b^2 = 4(ac + 5d^2), d \in N$, then					
σ.	roots of the equation $ax^2 +$						
	_	(b) Rational & different					
	(c) Complex conjugate						
9.		bers such that $4a + 2b + c = 0$					
	and $ab > 0$. Then the equat (a) real roots	(b) imaginary roots					
	(c) exactly one root	(d) none of these					
10.	Consider the equation $x^2 +$	$2x - n = 0$, where $n \in N$ and n					
	∈ [5, 100]. Total number of different values of 'n' so that						
	the given equation has int (a) 4	egral roots, is (b) 6					
	(a) 4 (c) 8	(b) 6 (d) 3					
11.	The entire graph of the expression $y = x^2 + kx - x + 9$ is strictly above the x-axis if and only if						

(b) -5 < k < 7

(d) None

(a) k < 7

(c) k > -5

	= 0 has imaginary roots then $a + b + 1$ is:					
	(a) positive	(b) negative				
	(c) zero	(d) depends on the sign of b				
13 .						
	0 , then the least value of x^2	2 + ax + b is				
	. 3	9				
	(a) $\frac{3}{2}$	(b) $\frac{9}{4}$				
	_	·				
	$(c) -\frac{9}{4}$	(d) 1				
1.1	4	is constinued $(2, y)(y+1)=y$				
14.	If both roots of the quadratic equation $(2-x)(x+1) = 1$ are distinct & positive, then p must lie in the interval					
	(a) $(2, \infty)$	(b) (2, 9/4)				
	$(c) (-\infty, -2)$	$(d) \ (-\infty, \infty)$				
15.		ic equation $x^2 + px + (1-p) =$				
	0, then its roots are	r (r)				
	(a) 0, 1	(b) -1, 1				
	(c) 0, -1	(d) -1,2				
Sum	and Product of Roo	ts				
16.	If one root of $5x^2 + 13x + k$	x = 0 is reciprocal of the other,				
	then k =					
	(a) 0	(<i>b</i>) 5				
	(c) 1/6	(d) 6				
17 .		the equation $4x^2 + 3x + 7 = 0$,				
		•				
	then $\frac{1}{\alpha} + \frac{1}{\beta} =$					
	αр					
	(a) $-\frac{3}{7}$	$\frac{3}{2}$				
	(a) $-\frac{\pi}{7}$	(b) $\frac{3}{7}$				
	3	(d) $\frac{3}{5}$				
	(c) $-\frac{3}{5}$	$(d) \frac{1}{5}$				
18.	3					
	equal to the sum of their se	±				
	(a) $a(a + b) = 2bc$	(b) $c(a+c) = 2ab$				
	(c) $b(a+b) = 2ac$	(d) b(a+b) = ac				
19 .	If α , β be the roots of the eq	uation $x^2 - 2x + 3 = 0$, then the				
	equation whose roots are $\frac{1}{\alpha^2}$ and $\frac{1}{\beta^2}$ is					
	equation whose roots are	$\overline{\alpha^2}$ and $\overline{\beta^2}$ is				
	(a) $x^2 + 2x + 1 = 0$	(b) $9x^2 + 2x + 1 = 0$				
	(c) $9x^2 - 2x + 1 = 0$	(d) $9x^2 + 2x - 1 = 0$				
20 .	If the product of roots of the	equation, $mx^2 + 6x + (2m-1) =$				
	0 is -1 , then the value of n					
	(a) 1	(b) -1				
	1	1				
	(c) $\frac{1}{3}$	(d) $-\frac{1}{3}$				

12. If $a, b \in R$, $a \ne 0$ and the quadratic equation $ax^2 - bx + 1$

21.	If α and β are the roots of the equation $x^2 - 4x + 1 = 0$ the value of $\alpha^3 + \beta^3$ is		Theory of Equation and Identity, Inequalities			
	(a) 76	(b) 52	30.	If x is real and satisfies $x - (x) = x - 2$	·	
	(c) -52	(d) -76		(a) $x < -2$ (c) $-3 < x < 0$	(b) $x > 0$ (d) $-3 < x < 4$	
22.	If α , β , γ are the roots of the equation $x^3 + x + 1 = 0$, then the value of $\alpha^3 \beta^3 \gamma^3$		31.	The set of all real numbers is	x for which $x^2 - x + 2 + x > 0$	
	(a) 0	(b) -3		(a) $(-\infty, -2) \cup (2, \infty)$	(b) $(-\infty, -\sqrt{2}) \cup (\sqrt{2}, \infty)$	
	(c) 3	(d) - 1		$(c) (-\infty, -1) \cup (1, \infty)$	(d) $(\sqrt{2},\infty)$	
23.	If a, b are the roots of quadratic equation $x^2 + px + q = 0$ and g, d are the roots of $x^2 + px - r = 0$, then $(a-g) \cdot (a-d)$ is equal to:		32. Number of values of 'p' for which the equation $(p^2-3p+2)x^2-(p^2-5p+4)x+p-p^2=0$ possess more than two roots, is:			
	(a) $q+r$	(b) q-r		(a) 0	(b) 1	
	(c) - (q+r)	(d) - (p+q+r)		(c) 2	(d) None	
24.	Two real numbers a & b are such that $a+b=3$ & $ a-b =4$, then a & b are the roots of the quadratic equation:		33.	The number of the integer solutions of $x^2 + 9 < (x+3)^2 < 8x + 25$ is		
	` '	(b) $4x^2 - 12x + 7 = 0$		(a) 1	(b) 2	
		(d) None of these		(c) 3	(d) None of these	
25.	Let conditions C_1 and C_2 be defined as follows: $C_1 : b^2 - 4ac \ge 0$, $C_2 : a, -b$, c are of same sign. The roots of $ax^2 + b$			34. The complete set of values of 'x' which satisfy the inequations: $5x + 2 < 3x + 8$ and $\frac{x+2}{x-1} < 4$ is		
	cx + c = 0 are real and positive, if					
	(a) both C_1 and C_2 are sat	cistied		(a) $(-\infty, 1)$ (c) $(-\infty, 3)$		
	(b) only C ₂ is satisfied		25			
	(c) only C₁ is satisfied(d) None of these		35.		on set of the inequality	
26	If α , β are roots of the equation $ax^2 + bx + c = 0$, then the			$\frac{x^4 - 3x^3 + 2x^2}{x^2 - x - 30} \ge 0 \text{ is:}$		
20.	value of $\alpha^3 + \beta^3$ is			(a) $(-\infty, -5) \cup (1, 2) \cup (6, -1)$	∞) (0)	
	(a) $\frac{3abc + b^3}{a}$	$(b) \frac{a^3 + b^3}{3abc}$		(a) $(-\infty, -5) \cup [1, 2] \cup (6, 4)$ (b) $(-\infty, -5) \cup [1, 2] \cup [6, 4]$ (c) $(-\infty, -5] \cup [1, 2] \cup [6, 4]$ (d) none of these	$\infty) \cup \{0\}$	
	$(c) \frac{3abc - b^3}{a^3}$	$(d) \frac{-(3abc+b^3)}{a^3}$	36.	36. If the inequality $(m-2)x^2+8x+m+4>0$ is satisfied for $x \in \mathbb{R}$, then the least integral 'm' is:		
Con	nmon Roots			(a) 4 (c) 6	(b) 5 (d) none	
		$+2) + m + 2m^2 + 1 = 0$ and $61r$	25		` '	
21.	If both the roots of $k(6x^2 + 3) + rx + 2x^2 - 1 = 0$ and 6k $(2x^2 + 1) + px + 4x^2 - 2 = 0$ are common, then $2r - p$ is equal		3 7.	The complete set of real 'x' satisfying $ x-1 -1 \le 1$ is:		
	to	p is equal		(a) [0,2]	(b) [-1,3]	
	(a) -1	(b) 0		(c) [-1,1]	(<i>d</i>) [1,3]	
	(c) 1	(d) 2	38.	If $\log_{1/3} \frac{3x-1}{x}$ is less than	unity, then 'x' must lie in the	
28.	If the equation $x^2 + px + q = 0$ and $x^2 + qx + p = 0$, have a common root, (Where $p \neq q$) then $p + q + 1 =$			interval:	n unity, then 'x' must lie in the	
	(a) 0	(b) 1		(a) $(-\infty, -2) \cup (5/8, \infty)$ (c) $(-\infty, -2) \cup (1/3, 5/8)$		
	(c) 2	(d) - 1	39.	Solution set of the inequal		
29 .	· /	al numbers, then the equations		(a) [-4, 1]	(b) $[-4, -3) \cup (0, 1]$	
	$2a^2x^2-2 abx+b^2=0 and p$		46	$(c) (-\infty, -3) \cup (1, \infty)$	(d) $(-\infty, -4) \cup [1, \infty)$	

(a) no common root

(b) one common root if $2 a^2 + b^2 = p^2 + q^2$ (c) two common roots if 3 pq = 2 ab

(d) two common roots if 3 qb = 2 ap

40. The set of all the solutions of the inequality $\log_{1-x}(x-2) \ge 0$ is (a) $(-\infty, 0)$ (b) $(2, \infty)$

(c) $(-\infty, 1)$

(*d*) \$\phi\$

- **41**. If $\log_{0.3}(x-1) < \log_{0.09}(x-1)$, then x lies in the interval (a) $(2,\infty)$ (b) (1,2)
 - (c) (-2,-1)
- (d) None of these
- **42.** If $\log_{0.5} \log_5 (x^2 4) > \log_{0.5} 1$, then 'x' lies in the interval
 - (a) $(-3, -\sqrt{5}) \cup (\sqrt{5}, 3)$
 - (b) $(-3, -\sqrt{5}) \cup (\sqrt{5}, 3\sqrt{5})$
 - (c) $(\sqrt{5}, 3\sqrt{5})$
 - (*d*) ϕ
- **43.** The set of all solutions of the inequality $(1/2)^{x^2-2x} < 1/$ 4 contains the set
 - (a) $(-\infty, 0)$
- (b) $(-\infty, 1)$
- (c) $(1,\infty)$
- (d) $(3,\infty)$
- 44. If $\frac{6x^2 5x 3}{x^2 2x + 6} \le 4$, then least and the highest values of
 - (a) 0 & 81
- (b) 9 & 81
- (c) 36 & 81
- (d) None of these
- **45**. If two roots of the equation $x^3 px^2 + qx r = 0$ are equal in magnitude but opposite in sign, then:
 - (a) pr = q
- (b) qr = p
- (c) pq = r
- (d) None
- **46**. If α , β & γ are the roots of the equation $x^3 x 1 = 0$ then,

$$\frac{1+\alpha}{1-\alpha} + \frac{1+\beta}{1-\beta} + \frac{1+\gamma}{1-\gamma}$$
 has the value equal to:

- (c) -7
- (d) 1
- 47. For what value of a and b the equation $x^4 4x^3 + ax^2 + bx$ +1 = 0 has four real positive roots?
 - (a) (-6, -4)
- (b) (-6,5)
- (c) (-6,4)
- (d) (6,-4)
- **48.** If α , β are roots of the equation $ax^2 + bx + c = 0$ then the equation whose roots are $2\alpha + 3\beta$ and $3\alpha + 2\beta$ is
 - (a) $ab x^2 (a + b) cx + (a + b)^2 = 0$ (b) $ac x^2 (a + c) bx + (a + c)^2 = 0$

 - (c) ac $x^2 (a+c) bx (a+c)^2 = 0$
 - (d) None of these
- **49.** If S is the set of all real x such that $\frac{2x-1}{2x^3+3x^2+x}$ is positive, then S contains
 - (a) $(-\infty, -3/2)$
- (b) (-3/2, 1/4)
- (c) (-1/4, 1/2)
- (d) (-1/2,3)

Max and Min Value, Factorization

- **50.** If x is real, then the maximum and minimum values of the expression $\frac{x^2 - 3x + 4}{x^2 + 3x + 4}$ will be
 - (a) 2, 1
- (b) $5, \frac{1}{5}$
- (c) $7, \frac{1}{7}$

- 51. The smallest value of $x^2 3x + 3$ in the interval (-3, 3/2) is
 - (a) 3/4
- (b) 5·
- (c) -15
- (d) -20
- **52.** If $y = -2x^2 6x + 9$, (for $x \in R$) then
 - (a) maximum value of y is -11 and it occurs at x = 2
 - (b) minimum value of y is -11 and it occurs at x = 2
 - (c) maximum value of y is 13.5 and it occurs at x = -1.5
 - (d) minimum value of y is 13.5 and it occurs at x = -1.5
- **53**. If 'x' is real and $k = \frac{x^2 x + 1}{x^2 + x + 1}$, then:
 - $(a) \ \frac{1}{3} \le k \le 3$
- (c) $k \le 0$
- (d) None of these
- **54.** Consider $y = \frac{2x}{1+x^2}$, where x is real, then the range of
 - expression $y^2 + y 2$ is (a) [-1, 1]
- (*b*) [0, 1]
- (c) [-9/4, 0]
- (d) [-9/4, 1]
- **55.** The values of x and y besides y can satisfy the equation $(x, y \in \text{real numbers}) x^2 - xy + y^2 - 4x - 4y + 16 = 0$
 - (a) 2, 2
- (c) 3,3
- (d) None of these
- **56.** If x is real, then $\frac{x^2 x + c}{x^2 + x + 2c}$ can take all real values if
- (b) $c \in [-6, 0]$
- (c) $c \in (-\infty, -6) \cup (0, \infty)$ (d) $c \in (-6, 0)$

Location of Roots

- 57. The real values of 'a' for which the quadratic equation $2x^2$ $-(a^3+8a-1)x+a^2-4a=0$ possesses roots of opposite sign is given by:
 - (a) a > 5
- (b) 0 < a < 4
- (c) a > 0
- (d) a > 7
- **58**. If a, b are the roots of the quadratic equation $x^2 2p$ (x-4)-15=0, then the set of values of 'p' for which one root is less than 1 & the other root is greater than 2 is:
 - (*a*) $(7/3, \infty)$
- (b) $(-\infty, 7/3)$
- (c) $x \in R$
- (d) None of these
- **59.** The values of k, for which the equation $x^2 + 2(k-1)x + k$ +5 = 0 possess at least one positive root, are
 - (a) $[4, \infty)$
- (b) $(-\infty, -1] \cup [4, \infty)$
- (c) [-1, 4]
- (d) $(-\infty, -1]$

Learning Plus

- 1. If a > 0, b > 0, c > 0 then both the roots of the equation $ax^2 + bx + c = 0$
 - (a) Are real and negative
 - (b) Have negative real parts
 - (c) Are rational numbers
 - (d) Both (a) and (c)
- 2. The value of k for which the equation $(k-2)x^2 + 8x + k + 4 = 0$ has both real, distinct and negative is -
 - (a) 0

(b) 2

(c) 3

- (d) 4
- 3. If α , β are the roots of the equation $ax^2 + bx + c = 0$ then

the equation whose roots are $\alpha + \frac{1}{\beta}$ and $\beta + \frac{1}{\alpha}$, is

- (a) $acx^2 + (a+c)bx + (a+c)^2 = 0$
- (b) $abx^2 + (a+c)bx + (a+c)^2 = 0$
- (c) $acx^2 + (a+b)cx + (a+c)^2 = 0$
- (d) $acx^3 + (a+c)bx + (a+c)^3$
- 4. If α , β are the roots of the equation $ax^2 + bx + c = 0$, then

$$\frac{\alpha}{a\beta+b}+\frac{\beta}{a\alpha+b}=$$

(a) $\frac{2}{a}$

(b) $\frac{2}{h}$

(c) $\frac{2}{3}$

- $(d) -\frac{2}{a}$
- 5. If the roots of the equation $12x^2 mx + 5 = 0$ are in the ratio 2:3, then m=
 - (a) $5\sqrt{10}$
- (b) $3\sqrt{10}$
- (c) $2\sqrt{10}$
- (*d*) $10\sqrt{5}$
- 6. $x^2 11x + a$ and $x^2 14x + 2a$ will have a common factor, if a =
 - (a) 24
- (b) 0,24
- (c) 3,24
- (d) 0,3
- 7. If α , β , γ are the roots of the equation $x^3 + 4x + 1 = 0$, then $(\alpha + \beta)^{-1} + (\beta + \gamma)^{-1} + (\gamma + \alpha)^{-1}$
 - (a) 2

(b) 3

(c) 4

- (d) 5
- 8. If the roots of $x^2 + x + a = 0$ exceed a, then
 - (a) 2 < a < 3
- (b) a > 3
- (c) -3 < a < 3
- (d) a < -2
- 9. The value of p for which both the roots of the equation $4x^2 20px + (25p^2 + 15p 66) = 0$ are less than 2, lies in
 - (a) (4/5, 2)
- $(b) (2, \infty)$
- (c) (-1, -4/5)
- (d) $(-\infty, -1)$

- 10. The equation $x \frac{2}{x-1} = 1 \frac{2}{x-1}$ has -
 - (a) No root
- (b) One root
- (c) Two equal root
- (d) Infinitely many roots
- **11.** The number of quardratic equations which are unchanged by squaring their roots
 - (a) 2

(b) 3

(c) 4

- (d) None of these
- 12. For what value of the curve $y = x^2 + ax + 25$ touches the x-axis
 - (a) 0

- (b) ± 5
- $(c) \pm 10$
- (d) None of these
- 13. If $b^2 < 2ac$, then equation $ax^3 + bx^2 + cx + d = 0$ has
 - (a) exactly one real roots
 - (b) Has three real roots
 - (c) at least two roots
 - (d) None of these
- 14. Let α and β are the roots of the equation $x^2 + x + 1 = 0$ then
 - (a) $\alpha^2 + \beta^2 = 4$
- (b) $(\alpha \beta)^2 = 3$
- (c) $\alpha^3 + \beta^3 = 2$
- (*d*) $\alpha^4 + \beta^4 = 1$
- 15. If $\sec \alpha$, $\tan \alpha$ are roots of $ax^2 + bx + c = 0$, then
 - (a) $a^4 b^4 + 4ab^2c = 0$
- (b) $a^4 + b^4 4ab^2c = 0$
- (c) $a^2 b^2 = 4ac$
- (d) $a^2 + b^2 = ac$
- 16. Let α , β be the roots of $ax^2 + bx + c = 0$, γ , δ be the roots of $px^2 + qx + r = 0$ and D_1 and D_2 be their respective discriminant. If α , β , γ , δ , are in A.P., then the ratio $D_1:D_2$ is equal to
 - (a) $\frac{a^2}{b^2}$
- (b) $\frac{a^2}{n^2}$

(c) $\frac{b^2}{a^2}$

- $(d) \frac{c^2}{r^2}$
- 17. If one root of the equation $(l-m)x^2 + lx + 1 = 0$ is double the other and if l is real, then the greatest value of m is
 - (a) $\frac{9}{8}$

(b) $\frac{7}{8}$

(c) $\frac{8}{9}$

 $(d) \frac{8}{6}$

- **18.** If p, q, r are real numbers satisfying the condition p + q + r = 0, then the roots of the quadratic equation $3px^2 + 5qx + 7r = 0$ are
 - (a) Positive
- (b) Negative
- (c) Real and distinct
- (d) Imaginary
- 19. If a, b, c are in G.P., then the equation $ax^2 + 2bx + c = 0$ and

 $dx^2 + 2ex + f = 0$ have common root if $\frac{d}{a}$, $\frac{e}{b}$, $\frac{f}{c}$ are in

(a) A.P.

(b) GP.

(c) H.P.

- (d) ab = cd
- **20.** If a < b < c < d and K > 0, then the quadratic equation (x-a)(x-c) + k(x-b)(x-d) = 0 has
 - (a) All roots real and distinct
 - (b) All roots real but not necessarily distinct
 - (c) All root real and negative
 - (d) May be imaginary
- 21. The number of integers satisfying the inequality

$$\frac{x}{x+6} \le \frac{1}{x} \text{ is}$$

(a) 7

(b) 8

(c) 9

- (d) 3
- 22. Sum of values of x and y satisfying the equation $3^x 4^y = 77$; $3^{x/2} 2^y = 7$ is:
 - (a) 2

(b) 3

(c) 4

- (*d*) 5
- 23. If the value of $m^4 + \frac{1}{m^4} = 119$, then the value of $\left| m^3 \frac{1}{m^3} \right| =$
 - (a) 11

(b) 18

(c) 24

- (d) 36
- **24.** The number of integral roots of the equation $x^8 24x^7 18x^5 + 39x^2 + 1155 = 0$ is:
 - (*a*) 0

(b) 2

(c) 4

- (*d*) 6
- 25. If the roots of the equation $\frac{1}{x+p} + \frac{1}{x+q} = \frac{1}{r}$ are equal

in magnitude but opposite in sign, then the product of the roots is:

- (a) $-2(p^2+q^2)$
- (b) $-(p^2+q^2)$
- (c) $-\frac{(p^2+q^2)}{2}$
- (d) -pc

26. If $\alpha \neq \beta$ but $\alpha^2 = 5\alpha - 3$ and $\beta^2 = 5\beta - 3$, then the equation

with roots
$$\frac{\alpha}{\beta}$$
, $\frac{\beta}{\alpha}$ is:

- (a) $3x^2 25x + 3 = 0$
- (b) $x^2 + 5x 3 = 0$
- (c) $x^2 5x + 3 = 0$
- (d) $3x^2 19x + 3 = 0$
- 27. Minimum possible number of positive root of the quadratic equation $x^2 (1 + \lambda)x + \lambda 2 = 0, \lambda \in \mathbb{R}$:
 - (a) 2

(b) 0

(c) 1

- (d) Can not be determined
- **28.** If α , β , γ , $\delta \in \mathbb{R}$ satisty

$$\frac{\left(\alpha+1\right)^{2}+\left(\beta+1\right)^{2}+\left(\gamma+1\right)^{2}+\left(\delta+1\right)^{2}}{\alpha+\beta+\gamma+\delta}=4$$

If biquadratic equation $a_0x^4 + a_1x^3 + a_2x^2 + a_3x + a_4 = 0$ has

$$the roots\left(\alpha+\frac{1}{\beta}-1\right),\left(\beta+\frac{1}{\gamma}-1\right),\left(\gamma+\frac{1}{\delta}-1\right),\left(\delta+\frac{1}{\alpha}-1\right).$$

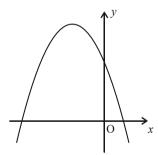
Then the value of a_2/a_0 is:

(a) 4

(b) -4

(c) 6

- (d) None the these
- **29.** If graph of the quadratic $y = ax^2 + bx + c$ is given below:

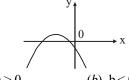


- (a) a > 0, b > 0, c > 0
- (b) a < 0, b > 0, c < 0
- (c) a < 0, b < 0, c > 0
- (d) a < 0, b < 0, c < 0

Advanced Level Multiconcept Questions

MCQ/COMPREHENSION/MATCHING/ **NUMERICAL**

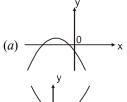
1. The graph of the quadratic polynomial $y = ax^2 + bx + c$ is as shown in the figure. Then:

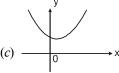


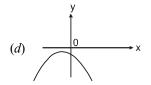
(a) $b^2-4ac > 0$

(b) b < 0(d) c < 0

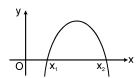
- (c) a > 0
- 2. For which of the following graphs of the quadratic expression $y = ax^2 + bx + c$, the product a b c is negative?







3. The adjoining figure shows the graph of $y = ax^2 + bx + c$. Then



- (a) a < 0
- (b) $b^2 < 4ac$
- (c) c > 0
- (d) a and b are of opposite sign
- **4.** For the equation $|x|^2 + |x| 6 = 0$, the correct statement (s) is (are):
 - (a) sum of roots is 0
- (b) product of roots is -4
- (c) there are 4 roots
- (d) there are only 2 roots
- 5. If a, b are the roots of $ax^2 + bx + c = 0$, and a + h, b + h are the roots of $px^2 + qx + r = 0$, (where $h^1 0$), then

(a)
$$\frac{a}{p} = \frac{b}{q} = \frac{c}{r}$$

(a) $\frac{a}{p} = \frac{b}{q} = \frac{c}{r}$ (b) $h = \frac{1}{2} \left(\frac{b}{a} - \frac{q}{p} \right)$

(c)
$$h = \frac{1}{2} \left(\frac{b}{a} + \frac{q}{p} \right)$$

(c) $h = \frac{1}{2} \left(\frac{b}{a} + \frac{q}{p} \right)$ (d) $\frac{b^2 - 4ac}{a^2} = \frac{q^2 - 4pr}{p^2}$

- **6.** If a, b are non-zero real numbers and α , β the roots of x^2 +ax + b = 0, then
 - (a) α^2 , β^2 are the roots of $x^2 (2b a^2)x + a^2 = 0$
 - (b) $\frac{1}{\alpha}$, $\frac{1}{\beta}$ are the roots of $bx^2 + ax + 1 = 0$
 - (c) $\frac{\alpha}{\beta}$, $\frac{\beta}{\alpha}$ are the roots of $bx^2 + (2b a^2)x + b = 0$
 - (d) $(\alpha 1)$, $(\beta 1)$ are the roots of the equation $x^2 + x$ (a+2)+1+a+b=0
- 7. $x^2 + x + 1$ is a factor of $ax^3 + bx^2 + cx + d = 0$, then the real root of above equation is
 - $(a, b, c, d \in R)$
 - (a) d/a
- (b) d/a
- (c) (b-a)/a
- (d) (a b)/a
- **8.** If $\frac{1}{2} \le \log_{0.1} x \le 2$, then
 - (a) maximum value of x is $\frac{1}{\sqrt{10}}$
 - (b) x lies between $\frac{1}{100}$ and $\frac{1}{\sqrt{10}}$
 - (c) minimum value of x is $\frac{1}{\sqrt{10}}$
 - (d) minimum value of x is $\frac{1}{100}$
- 9. If the quadratic equations $x^2 + abx + c = 0$ and $x^2 + acx + b$ = 0 have a common root, then the equation containing their other roots is/are:
 - (a) $x^2 + a(b+c)x a^2bc = 0$
 - (b) $x^2 a(b+c)x + a^2bc = 0$
 - (c) $a(b+c)x^2-(b+c)x+abc=0$
 - (d) $a(b+c)x^2+(b+c)x-abc=0$
- 10. If the quadratic equations $ax^2 + bx + c = 0$ (a, b, $c \in \mathbb{R}$, $a \ne 0$ 0) and $x^2 + 4x + 5 = 0$ have a common root, then a, b, c must satisfy the relations:
 - (a) a > b > c
 - (b) a < b < c
 - (c) a = k; b = 4k; c = 5k ($k \in R, k \ne 0$)
 - (d) $b^2 4ac$ is negative.
- 11. If α , β are the real and distinct roots of $x^2 + px + q = 0$ and α^4 , β^4 are the roots of $x^2 - rx + s = 0$, then the equation x^2 $-4qx + 2q^2 - r = 0$ has always
 - (a) two real roots
 - (b) two negative roots
 - (c) two positive roots
 - (d) one positive root and one negative root

- 12. If $(x^2 + x + 1) + (x^2 + 2x + 3) + (x^2 + 3x + 5) + \dots + (x^2 + 20)$ x + 39) = 4500, then x is equal to
 - (a) 10

- (c) 20.5 (d) -20.513. If roots of equation, $x^3 + bx^2 + cx 1 = 0$ forms an increasing G.P., then
 - (a) b + c = 0
 - (b) $b \in (-\infty, -3)$
 - (c) one of the roots = 1
 - (d) one root is smaller than 1 & other > 1
- 14. Let $f(x) = \frac{3}{x-2} + \frac{4}{x-3} + \frac{5}{x-4}$, then f(x) = 0 has (a) exactly one real root in (2, 3)

 - (b) exactly one real root in (3, 4)
 - (c) at least one real root in (2,3)
 - (d) None of these

Paragraph for question no. 15 & 16: A quadratic polynomial $f(x) = px^2 + qx + r$ has two distinct roots $x_1 & x_2$. If its vertex (of parabola) is V and x_1, x_2, x_3 are in A.P., then answer the following

18. Match the column.

Column-I

- (a) If α , $\alpha + 4$ are two roots of $x^2 - 8x + k = 0$
 - then possible value of k is
- (b) Number of real roots of equation $x^2 - 5|x| + 6 = 0$
 - are 'n', then value of $\frac{n}{2}$ is
- (c) If 3-i is a root of $x^2 + ax + b = 0$ $(a, b \in R)$, then b is
- (d) If both roots of $x^2 2kx + k^2$ +k-5=0 are less than 5, then 'k' may be equal to

NUMERICAL BASED QUESTIONS

- 19. Find number of integer roots of equation x(x + 1)(x+2)(x+3) = 120.
- 20. Find product of all real values of x satisfying $(5+2\sqrt{6})^{x^2-3}+(5-2\sqrt{6})^{x^2-3}=10$
- 21. The least prime integral value of '2a' such that the roots α , β of the equation $2 x^2 + 6 x + a = 0$ satisfy the
 - inequality $\frac{\alpha}{\beta} + \frac{\beta}{\alpha} < 2$ is
- 22. If a, b are the roots of $x^2 + px + 1 = 0$ and c, d are the roots of $x^2 + qx + 1 = 0$. Then find the value of $(a-c)(b-c)(a+d)(b+d)/(q^2-p^2).$
- **23.** α , β are roots of the equation $\lambda(x^2 x) + x + 5 = 0$. If λ , and $\boldsymbol{\lambda}_2$ are the two values of $\boldsymbol{\lambda}$ for which the roots $\boldsymbol{\alpha},\,\boldsymbol{\beta}$ are connected by the relation $\frac{\alpha}{\beta} + \frac{\beta}{\alpha} = 4$, then the

value of
$$\left(\frac{\lambda_1}{\lambda_2} + \frac{\lambda_2}{\lambda_1}\right)$$
 is

Comprehension – 1 (No. 15 to 17)

Consider the equation $x^4 - \lambda x^2 + 9 = 0$. This can be solved by substituting $x^2 = t$ such equations are called as pseudo quadratic equations.

- 15. If the equation has four real and distinct roots, then λ lies in the interval
 - (a) $(-\infty, -6) \cup (6, \infty)$
- (b) $(0, \infty)$
- (c) $(6, \infty)$
- (d) $(-\infty, -6)$
- 16. If the equation has no real root, then λ lies in the interval
 - $(a) (-\infty, 0)$
- (b) $(-\infty, 6)$
- (c) $(6,\infty)$
- (d) $(0,\infty)$
- 17. If the equation has only two real roots, then set of values of λ is
 - (a) $(-\infty, -6)$
- (b) (-6, 6)
- $(c) \{6\}$
- (*d*) ϕ

Column - II

- (P) 2
- (Q)3
- (R) 12
- (S) 10
- **24.** Let α , β be the roots of the equation $x^2 + ax + b = 0$ and γ , δ be the roots of $x^2 - ax + b - 2 = 0$. If $\alpha\beta\gamma\delta = 24$ and

$$\frac{1}{\alpha} + \frac{1}{\beta} + \frac{1}{\gamma} + \frac{1}{\delta} = \frac{5}{6}$$
, then find the value of a.

- **25.** The least value of expression $x^2 + 2xy + 2y^2 + 4y + 7$ is:
- **26.** If a > b > 0 and $a^3 + b^3 + 27ab = 729$ then the quadratic equation $ax^2 + bx - 9 = 0$ has roots α , β ($\alpha < \beta$). Find the value of $4\beta - a\alpha$.
- **27.** Let α and β be roots of $x^2 6(t^2 2t + 2)x 2 = 0$ with $\alpha > \beta$. If $a_n = \alpha^n - \beta^n$ for $n \ge 1$, then find the minimum

value of
$$\frac{a_{100} - 2a_{98}}{a_{99}}$$
 (where $t \in R$)

28. If roots of the equation $x^2 - 10ax - 11b = 0$ are c and d and those of $x^2 - 10cx - 11d = 0$ are a and b, then find the value

of
$$\frac{a+b+c+d}{110}$$
. (where a, b, c, d are all distinct numbers)

Topicwise Questions

- 1. (c) We have $4ax^2 + 3bx + 2c = 0$ Let roots are α and β Let $D = B^2 - 4AC = 9b^2 - 4(4a)(2c) = 9b^2 - 32$ ac Given that $, (a + b + c) = 0 \Rightarrow b = -(a + c)$ Putting this value, we get $= 9(a + c)^2 - 32$ ac $= 9(a - c)^2 + 4ac$ Hence roots are real.
- 2. (d) Given equation $2(a^2+b^2)x^2+2(a+b)x+1=0$ Let $A = 2(a^2+b^2)$, B = 2(a+b) and C = 1 $B^2-4AC = 4(a^2+b^2+2ab)-4.2(a^2+b^2)1$ $\Rightarrow B^2-4AC = -4(a-b)^2 < 0$ Thus given equation has imaginary roots.
- 3. (a) Here (b+c-2a)+(c+a-2b)+(a+b-2c)=0Therefore the roots are rational.
- 4. (c) The quadratic is $(k+11) x^2 (k+3)x + 1 = 0$ Accordingly, $(k+3)^2 - 4(k+11)(1) = 0 \Rightarrow k = -7, 5$
- 5. (a) Given equation $(1+2k)x^2+(1-2k)x+(1-2k)=0$ If equation is a perfect square then root are equal i.e., $(1-2k)^2-4(1+2k)(1-2k)=0$ i.e., $k=\frac{1}{2},\frac{-3}{10}$. Hence total number of values = 2.
- 6. (d) $x^2 3x + 2$ be factor of $x^4 px^2 + q = 0$ Hence $(x^2 - 3x + 2) = 0 \Rightarrow (x - 2)(x - 1) = 0$ $\Rightarrow x = 2$, 1 putting these values in given equation so 4p - q - 16 = 0(i) and p - q - 1 = 0(ii)
 - Solving (i) and (ii), we get (p, q) = (5, 4)
- 7. (b) check by options x = 1 is rootLet other root = a
 - $\therefore \text{ Product of the roots} = (1)(1) = \frac{a-b}{b-c}$
 - \Rightarrow roots are 1, $\frac{a-b}{b-c}$
- 8. (a) $D = b^2 4ac = 20d^2$ $\sqrt{D} = 2\sqrt{5}d$ here $\sqrt{5}$ is irrational So roots are irrational.

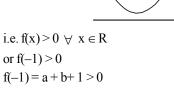
- 9. (a) $D = b^2 4ac = b^2 4a(-4a-2b) = b^2 + 16a^2 + 8ab$ Since ab > 0 $\therefore D > 0$
 - So equation has real roots.
- 10. (c) For integral roots, D of equation should be perfect sq.
 ∴ D = 4(1+n)

By observation, for
$$n \in N$$
, D should be perfect sq. of even integer.

So D =
$$4(1 + n) = 6^2$$
, 8^2 , 10^2 , 12^2 , 14^2 , 16^2 , 18^2 , 20^2
No. of values of $n = 8$.

- 11. (b) Here for D < 0, entire graph will be above x-axis (: a > 0) $\Rightarrow (k-1)^2 - 36 < 0$ $\Rightarrow (k-7)(k+5) < 0$
- 12. (a) Let $f(x) = ax^2 bx + 1$ Given D < 0 & f(0) = 1 > 0 \therefore possible graph is as shown

 \Rightarrow -5 < k < 7



13. (c)
$$x^2 + ax + b = 0$$

$$a + b = -a$$

$$\Rightarrow 2a + b = 0$$
and $ab = b$

$$ab - b = 0$$

$$b(a - 1) = 0$$

$$\Rightarrow \text{Either } b = 0 \text{ or } a = 1$$
But $b \neq 0 \text{(given)}$

$$\therefore a = 1$$

$$b=-2$$

$$\therefore f(x) = x^2 + x - 2$$

Least value occurs at $x = -\frac{1}{2}$

Least value = $\frac{1}{4} - \frac{1}{2} - 2 = -\frac{9}{4}$

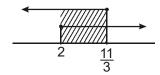
14. (b)
$$(2-x)(x+1)=p$$

$$(x-2)(x+1)+p=0$$

$$\Rightarrow$$
 $x^2 - x - 2 + p = 0$

$$\frac{c}{a} > 0 \implies p-2 > 0$$

& D > 0
$$\Rightarrow$$
 1 - 4(p - 2) > 0 \Rightarrow p < $\frac{9}{4}$



$$\frac{-b}{2a} > 0, \ \frac{-1}{2(2-p)} > 0, P \in (2, \infty)$$

Taking intersection of all $p \in \left(2, \frac{9}{4}\right)$

15. (c)
$$x^2 + px + (1-p) = 0$$

$$(1-p)^2 + p(1-p) + (1-p) = 0$$

$$(1-p)[1-p+p+1]=0 \Rightarrow p=1$$

Q.E. will be
$$\Rightarrow x^2 + x = 0 \Rightarrow x(x+1) = 0$$

 $\Rightarrow x = 0, -1$

Aliter

$$\alpha + 1 - p = -p \Rightarrow \alpha = -1$$

Satisfies

$$1 - p + 1 - p = 0 \Rightarrow p = 1$$

$$\beta = 1 - p = 0 \Rightarrow \beta = 0$$

16. (b) Let first root =
$$\alpha$$
 and second root = $\frac{1}{\alpha}$

Then
$$\alpha, \frac{1}{\alpha} = \frac{k}{5} \Rightarrow k = 5$$

17. (a) Given equation $4x^2 + 3x + 7 = 0$, therefore

$$\alpha + \beta = -\frac{3}{4}$$
 and $\alpha\beta = \frac{7}{4}$

Now
$$\frac{1}{\alpha} + \frac{1}{\beta} = \frac{\alpha + \beta}{\alpha \beta} = \frac{-3/7}{7/4} = \frac{-3}{4} \times \frac{4}{7} = -\frac{3}{7}$$

18. (c) Let α and β be two roots of $ax^2 + bx + c = 0$

Then
$$\alpha + \beta = -\frac{b}{a}$$
 and $\alpha\beta = \frac{c}{a}$

$$\Rightarrow \alpha^2 + \beta^2 = (\alpha + \beta)^2 - 2\alpha\beta = \frac{b^2}{a^2} - 2\frac{c}{a}$$

So under condition $\alpha + \beta = \alpha^2 + \beta^2 \alpha + \beta = a^2 + \beta^2$

$$\Rightarrow -\frac{b}{a} = \frac{b^2 - 2ac}{a^2} \Rightarrow b(a+b) = 2ac$$

19. (b) α , β be the roots of $x^2 - 2x + 3 = 0$, then $\alpha + \beta = 2$ and $\alpha \beta = 3$.

Now required equation whose roots are $\frac{1}{\alpha^2}$, $\frac{1}{\beta^2}$ is

$$x^{2} - \left(\frac{1}{\alpha^{2}} + \frac{1}{\beta^{2}}\right)x + \frac{1}{\alpha^{2}\beta^{2}} = 0$$
$$\Rightarrow x^{2} - \left(-\frac{2}{9}\right)x + \frac{1}{9} = 0 \Rightarrow 9x^{2} + 2x + 1 = 0$$

20. (c) According to condition

$$\frac{2m-1}{m} = -1 \implies 3m = 1 \implies m = \frac{1}{3}$$

21. (b)
$$\alpha^3 + \beta^3 = (\alpha + \beta)^3 - 3\alpha\beta(\alpha + \beta)$$

= $(4)^3 - 3 \times 1(4) = 52$

22. (*d*) We know that the roots of the equation $ax^3 + bx^2 + cx + d = 0$ follows $\alpha\beta\gamma = -d/a$ Comparing above equation with given equation we get d = 1, a = 1 So, $\alpha\beta\gamma = -1$ or $\alpha^3\beta^3\gamma^3 = -1$.

23. (c)
$$a+b=-p$$

 $ab=q$
 $g+d=-p$
 $gd=-r$
 $(a-g)(a-d)=a^2-a(g+d)+gd$
 $=a^2+pa-r=a(a+p)-r=-ab-r$
 $=-q-r=-(q+r)$

24. (a)
$$|a-b| = 4 \Rightarrow (a-b)^2 = 16$$

 $\Rightarrow (a+b)^2 - 4ab = 16$
 $\Rightarrow 9 - 4ab = 16 \Rightarrow ab = -\frac{7}{4}$
 \Rightarrow equation is $x^2 - 3x - \frac{7}{4} = 0$

25. (a)
$$C_1: b^2 - 4ac \ge 0$$
,
 $ax^2 + bx + c = 0$ real roots C_1 satisfied
 $C_2: a, -b, c$ are same sign
 $\alpha + \beta > 0 \Rightarrow \frac{-b}{a} > 0$

$$\alpha\beta > 0 \Rightarrow \frac{c}{a} > 0$$

C₂ satisfied C₁ & C₂ are satisfied

26. (c)
$$ax^2 + bx + c = 0$$
, $\alpha + \beta = \frac{-b}{a}$, $\alpha\beta = \frac{c}{a}$
 $\alpha^3 + \beta^3 = (\alpha + \beta) [(\alpha + \beta)^2 - 3\alpha\beta]$
 $\alpha^3 + \beta^3 = \left(\frac{-b}{a}\right) \left[\left(\frac{-b}{a}\right)^2 - 3\frac{c}{a}\right]$
 $= \frac{-b}{a} \left[\frac{b^2}{a^2} - \frac{3c}{a}\right] = \frac{-b}{a} \frac{(b^2 - 3ac)}{a^2} = \frac{3abc - b^3}{a^3}$

- **27.** (b) Given equation can be written as $(6k+2)x^2+rx+3k-1=0$(i)
 - and $2(6k+2)x^2+px+2(3k-1)=0$(ii)

Condition for common roots is

$$\frac{12k+4}{6k+2} = \frac{p}{r} = \frac{6k-2}{3k-1} = 2 \text{ or } 2r-p = 0$$

28. (a) Let α is the common root,

so
$$\alpha^2 + p\alpha + q = 0$$
(i)

and $\alpha^2 + q\alpha + p = 0$(ii)

from (i) - (ii),

 \Rightarrow $(p-q)\alpha + (q-p) = 0 \Rightarrow \alpha = 1$

Put the value of α in (i), p + q + 1 = 0.

- **29.** (a) $D_1 = 4a^2b^2 8a^2b^2 = -4a^2b^2 < 0$ img. root $D_{2} = 4p^{2}q^{2} - 4p^{2}q^{2} = 0$ equal, real roots
- **30.** (b) Given, $x+2 > \sqrt{x+4} \implies (x+2)^2 > (x+4)$ \Rightarrow x + 4x + 4 > x + 4 \Rightarrow x² + 3x > 0 \Rightarrow x (x+3)>0 \Rightarrow x <-3 or x > 0 \Rightarrow x > 0
- **31.** (b) Case I: When $x + 2 \ge 0$ i.e. $x \ge -2$

Then given inequality becomes

$$x^2 - (x+2) + x > 0 \Rightarrow x^2 - 2 > 0 \Rightarrow |x| > \sqrt{2}$$

 $\Rightarrow x < -\sqrt{2} \text{ or } x > \sqrt{2}$

 \Rightarrow x < $-\sqrt{2}$ or x > $\sqrt{2}$ As x \geq - 2, therefore, in this case the part of the solution set is $[-2, -\sqrt{2}) \cup (\sqrt{2}, \infty)$.

Case II: When $x + 2 \le 0$ i.e. $x \le -2$,

Then given inequality becomes $x^2 + (x + 2) + x > 0$ \Rightarrow x²+2x+2>0 \Rightarrow (x+1)²+1>0, which is true for all real x

Hence, the part of the solution set in this case is $(-\infty, -2]$. Combining the two cases, the solution set is

$$(-\infty,-2)\cup([-2,-\sqrt{2}]\cup(\sqrt{2},\infty)=(-\infty,-\sqrt{2})\cup(\sqrt{2},\infty)\,.$$

32. (b) For $(p^2-3p+2)x^2-(p^2-5p+4)x+p-p^2=0$ to be an identity

$$p^2 - 3p + 2 = 0 \Rightarrow p = 1, 2$$
 ...(1)

$$p^2 - 5p + 4 = 0 \Rightarrow p = 1, 4$$
 ...(2)

$$p - p^2 = 0 \Rightarrow p = 0, 1$$
 ...(3)

...(3)

For (1), (2) & (3) to hold simultaneously

33. (d) $x^2 + 9 < (x+3)^2 < 8x + 25$ $x^2 + 9 < x^2 + 6x + 9 \Rightarrow x > 0$ $\& (x+3)^2 < 8x+25$ $x^2 + 6x + 9 - 8x - 25 < 0$ $x^2 - 2x - 16 < 0$

$$\lambda = 2\lambda = 10 < 0$$

$$1 - \sqrt{17} < x < 1 + \sqrt{17} \& x > 0$$

$$\Rightarrow$$
 x \in (0, 1 + $\sqrt{17}$)

Integer x = 1, 2, 3, 4, 5

No. of integer are = 5

34. (d)
$$5x+2 < 3x+8 \Rightarrow 2x < 6 \Rightarrow x < 3$$
 ...(i)

$$\frac{x+2}{x-1} < 4 \Rightarrow \frac{x+2}{x-1} - 4 < 0 \Rightarrow \frac{-3x+6}{x-1} < 0$$

$$\Rightarrow \frac{x-2}{x-1} > 0 \Rightarrow x \in (-\infty, 1) \cup (2, \infty)$$
 ...(ii)

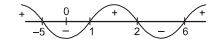
Taking intersection of (i) and (ii) $x \in (-\infty, 1) \cup (2, 3)$

35. (b)
$$\frac{x^2(x^2-3x+2)}{x^2-x-30} \ge 0$$

$$\Rightarrow \frac{x^2(x-1)(x-2)}{(x+5)(x-6)} \ge 0$$

$$x \neq -5,6$$

$$x \in (-\infty, -5) \cup [1, 2] \cup (6, \infty) \cup \{0\}$$



36. $(b : (m-2)x^2 + 8x + m + 4 > 0 \forall x \in \mathbb{R}$

$$\Rightarrow$$
 m>2&D<0

$$64-4(m-2)(m+4)<0$$

$$16 - [m^2 + 2m - 8] < 0$$

$$\Rightarrow$$
 m² + 2m - 24 > 0

$$\Rightarrow$$
 $(m+6)(m-4)>0$

$$m \in (-\infty, -6) \cup (4, \infty)$$

But
$$m > 2$$

$$\Rightarrow$$
 m \in (4, ∞)

Then least integral m is m = 5.

37. (*b*) $-1 \le |x-1| - 1 \le 1$

$$\Rightarrow 0 \le |x-1| \le 2$$

$$\Rightarrow 0 \le |x-1|$$

$$\Rightarrow x \in R$$

and
$$|x-1| \le 2$$

$$\Rightarrow$$
 $-2 \le x - 1 \le 2$

$$\Rightarrow$$
 $-1 \le x \le 3$

$$(1) \cap (2)$$

$$\Rightarrow$$
 $x \in [-1, 3].$

38. (a) $\log_{1/3} \frac{3x-1}{x+2} < 1$

$$\Rightarrow \frac{3x-1}{x+2} > 0 \Rightarrow x \in (-\infty, -2) \cup \left(\frac{1}{3}, \infty\right) \qquad \dots (i)$$

...(1)

...(2)

and
$$\frac{3x-1}{x+2} > \frac{1}{3}$$

$$\Rightarrow \frac{8x-5}{x+2} > 0$$

$$\Rightarrow x \in (-\infty, -2) \cup \left(\frac{5}{8}, \infty\right) \qquad(ii)$$

$$(i) \cap (ii) \Rightarrow x \in (-\infty, -2) \cup \left(\frac{5}{8}, \infty\right)$$

39. (b)
$$2 - \log_2(x^2 + 3x) \ge 0$$

⇒ $\log_2(x^2 + 3x) \le 2$
 $x^2 + 3x > 0$
⇒ $x \in (-\infty, -3) \cup (0, \infty)$ (i)
and $x^2 + 3x \le 4$
⇒ $(x-1)(x+4) \le 0$
⇒ $x \in [-4, 1]$ (ii)
(i) \cap (ii) ⇒ $x \in [-4, -3) \cup (0, 1]$

40. (d)
$$\log_{1-x}(x-2) \ge 0$$

 $x \ge 2$ (1)
(i) When $0 \le 1 - x \le 1 \implies 0 \le x \le 1$

So no common range comes out.

(ii) When
$$1-x > 1 \Rightarrow x < 0$$
 but $x > 2$

here, also no common range comes out. , hence no solution.

Finally, no solution

41. (a)
$$\log_{0.3}(x-1) < \log_{0.09}(x-1)$$

 $\log_{0.3}(x-1) < \frac{\log_{0.3}(x-1)}{2}$
 $\Rightarrow \log_{0.3}(x-1) < 0 \Rightarrow x-1 > 1 \Rightarrow x > 2$

42. (a)
$$\log_{0.5} \log_5 (x^2 - 4) > \log_{0.5} 1$$

 $\log_{0.5} \log_5 (x^2 - 4) > 0$
 $\Rightarrow x^2 - 4 > 0$
 $\Rightarrow x \in (-\infty, -2) \cup (2, \infty)$ (i)
 $\log_5 (x^2 - 4) > 0 \Rightarrow x^2 - 5 > 0$
 $\Rightarrow x \in (-\infty, -\sqrt{5}) \cup (\sqrt{5}, \infty)$ (ii)
 $\log_5 (x^2 - 4) < 1$
 $\Rightarrow x^2 - 9 < 0 \Rightarrow x \in (-3, 3)$ (iii)
(i) \cap (ii) \cap (iii) $\Rightarrow x \in (-3, \sqrt{5}) \cup (\sqrt{5}, 3)$

43. (d)
$$\left(\frac{1}{2}\right)^{x^2-2x} < \left(\frac{1}{2}\right)^2$$
 here base is less than zero so inequality change
$$\Rightarrow x^2-2x > 2 \Rightarrow x^2-2x-2 > 0$$

$$\alpha, \beta = \frac{2 \pm \sqrt{4+8}}{2} = \frac{2 \pm 2\sqrt{3}}{2}$$

$$a = 1 - \sqrt{3}, b = 1 + \sqrt{3}$$

$$(x-a)(x-b) > 0$$

$$x \in \left(-\infty, 1 - \sqrt{3}\right) \cup \left(1 + \sqrt{3}, \infty\right), x \text{ can be in } (3, \infty)$$

44. (a)
$$\frac{6x^2 - 5x - 3}{x^2 - 2x + 6} \le 4$$

$$D^r \text{ is always} > 0$$

$$6x^2 - 5x - 3 - 4x^2 + 8x - 24 \le 0$$

$$\Rightarrow 2x^2 + 3x - 27 \le 0$$

$$\Rightarrow (2x + 9)(x - 3) \le 0 \Rightarrow x \in \left[\frac{-9}{2}, 3\right]$$
least value of $4x^2 = 4.0^2 = 0$
Highest value of $4x^2 \text{ is} = \max\left(4\cdot\left(-\frac{9}{2}\right)^2, 4\cdot 3^2\right)$

$$= \max(81, 36) = 81$$

45. (c) Let the roots be a, b, -b then $\alpha + \beta - \beta = p$ $\Rightarrow \alpha = p$...(1) and $\alpha\beta - \alpha\beta - \beta^2 = q$ $\Rightarrow \beta^2 = -q$...(2) also $-\alpha\beta^2 = r$ $\Rightarrow pq = r \text{ [using (1)]}.$

46. (c)
$$x^3 - x - 1 = 0$$

$$from \alpha^3 - \alpha - 1 = 0$$

$$from equation (1)
$$\frac{y-1}{y+1}^3 - \left(\frac{y-1}{y+1}\right)^3 - \left(\frac{y-1}{y+1}\right) - 1 = 0$$

$$\Rightarrow y^3 + 7y^2 - y + 1 = 0$$

$$from equation
$$\frac{1+\alpha}{1-\alpha} + \frac{1+\beta}{1-\beta} + \frac{1+\gamma}{1-\gamma} = -7 \text{ Ans.}$$$$$$

47. (d)
$$x^4 - 4x^3 + ax^2 + bx + 1 = 0$$

real & positive roots
 $\alpha + \beta + r + \delta = 4 & \alpha \beta r \delta = 1$
 $\Rightarrow \alpha = \beta = r = \delta = 1$
 $\sum \alpha \beta = a \Rightarrow a = 6$
 $\sum \alpha \beta r = -b \Rightarrow b = -4$
or $(x - 1)^4 = x^4 - 4x^3 + 6x^2 - 4x + 1$

48. (d)
$$ax^2 + bx + c = 0 < \frac{\alpha}{\beta}$$

sum of roots =
$$(2\alpha + 3\beta) + (3\alpha + 2\beta)$$

$$=5(\alpha+\beta)=5\left(-\frac{b}{a}\right)$$

Product of roots =
$$6\alpha^2 + 6\beta^2 + 13\alpha\beta = 6(\alpha + \beta)^2 + \alpha\beta$$

$$=6\left(\frac{-b}{a}\right)^2 + \frac{c}{a} = \frac{6b^2}{a^2} + \frac{c}{a}$$

Q. E.
$$x^2 + \frac{5b}{a}x + \frac{6b^2}{a^2} + \frac{c}{a} = 0$$

$$a^2x^2 + 5abx + 6b^2 + ac = 0$$

49. (a)
$$\Rightarrow \frac{(2x-1)}{x(2x^2+3x+1)} > 0$$

$$\Rightarrow \frac{(2x-1)}{x(x+1)(2x+1)} > 0$$

consontains
$$\left(-\infty, \frac{-3}{2}\right)$$

50. (c) Let
$$y = \frac{x^2 - 3x + 4}{x^2 + 3x + 4}$$

$$\Rightarrow (y-1)x^2 + 3(y+1)x + 4(y-1) = 0$$

For x is real $D \ge 0$

$$\Rightarrow$$
 9(y+1)² - 16(y-1)² \ge 0 9(y+1)² - 16(y-1)² \ge 0

$$\Rightarrow$$
 -7y² + 50y - 7 \geq 0 \Rightarrow 7y² - 50y + 7 \leq 0

$$\Rightarrow$$
 $(y-7)(7y-1) \le 0$

Now, the product of two factors is negative if one in –ve and one in +ve.

Case I: $(y-7) \ge 0$ and $(7y-1) \le 0$

 \Rightarrow y \geq 7 and y $\geq \frac{1}{7}$. But it is impossible

Case II: $(y-7) \le 0$ and $(7y-1) \ge 0$

$$\Rightarrow$$
 y \le 7 and y \geq $\frac{1}{7}$ \Rightarrow $\frac{1}{7}$ \le y \le 7

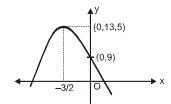
Hence maximum value is 7 and minimum value is $\frac{1}{7}$

51. (a)
$$x^2 - 3x + 3 = \left(x - \frac{3}{2}\right)^2 + \frac{3}{4}$$

Therefore, smallest value is $\frac{3}{4}$, which lie in $\left(-3, \frac{3}{2}\right)$

52. (c)
$$y = -2x^2 - 6x + 9$$

$$\therefore \frac{-b}{2a} = \frac{6}{2(-2)} = -\frac{3}{2} = -1.5$$



&
$$D = 36 - 4(-2)(9) = 36 + 72 = 108$$

$$\therefore -\frac{D}{4a} = -\frac{108}{4(-2)} = +\frac{108}{8} = 13.5$$

$$\Rightarrow$$
 y \in ($-\infty$, 13.5]

53. (a)
$$k = \frac{x^2 - x + 1}{x^2 + x + 1}$$

$$\Rightarrow$$
 $(k-1)x^2 + (k+1)x + (k-1) = 0$

Q x is real

$$\therefore\quad D\!\ge\!0$$

$$\Rightarrow$$
 $(k+1)^2 - 4(k-1)^2 \ge 0$

$$\Rightarrow$$
 $(3k-1)(k-3) \le 0$

$$\Rightarrow k \in \left[\frac{1}{3}, 3\right]$$

54. (c)
$$y = \frac{2x}{1+x^2}, x \in R$$

$$\Rightarrow$$
 vx² - 2x + v = 0

$$\Rightarrow$$
 D \geq 0 \Rightarrow 4 - 4 $v^2 \geq$ 0

$$\Rightarrow$$
 $(y^2 - 1) \le 0 \Rightarrow y \in [-1, 1]$

$$\therefore$$
 Range of $f(y) = y^2 + y - 2$

Min value =
$$\frac{-D}{4a} = \frac{-9}{4}$$
 at $y = \frac{-b}{2a} = \frac{-1}{2}$

$$y = \frac{-1}{2} \in [-1, 1]$$

$$f(-1) = 1 - 1 - 2 = -2$$

$$f(1) = 1 + 1 - 2 = 0$$

 $\max \text{ value is} = 0$

Range
$$\left[\frac{-9}{4}, 0\right]$$

55. (b)
$$x^2 - xy + y^2 - 4x - 4y + 16 = 0$$
, $x, y \in \mathbb{R}$
 $x^2 - x(y+4) + (y^2 - 4y + 16) = 0$

...(1)

$$x \in R \Rightarrow D \ge 0$$

$$(y+4)^2 - 4(y^2 - 4y + 16) \ge 0$$

$$\Rightarrow y^2 + 8y + 16 - 4y^2 + 16y - 64 \ge 0$$

$$\Rightarrow y^2 - 8y + 16 \le 0$$

$$\Rightarrow (y-4)^2 \le 0 \Rightarrow y=4$$

Put is given equation (i)

$$x^2 - 8x + 16 = 0$$

$$\Rightarrow$$
 $(x-4)^2 = 0 \Rightarrow x = 4$

56. (d)
$$(y-1)x^2 + (y+1)x + (2cy-c) = 0$$

$$D \ge 0$$
 : $x \in R$

$$\Rightarrow (y+1)^2 - 4(y-1)(2cy-c) \ge 0$$

$$y^2 + 2y + 1 - 8cy^2 + 12cy - 4c \ge 0$$

$$(1-8c)y^2 + (2+12c)y + (1-4c) \ge 0$$

$$\forall y \in R, D \leq 0$$

$$(2+12c)^2-4(1-8c)(1-4c) \le 0$$

$$(1+6c)^2 - (1-8c)(1-4c) \le 0$$

$$4c^2 + 24c \le 0 \Rightarrow c \in [-6, 0]$$

& Nr & Dr have no any common root

(i) both common factor (root) (not possible)

$$\frac{1}{1} = \frac{-1}{+1} = \frac{c}{2c}$$

(ii) If one common root is α

$$(\alpha^2 - \alpha + c = 0) \times 2$$

&
$$\alpha^2 + \alpha + 2c = 0$$

$$\alpha^2 - 3\alpha = 0$$

$$\alpha = 0 \Rightarrow c = 0$$

or
$$\alpha = 3 \Rightarrow c = -6$$

$$\therefore$$
 $c \neq 0 \& c \neq -6$

$$\therefore$$
 $c \in (-6, 0)$

57. (b)
$$2x^2 - (a^3 + 8a - 1)x + (a^2 - 4a) = 0$$

since the roots are of opposite sign, f(0) < 0

$$\Rightarrow$$
 a² - 4a < 0

$$\Rightarrow$$
 a (a-4) < 0

$$\Rightarrow$$
 a \in (0, 4)

58. (b)
$$x^2 - 2px + (8p - 15) = 0$$

$$f(1) < 0$$
 and $f(2) < 0$

$$\Rightarrow$$
 f(1) = 1 - 2p + 8p - 15 < 0

$$\Rightarrow$$
 p < 7/3

and
$$f(2) = 4 - 4p + 8p - 15 < 0$$

$$\Rightarrow 4p - 11 < 0 \Rightarrow p < \frac{11}{4}$$

Hence $p \in (-\infty, 7/3)$ Ans.

59. (d)
$$x^2 + 2(k-1)x + k + 5 = 0$$

Case-I (i) D ... 0

$$\Rightarrow 4 (k-1)^2 - 4(k+5) \dots 0$$

$$\Rightarrow k^2 - 3k - 4 \dots 0 \Rightarrow (k+1) (k-4) \dots 0$$

$$\Rightarrow k \in (-\infty, -1] \cup [4, \infty)$$

& (ii)
$$f(0) > 0 \implies k+5 > 0 \implies k \in (-5, \infty)$$

& (iii)
$$\frac{-b}{2a} > 0 \Rightarrow \frac{-2(k-1)}{2} > 0$$

$$\Rightarrow$$
 k \in ($-\infty$, 1):.k \in [-5 , -1]

Case - II
$$f(0) \le 0 \Rightarrow k + 5 \le 0$$

 $\Rightarrow k \in (-\infty, -5]$

Finally $k \in (Case - I) \cup (Case - II)$

$$k \in (-\infty, -1]$$

Learning Plus

1. (b) The roots of the equations are given by

$$x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$$

(i) Let
$$b^2 - 4ac > 0$$
, $b > 0$

Now if
$$a > 0$$
, $c > 0$, $b^2 - 4ac < b^2$

 \Rightarrow the roots are negative.

(ii) Let $b^2 - 4ac < 0$, then the roots are given by

$$x = \frac{-b \pm i \sqrt{(4ac - b^2)}}{2a}$$
, $(i = \sqrt{-1})$

Which are imaginary and have negative real part (:b>0)

: In each case, the roots have negative real part.

2. (c) From options put
$$k = 3 \Rightarrow x^2 + 8x + 7 = 0$$

$$\Rightarrow (x+1)(x+7) = 0 \Rightarrow x = -1, -7$$
means for $k = 3$ roots are negative.

3. (a) Here
$$\alpha + \beta = -\frac{b}{a}$$
 and $\alpha\beta = \frac{c}{a}$

If roots are
$$\alpha + \frac{1}{\beta}$$
, $\beta + \frac{1}{\alpha}$ then sum of roots are
$$= \left(\alpha + \frac{1}{\beta}\right) + \left(\beta + \frac{1}{\alpha}\right) = (\alpha + \beta) + \frac{(\alpha + \beta)}{\alpha\beta} = \frac{b}{ac}(a + c)$$
and product $= \left(\alpha + \frac{1}{\beta}\right) \left(\beta + \frac{1}{\alpha}\right)$

$$= \alpha\beta + 1 + 1 + \frac{1}{\alpha\beta} = 2 + \frac{c}{a} + \frac{a}{c}$$

$$= \frac{2ac + c^2 + a^2}{ac} = \frac{(a + c)^2}{ac}$$

Hence required equation is given by

$$x^{2} + \frac{b}{ac}(a+c)x + \frac{(a+c)^{2}}{ac} = 0$$

$$\Rightarrow acx^2 + (a+c)bx + (a+c)^2 = 0$$

Trick: Let a = 1, b = -3, c = 2, then $\alpha = 1$, $\beta = 2b = -3$, c = 2, then $\alpha = 1$, $\beta = 2$

$$\therefore \alpha + \frac{1}{\beta} = \frac{3}{2} \text{ and } \beta + \frac{1}{\alpha} = 3$$

Therefore, required equation must be

$$(x-3)(2x-3)=0$$

i.e.
$$2x^2-9x+9=0$$

Here (1) gives this equation on putting

$$a=1, b=-3, c=2$$

4. (d)
$$\alpha + \beta = -\frac{b}{a}$$
, $\alpha\beta = \frac{c}{a}$
and $\alpha^2 + \beta^2 = \frac{(b^2 - 2ac)}{a^2}$

Now
$$\frac{\alpha}{a\beta + b} + \frac{\beta}{a\alpha + b} = \frac{\alpha(a\alpha + b) + \beta(a\beta + b)}{(a\beta + b)(a\alpha + b)}$$

$$= \frac{a(\alpha^2 + \beta^2) + b(\alpha + \beta)}{\alpha \beta a^2 + ab(\alpha + \beta) + b^2} = \frac{a\frac{(b^2 - 2ac)}{a^2} + b\left(-\frac{b}{a}\right)}{\left(\frac{c}{a}\right)a^2 + ab\left(-\frac{b}{a}\right) + b^2}$$

$$= \frac{b^2 - ac - b^2}{a^2c - ab^2 + ab^2} = \frac{-ac}{a^2c} = -\frac{2}{a}$$

5. (a) Let roots are
$$\alpha$$
, β so, $\frac{\alpha}{\beta} = \frac{2}{3} \Rightarrow \alpha = \frac{2\beta}{3}$

$$\therefore \alpha + \beta = \frac{m}{12}$$

$$\Rightarrow \frac{2\beta}{3} + \beta = \frac{m}{12} \Rightarrow \frac{5\beta}{3} = \frac{m}{12} \qquad(i)$$

and
$$\alpha\beta = \frac{5}{12} \Rightarrow \frac{2\beta}{3}.\beta = \frac{5}{12} \Rightarrow \beta^2 = \frac{5}{8}$$

 $\Rightarrow \beta = \sqrt{5/8}$

Put the value of β in (i), $\frac{5}{3} \cdot \sqrt{\frac{5}{8}} = \frac{m}{12} \Rightarrow m = 5\sqrt{10}$.

6. (b) Expressions are $x^2 - 11x + a$ and $x^2 - 14x + 2a$ will have a common factor, then

$$\Rightarrow \frac{x^2}{-22a + 14a} = \frac{x}{a - 2a} = \frac{1}{-14 + 11}$$

$$\Rightarrow \frac{x^2}{-8a} = \frac{x}{-a} = \frac{1}{-3} \Rightarrow x^2 = \frac{8a}{3} \text{ and } x = \frac{a}{3}$$

$$\Rightarrow \left(\frac{a}{3}\right)^2 = \frac{8a}{3} \Rightarrow \frac{a^2}{9} = \frac{8a}{3} \Rightarrow a = 0, 24.$$

Trick: We can check by putting the values of a from the options.

7. (c) If α , β , γ are the roots of the equation. $x^3 - px^2 + qx - r = 0$

$$\therefore (\alpha + \beta)^{-1} + (\beta + \gamma)^{-1} + (\gamma + \alpha)^{-1} = \frac{p^2 + q}{pq - r}$$
Given, $p = 0$, $q = 4$, $r = -1$

$$\Rightarrow \frac{p^2 + q}{pq - r} = \frac{0 + 4}{0 + 1} = 4$$

8. (d) If the roots of the quadratic equation $ax^2 + bx + c = 0$ exceed a number k, then $ak^2 + bk + c > 0$ if a > 0, $b^2 - 4ac \ge 0$ and sum of the roots > 2k. Therefore, if the roots of $x^2 + x + a = 0$ exceed a number a, then $a^2 + a + a > 0$, $1 - 4a \ge 0$ and -1 > 2a

$$\Rightarrow a(a+2) > 0, a \le \frac{1}{4} \text{ and } a < -\frac{1}{2} \Rightarrow a > 0 \text{ or}$$

$$a < -2, a < \frac{1}{4} \text{ and } a < -\frac{1}{2}$$
Hence $a < -2$.

9. (*d*) Let

$$f(x) = 4x^2 - 20px + (25 p^2 + 15p - 66) = 0 \qquad(i)$$
The roots of (i) are real if $b^2 - 4ac = 400p^2 - 16(25p^2 + 15p - 66) = 16(66 - 15p) \ge 0$

$$\Rightarrow p \le 22/5 \qquad(ii)$$

Both roots of (i) are less than 2. Therefore f(2) > 0 and sum of roots < 4.

$$\Rightarrow 4.2^{2} - 20p.2 + (24p^{2} + 15p - 66) > 0 \text{ and } \frac{20p}{4} < 4$$

$$\Rightarrow p^{2} - p - 2 > 0 \text{ and } p < \frac{4}{5}$$

$$\Rightarrow$$
 $(p+1)(p-2) > 0$ and $p < \frac{4}{5}$

$$\Rightarrow$$
 p < -1 or p > 2 and p < $\frac{4}{5}$ \Rightarrow p < -1(iii)

From (ii) and (iii), we get p < -1 i.e. $p \in (-\infty, -1)$.

10. (a)
$$x - \frac{2}{x-1} = 1 - \frac{2}{x-1}$$

Since, x - 1 is in denominator

$$x-1\neq 0$$

$$x \neq 1$$

$$x - \frac{2}{x - 1} = 1 - \frac{2}{x - 1}$$

 \Rightarrow x = 1 But x can't be 1. So, No roots.

11. (c) If roots are α and β .

Then,
$$\alpha + \beta = \alpha^2 + \beta^2$$

$$\alpha\beta = \alpha^2\beta^2$$

$$\Rightarrow \alpha^2 \beta^2 - \alpha \beta = 1$$

$$\alpha\beta(\alpha\beta-1)=0$$

$$\alpha\beta = 0$$
 or $\alpha\beta = 1$

$$\Rightarrow$$
 $\alpha = 0$ or $\beta = 0$ or $\alpha\beta = 1$

C1: if $\alpha = 0$

$$0 + \beta = 0 + \beta^2 \Longrightarrow \beta^2 - \beta = 0$$

$$\beta(\beta-1)=0 \Rightarrow \beta=0 \text{ or } 1.$$

Roots are 0,0 and 0,1

C2: Similarly, for $\beta = 0 \Rightarrow \alpha = 0$ or 1

Roots will be 0.0 and 1.0

C3:
$$\alpha\beta = 1$$

$$\alpha^2 + \beta^2 = \alpha + \beta$$

$$(\alpha + \beta)^2 - 2\alpha\beta = \alpha + \beta$$

$$(\alpha + \beta)^2 - (\alpha + \beta) - 2 = 0$$

Let
$$\alpha + \beta = t$$

$$t^2 - t - 2 = 0$$

$$(t-2)(t+1)=0$$

$$t = 2 \text{ or } t = -1$$

$$\alpha + \beta = 2$$
 or $\alpha + \beta = -1$

for
$$\alpha + \beta = 2$$
, $\alpha\beta = 1$

Roots are 1, 1

for
$$\alpha + \beta = -1$$
, $\alpha\beta = 1$

Roots are w, w².

Hences total roots are possible.

- 0,0
- 0, 1
- 1, 1
- $\omega \omega^2$

12. (c) for $y = x^2 + ax + 25$ to touch the x - axis, it should have equal & real roots, i.e D = 0

$$a^2 - 4.1.25 = 0$$

$$a^2 - 100 = 0$$

$$(a-10)(a+10)=0$$

$$a = 10 \text{ or } -10$$

13. (a) $ax^3 + bx^2 + cx + d = 0$

Let roots be α , β , γ .

$$\alpha + \beta + \gamma = -\frac{b}{a}$$

$$\alpha\beta + \beta\gamma + \gamma\alpha = \frac{c}{a}$$

$$\alpha\beta\gamma = -\frac{d}{a}$$

Now, $\alpha^2 + \beta^2 + \gamma^2 = (\alpha + \beta + \gamma)^2 - 2(\alpha\beta + \beta\gamma + \gamma\alpha)$

$$= \left(\frac{-b}{a}\right)^2 - \frac{2c}{a} = \frac{b^2}{a^2} - \frac{2c}{a} = \frac{b^2 - 2ac}{a^2}$$

As
$$b^2 < 2ac$$

$$b^2 - 2ac < 0 \quad \Rightarrow \quad \alpha^2 + \beta^2 + \gamma^2 < 0$$

Not possible if all α, β, γ are real.

And complex root occurs in pair, so two out of α, β, γ are complex & one is real.

14. (c) $x^2 + x + 1 = 0$

$$x = \frac{-1 \pm \sqrt{1-4}}{2} = \frac{-1 \pm \sqrt{-3}}{2} = w, w^2$$

 $\alpha = \omega$, $\beta = \omega^2$, ω is cube toot of unity.

(a)
$$\alpha^2 + \beta^2 = \omega^2 + \omega^4 = \omega^2 + \omega = -1 (1 + \omega + \omega^2 = 0)$$

(b)
$$(\alpha - \beta)^2 = \alpha^2 + \beta^2 - 2\alpha\beta$$

$$=-1-2.\omega^3$$

= -1-2=-3

$$(\omega^3 = 1)$$

(c)
$$\alpha^3 + \beta^3 = \omega^3 + (\omega^2)^3 = 1 + 1 = 2$$

15. (a) $ax^2 + bx + c = 0$

secα and tanα are roots.

$$\sec \alpha + \tan \alpha = -\frac{b}{a}$$
; $\sec \alpha \cdot \tan \alpha = \frac{c}{a}$

 $(\sec\alpha - \tan\alpha)^2 = (\sec\alpha + \tan\alpha)^2 - 4\sec\alpha \tan\alpha$

$$=\frac{b^2}{a^2}-\frac{4c}{a}=\frac{b^2-4ac}{a^2}$$

$$\sec\alpha - \tan\alpha = \sqrt{\frac{b^2 - 4ac}{a}}$$

Now, we know that,

$$\sec^2\alpha - \tan^2\alpha = 1 \implies (\sec\alpha - \tan\alpha)(\sec\alpha + \tan\alpha) = 1$$

$$\Rightarrow \left(\sqrt{\frac{b^2 - 4ac}{a}}\right) \left(\frac{-b}{a}\right) = 1$$

$$\Rightarrow \frac{(b^2 - 4ac)b^2}{a^4} = 1$$
 (Squaring both side)

$$a^4 - b^4 + 4ab^2c = 0$$

16. (b)
$$ax^2 + bx + c = 0$$

 $\alpha + \beta = \frac{-b}{a}$; $\alpha\beta = \frac{c}{a}$; $D1 = b^2 - 4ac$
 $px^2 + qx + r = 0$
 $\gamma + \delta = \frac{-q}{p}$; $\gamma\delta = \frac{r}{p}$; $D_2 = q^2 - 4pr$
 $\alpha, \beta, \gamma, \delta$ are in AP.

$$\alpha = \beta - \alpha = \delta - \gamma$$

Common difference

$$\Rightarrow \frac{\sqrt{D_1}}{a} = \frac{\sqrt{D_2}}{p}$$
 (Difference between roots).
$$\sqrt{\frac{D_1}{D_2}} = \frac{a}{p}$$

$$\sqrt{\frac{D_2}{D_1}} = \frac{a^2}{n^2}$$

17. (a)
$$(l-m)x^2 + lx + 1 = 0$$

Roots are α and 2α .

$$\alpha + 2\alpha = \frac{-l}{l - m} \Rightarrow \alpha = \frac{-l}{3(l - 3)}$$
 ...(i)

$$\alpha.2\alpha = \frac{l}{l-m} \Rightarrow \alpha^2 = \frac{-l}{2(l-3)}$$
 ...(ii)

from (i) & (ii),

$$\frac{l^2}{9(l-m)^2} = \frac{1}{2(l-3)}$$

$$\Rightarrow 2(l-m)l^2 = 9(l-m)^2$$

$$\Rightarrow 2l^2 - 9l + 9m = 0$$

for real
$$l$$
, $D \ge 0$

$$81 - 4.2.9m \ge 0 \implies 9 - 8m \ge 0$$

$$m \leq \frac{9}{8}$$

18. (c)
$$3px^2 + 5qx + 7r = 0$$

$$D = (5q)^2 - 4.3p.7r$$

$$= 25q^2 - 84pr$$

$$= 25(p+r)2 - 84pr$$

$$= 25(p^2 + r^2 + 2pr) - 84pr$$

$$= 25p^2 + 25r^2 + 50pr - 84pr$$

$$= (5p)^2 - 2.(5p) \frac{(17r)}{5} + \frac{(17r)^2}{5} - \frac{(17r)^2}{5} + 25r^2$$

Roots are real & distinct.

 $=25p^2-34pr+25r^2$

19. (a)
$$ax^2 + 2bx + c = 0$$

 $D = (2b)^2 - 4ac = 4(b^2 - ac)$
As a,b,c are in G.P. So, $b^2 = ac$
 $D = b^2 - ac = 0$

Hence, above eqn has equal roots

$$x = \frac{-2b}{2a} = \frac{-b}{a}$$

This root will satisfy $dx^2 + 2ex + f = 0$

So,
$$d\left(\frac{-b}{a}\right)^{2} + 2e\left(\frac{-b}{a}\right) + f = 0$$
$$db^{2} - 2aeb + a^{2}f = 0$$
$$dac - 2aeb + a^{2}f = 0$$

$$dac + a^2f = 2aeb \Rightarrow dc + af = 2eb$$

Dividing by ac, both side

$$\frac{d}{a} + \frac{f}{c} = \frac{2e}{b} \Rightarrow \frac{d}{a}, \frac{e}{b}, \frac{f}{c}$$
 are in A.P.

20. (a)
$$a < b < c < d$$
 and $k > 0$

$$f(x) = (x - a)(x - c) + k(x - b)(x - d)$$

$$f(a) = k(a - b)(a - b) \Rightarrow f(a) > 0$$

$$f(b) = (b - a)(b - c) \Rightarrow f(b) < 0$$

$$f(c) = (c - b)(c - d) \Rightarrow f(c) < 0$$

$$f(d) = (d - a)(d - c) \Rightarrow f(d) < 0$$

f(x) has one root in (a,b) & another root in (c,d).

Hence, roots are real & distinct.

No. of integral values of x = 7

22. (d) Given,
$$3x-4y=77$$

 $3^{x/2}-2^y=7$
Let $3^{x/2}=p$, $2^y=q$
 $p-q=7$
 $p^2-q^2=77 \Rightarrow (p-q)(p+q)=77 \Rightarrow p+q=\frac{77}{7}=11$
 $p-q=7$
 $p+q=11$ $\Rightarrow p=9, q=2$
 $3^{x/2}=9 \Rightarrow \frac{x}{2}=2 \Rightarrow x=4$
 $2^y=2 \Rightarrow y=1$
 $x+y=4+1=5$

23. (d)
$$\left(m^2 + \frac{1}{m^2}\right)^2 - 2 = 119 \Rightarrow \left(m^2 + \frac{1}{m^2}\right)^2 = 121$$

 $m^2 + \frac{1}{m^2} = 11 \Rightarrow \left(m - \frac{1}{m}\right)^2 + 2 = 11$
 $\left(m - \frac{1}{m}\right)^2 = 9 \Rightarrow m - \frac{1}{m} = 3$
 $\left|m^3 - \frac{1}{m^3}\right| = \left|\left(m - \frac{1}{m}\right)\left(m^2 + \frac{1}{m^2} + 1\right)\right|$
 $= |3.12| = 36$

24. (a)
$$x^8 - 24x^7 - 18x^5 + 39x^2 + 1155 = 0$$

 $x^2(x^6 - 24x^5 - 18x^3 + 39) = -1155$
 $= -3 \times 5 \times 7 \times 11$

As $x \in \mathbb{Z}$.

LHS contains x^2

But in RHS, there is no perfect square.

So, there is no integral value of x.

25. (c)
$$\frac{1}{x+p} + \frac{1}{x+q} = \frac{1}{r}$$

$$\frac{(x+q) + (x+p)}{(x+p)(x+q)} = \frac{1}{r}$$

$$(2x+p+q)r = x^2 + (p+q)x + pq$$

$$x^2 + (p+q-2r)x + pq - (p+q)r = 0$$
Roots are $\alpha_1 - \alpha$.
$$(\alpha) + (-d) = -(p+q-2r)$$

$$\Rightarrow 2r = p+q \Rightarrow r = \frac{p+q}{2}$$
Product of roots = α . $(-\alpha) = pq - (p+q)r = 0$

$$= pq - (p+q) \frac{(p+q)}{2} = -\frac{(p^2+q^2)}{2}$$

26. (d)
$$\alpha^2 = 5\alpha - 3$$
; $\beta^2 = 5\beta - 3$
 $\alpha^2 - 5\alpha + 3 = 0$ $\alpha & \beta$ are roots of $x^2 - 5x + 3 = 0$

$$\alpha + \beta = 5$$

 $\alpha\beta = 3$

Required Eqⁿ:

$$x^{2} - \left(\frac{\alpha}{\beta} + \frac{\beta}{\alpha}\right)x + \left(\frac{\alpha}{\beta} \cdot \frac{\beta}{\alpha}\right) = 0$$
$$x^{2} - \left(\frac{\alpha}{\beta} + \frac{\beta}{\alpha}\right)x + 1 = 0$$

$$\frac{\alpha}{\beta} + \frac{\beta}{\alpha} = \frac{\alpha^2 + \beta^2}{\alpha\beta} = \frac{(\alpha + \beta)^2 - 2\alpha\beta}{\alpha\beta} = \frac{25 - 2.3}{3} = \frac{19}{3}$$

$$x^2 - \frac{19}{3}x + 1 = 0$$

$$3x^2 - 19x + 1 = 0$$

27. (c)
$$x^2 - (1+\gamma)x + \gamma - 2 = 0$$

 α , β are roots.
 $\alpha + \beta = (1+\gamma)$
 $\alpha\beta = \gamma - 2$
 $\alpha + \beta - \alpha\beta = 3$
 $\alpha\beta - \gamma - \beta + 3 = 0$
 $\alpha\beta - \alpha - \beta + 1 + 2 = 0$
 $\alpha(\beta - 1) - (\beta - 1) = -2$
 $(\alpha - 1)(\beta - 1) = -2$

Since, product is (-ve)

At least one root is +ve.

28. (c)
$$\frac{(\alpha+1)^{2} + (\beta+1)^{2} + (\gamma+1)^{2}(\delta+1)^{2}}{\alpha+\beta+\gamma+\delta} = 4$$

$$(\alpha+1)^{2} + (\beta+1)^{2} + (\gamma+1)^{2} + (\delta+1)^{2}$$

$$= 4\alpha + 4\beta + 4\gamma + 4\delta$$

$$(\alpha+1)^{2} - 4\alpha + (\beta+1)^{2} - 4\beta + (\gamma+1)^{2}$$

$$-4\gamma + (\delta+1)^{2} - 4\delta = 0$$

$$(\alpha-1)^{2} + (\beta-1)^{2} + (\gamma-1)^{2} + (\delta-1)^{2} = 0$$

$$\alpha = \beta = \gamma = \delta = 1$$

$$a_{0}x^{4} + a_{1}x^{3} + a_{2}x^{2} + a_{3}x + a_{4} = 0$$

 $\frac{a_2}{a_2} = S_2 = Sum \text{ of product of roots taken two at a time.}$

$$\frac{a_2}{a_0} = 6$$

Roots are 1, 1, 1, 1

29. (c)
$$ax^2 + bx + c = 0$$

- (i) Since downward parabola, a < 0
- (ii) As graph cuts +ve y-axis, c > 0
- (iii) Vertex lies in 2nd Quardrant,

$$\frac{-b}{2a} < 0 \Longrightarrow \frac{b}{2a} > 0$$

 \Rightarrow b & a must have same sign.

b < 0

Hence, a < 0, b < 0, c > 0

Advanced Level Multiconcept Questions

1.
$$(a, b, d)$$

$$y = ax^2 + bx + c$$

Clearly a < 0

and
$$\frac{-b}{2a} < 0$$

$$\Rightarrow$$
 b < 0

also
$$f(0) < 0 \Rightarrow c < 0$$

and

$$\therefore$$
 (A), (B) and (D).

2. (a,b,c,d)

(a)
$$a < 0$$
,

$$-\frac{-b}{2a} < 0 \Longrightarrow b < 0$$

&
$$f(0) < 0 \Rightarrow c < 0$$

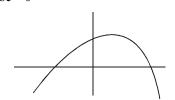
$$\therefore$$
 abc < 0

(b)
$$a < 0$$
,

$$\frac{-b}{2a} > 0 \Longrightarrow b > 0$$

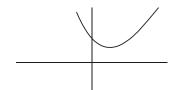
$$f(0) > 0 \Rightarrow c > 0$$

$$\Rightarrow$$
 abc < 0



(c)
$$a > 0$$

$$\frac{-b}{2a} > 0 \implies b < 0$$



$$\Rightarrow$$
 abc < 0

(*d*)
$$a < 0$$

$$\frac{-b}{2a} < 0 \Longrightarrow b < 0$$

$$f(0) < 0 \Rightarrow c < 0$$

$$\frac{-b}{2a} > 0 \Rightarrow b > 0$$

$$\therefore$$
 (a), (d)

4.
$$(a, b, d)$$

$$|x|^2 + |x| - 6 = 0 \Rightarrow |x| = -3, 2 \Rightarrow |x| = 2$$

$$\Rightarrow x = \pm 2$$

5.
$$(b, d)$$

$$ax^2 + bx + c = 0$$

$$a + b = -b/a$$
, $ab = c/a$

$$px^{2} + qx + r = 0 \frac{\alpha + h}{\beta + h}$$

$$(a+b)+2h = \frac{-q}{p}$$

$$h = \frac{\frac{-q}{p} + \frac{b}{a}}{2} = \frac{1}{2} \left(\frac{b}{a} - \frac{q}{p} \right) \text{ Ans.}$$

$$|\alpha - \beta| = |(\alpha + h) - (\beta + h)|$$

$$= \sqrt{\left[(\alpha+h) + (\beta+h)\right]^2 - 4(\alpha+h)(\beta+h)}$$

$$=\frac{b^2}{a^2}-\frac{4c}{a}=\frac{q^2}{p^2}-\frac{4r}{p} \Rightarrow \frac{b^2-4ac}{a^2}=\frac{q^2-4pr}{p^2}$$
 Ans.

6. (*b*,*c*,*d*)

(a)
$$S = a^2 + b^2 = a^2 - 2b$$

$$P = a^2 b^2 = b^2$$

$$\therefore$$
 equation is $x^2 - (a^2 - 2b) x + b^2 = 0$

(b)
$$S = \frac{1}{\alpha} + \frac{1}{\beta} = -\frac{a}{b}, P = \frac{1}{\alpha} \cdot \frac{1}{\beta} = \frac{1}{b}$$

$$\therefore x^2 + \frac{a}{b} x + \frac{1}{b} = 0$$

$$\Rightarrow$$
 bx² + ax + 1 = 0

(c)
$$S = \frac{\alpha}{\beta} + \frac{\beta}{\alpha} = \frac{\alpha^2 + \beta^2}{\alpha\beta} = \frac{a^2 - 2b}{b}$$

$$P = \frac{\alpha}{\beta} \cdot \frac{\beta}{\alpha} = 1$$

$$x^{2} - \frac{a^{2} - 2b}{b} x + 1 = 0 \Rightarrow bx^{2} - (a^{2} - 2b) x + b = 0$$

(d)
$$S = a + b - 2 = -a - 2$$

 $P = (a - 1)(b - 1)$
 $= ab - (a + b) + 1$
 $= b + a + 1$
 \therefore equation is
 $x^2 + (a + 2)x + (a + b + 1) = 0$.

7.
$$(a,d)$$

$$ax^3 + bx^2 + cx + d = 0$$
 α

Let
$$ax^3 + bx^2 + cx + d = (x^2 + x + 1)(Ax + B)$$

Roots of $x^2 + x + 1 = 0$ are imaginary, Let these are α , β So the third root ' γ ' will be real.

$$\alpha + \beta + \gamma = \frac{-b}{a}$$

$$-1 + \gamma = \frac{-b}{a} \implies \gamma = \frac{a - b}{a}$$

Also
$$\alpha\beta\gamma = \frac{-d}{a}$$

But
$$\alpha\beta = 1$$

$$\therefore \ \gamma = \frac{-d}{a}$$

 \therefore Ans are (a) & (d).

8. (*a*, *b*, *d*)

$$\frac{1}{2} \le \log_{1/10} x \le 2$$

$$\Rightarrow \frac{1}{100} \le x \le \frac{1}{\sqrt{10}}$$

9. (b, d)

$$x^2 + abx + c = 0 < \frac{\alpha}{\beta} \qquad \dots (1)$$

$$\alpha + \beta = -ab$$
, $\alpha \beta = c$

$$x^2 + acx + b = 0 < \frac{\alpha}{\delta} \qquad ...(2)$$

$$\alpha + \delta = -ac$$
, $\alpha \delta = b$

$$\alpha^2 + ab \alpha + c = 0$$

$$\alpha^2 + ac \alpha + b = 0$$

$$\frac{\alpha^2}{ab^2 - ac^2} = \frac{\alpha}{c - b} = \frac{1}{a \, c - ab}$$

$$\Rightarrow \alpha^2 = \frac{a(b^2 - c^2)}{a(c - b)} = -(b + c)$$

&
$$\alpha = \frac{c-b}{a(c-b)} = \frac{1}{a}$$
 : common root, $\alpha = \frac{1}{a}$

$$\therefore -(b+c) = \frac{1}{a^2} \implies a^2(b+c) = -1$$

Product of the roots of equation (1) & (2) gives

$$\beta \times \frac{1}{a} = c \Rightarrow \beta = ac$$

&
$$\delta \times \frac{1}{a} = b \Rightarrow \delta = ab$$
.

 \therefore equation having roots β , δ is

$$x^2 - a(b + c)x + a^2bc = 0$$

$$a(b+c) x^2 - a^2 (b+c)^2 x + a.(b+c) a^2 bc = 0$$

$$a(b+c)x^2+(b+c)x-abc=0.$$

10. (c, d)

$$\therefore$$
 D of $x^2 + 4x + 5 = 0$ is less than zero

⇒ both the roots of quadratic are same

$$\Rightarrow$$
 b² - 4ac < 0 & $\frac{a}{1} = \frac{b}{4} = \frac{c}{5} = k$

$$\Rightarrow$$
 a = k, b = 4k, c = 5k.

$$x^2 + px + q = 0 < \frac{\alpha}{\beta}$$

$$\alpha + \beta = -p$$
, $\alpha\beta = q$ and $p^2 - 4q > 0$

$$x^2 - rx + s = 0 < \frac{\alpha^4}{\beta^4}$$
(1)

Now $\alpha^4 + \beta^4 = r$

$$\Rightarrow \alpha^4 + \beta^4 = r, (\alpha\beta)^4 = s = q^4$$

$$\therefore (\alpha^2 + \beta^2)^2 - 2(\alpha\beta)^2 = r$$

$$\Rightarrow [(\alpha + \beta)^2 - 2\alpha\beta]^2 - 2\alpha^2\beta^2 = r$$

$$\Rightarrow$$
 $(p^2-2q)^2-2q^2=r$

$$\Rightarrow (p^2 - 2q)^2 = 2q^2 + r > 0 \qquad(2)$$

Now, for
$$x^2 - 4qx + 2q^2 - r = 0$$

$$D = 16q^2 - 4(2q^2 - r)$$
 by equation (2)

$$=8q^2+4r=4(2q^2+r)>0$$

 \Rightarrow D > 0 two real and distinct roots

Product of roots = $2q^2 - r$

$$=2q^2-[(p^2-2q)^2-2q^2]$$

$$=4q^2-(p^2-2q)^2$$

$$=-p^2(p^2-4q)<0$$
 from (1)

So product of roots is – ve

hence roots are opposite in sign

12. (a, d)

$$20x^2 + 210x + 400 = 4500 \Rightarrow 2x^2 + 21x - 410 = 0$$

 $\Rightarrow (2x + 41)(x - 10) = 0$

$$\Rightarrow x = \frac{-41}{2}, x = 10 \Rightarrow x = -20.5, x = 10$$

13.
$$(a,b,c,d)$$

$$x^3 + bx^2 + cx - 1 = 0$$

$$\alpha = \frac{a}{r}$$

$$\beta = a$$

$$r = ar$$

$$\frac{a}{r} + a + ar = -b \implies a\left(\frac{1}{r} + 1 + r\right) = -b$$

&
$$\frac{a}{r} \times a \times ar = 1$$

$$a^3 = 1 \Rightarrow a = 1$$

&
$$\frac{a}{r}a + a \cdot ar + \frac{a}{r} \cdot ar = c$$

$$a^2 \left(\frac{1}{r} + r + 1 \right) = c$$

$$\frac{1}{r} + r + 1 = -b \& \frac{1}{r} + r + 1 = c \Rightarrow b + c = 0$$

we know
$$\frac{1}{r} + r > 2 \Longrightarrow \left(\frac{1}{r} + r + 1\right) > 3$$

$$-b > 3 \Rightarrow b < -3 \Rightarrow b \in (-\infty, -3)$$

& other two roots are $\frac{1}{r} \& r$

if
$$\frac{1}{r} > 1 \Rightarrow r < 1$$
 if $r > 1 \Rightarrow r < 1$

14. (a,b)

$$f(x) = \frac{3}{(x-2)} + \frac{4}{(x-3)} + \frac{5}{(x-4)} = 0$$

$$6x^2 - 14x - 21x + 49 = 0$$

$$(3x-7)(2x-7)=0$$

$$x = \frac{7}{2}, x = \frac{7}{2}$$

$$2 < \frac{7}{2} < 33 < \frac{7}{2} < 4$$

2nd Method

$$g(x) = 3(x-3)(x-4) + 4(x-2)(x-4) + 5(x-2)(x-3) = 0$$

one root lie b/w (2, 3) & other root lie b/w (3, 4)

- **15.** (*c*)
- **16.** (*b*)
- **17.** (*d*)

Sol. (15 to 16)

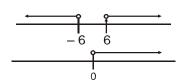
$$x^4 - \lambda x^2 + 9 = 0 \Rightarrow x^2 = t \ge 0 \Rightarrow f(t) = t^2 - \lambda t + 9 = 0$$

15. given equation has four real & distinct roots

$$D > 0$$

$$\Rightarrow \lambda^2 - 36 > 0$$

$$\frac{-b}{2a} > 0$$



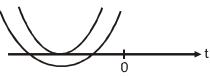
$$\Rightarrow \frac{\lambda}{2} > 0$$

$$\Rightarrow \lambda > 0$$

$$\Rightarrow$$
 9 > 0

$$\lambda \in (6,\infty)$$

16. Equation has no real roots.



case-I
$$D \ge 0 \Rightarrow \lambda^2 - 36 \ge 0$$

$$\frac{-b}{2a} < 0 \implies \lambda < 0$$



$$f(0) > 0 \Rightarrow 9 > 0.$$

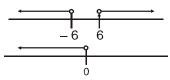
$$\lambda \in (-\infty, -6]$$

$$\Rightarrow \lambda^2 - 36 < 0$$

$$\Rightarrow \lambda \in (-6, 6)$$

union of both cases gives

$$\lambda \in (-\infty, 6)$$



17. Equation has only two real roots

case-I
$$f(0) < 0$$

which is false

case-II
$$f(0) = 0$$

and
$$\frac{-b}{2a} < 0$$

- :. No solution
- ∴ Final answer is \$\phi\$

18.
$$(a) \to (r), (b) \to (p), (c) \to (s), (d) \to (p, q)$$

(a)
$$x^2 - 8x + k = 0$$
 $\alpha + 4 = \beta$

$$\therefore (\beta - \alpha)^2 = (\alpha + \beta)^2 - 4\alpha\beta$$

$$\Rightarrow 16 = 64 - 4k \Rightarrow 4k = 48 \Rightarrow k = 12$$

(b) :
$$(|x|-2)(|x|-3)=0$$

 $\Rightarrow x = \pm 2; x = \pm 3$

$$\therefore n = 4 \therefore \frac{n}{2} = 2$$

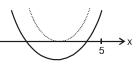
$$(c)$$
 :: $b = (3-i)(3+i)$
 $b = 10$

(d)
$$x^2-2kx+(k^2+k-5)=0$$

(i)
$$D \ge 0$$

$$\Rightarrow 4k^2 - 4(k^2 + k - 5) \ge 0$$

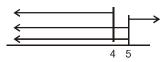
$$\Rightarrow k - 5 \le 0$$



(ii)
$$f(5) > 0$$

 $\Rightarrow 25 - 10 k + k^2 + k - 5 > 0$
 $\Rightarrow k^2 - 9k + 20 > 0 \Rightarrow (k - 5) (k - 4) > 0$

$$(iii) - \frac{b}{2a} < 5 \Rightarrow k < 5$$



$$\Rightarrow$$
 k \in ($-\infty$, 4)
So k may be 2, 3.

NUMERICAL VALUE BASED

19. [2]
$$(x^2 + 3x + 2) (x^2 + 3x) = 120$$

Let $x^2 + 3x = y$
 $\Rightarrow y^2 + 2y - 120 = 0$
 $\Rightarrow (y + 12) (y - 10) = 0$
 $\Rightarrow y = -12 \Rightarrow x^2 + 3x + 12 = 0$
 $\Rightarrow x \in \phi$
 $y = 10 \Rightarrow x^2 + 3x - 10 = 0$
 $\Rightarrow (x + 5) (x - 2) = 0 \Rightarrow x = \{-5, 2\}$
 $x = 2, -5$ are only two integer roots.

20. [8]
$$(5+2\sqrt{6})^{x^2-3} + \frac{1}{(5+2\sqrt{6})^{x^2-3}} = 10$$

$$\Rightarrow t + \frac{1}{t} = 10$$

$$\Rightarrow t^2 - 10t + 1 = 0 \quad t = \frac{10 \pm \sqrt{96}}{2} = 5 \pm 2\sqrt{6}$$

$$\Rightarrow (5+2\sqrt{6})^{x^2-3} = (5+2\sqrt{6}) \quad \text{or} \quad \frac{1}{5+2\sqrt{6}}$$

$$\Rightarrow x^2 - 3 = 1 \quad \text{or} \quad x^2 - 3 = -1$$

$$\Rightarrow x = 2 \text{ or} -2 \quad \text{or} \quad -\sqrt{2} \text{ or} \quad \sqrt{2}$$
Product 8

21.
$$[11] 2x^2 + 6x + a = 0$$

Its roots are α , β

$$\Rightarrow \alpha + \beta = -3 \qquad \& \alpha\beta = \frac{a}{2} \Rightarrow \frac{\alpha}{\beta} + \frac{\beta}{\alpha} < 2$$

$$\Rightarrow \frac{(\alpha + \beta)^2 - 2\alpha\beta}{\alpha\beta} < 2$$

$$\Rightarrow \frac{9 - a}{a} < 1$$

$$\Rightarrow \frac{2a - 9}{a} > 0$$

$$\Rightarrow a \in (-\infty, 0) \cup \left(\frac{9}{2}, \infty\right)$$

$$\Rightarrow 2a = 11 \text{ is least prime.}$$

$$x^2 + px + 1 = 0$$
 a $a + b = -p, ab = 1; x^2 + qx + b$

$$1 = 0$$
 $c + d = -q, cd = 1$

$$a + b = -p$$
, $ab = 1 \Rightarrow c + d = -q$, $cd = 1$
RHS = $(a - c)(b - c)(a + d)(b + d)$

$$= (ab - ac - bc + c^2) (ab + ad + bd + d^2)$$

= $(1 - ac - bc + c^2) (1 + ad + bd + d^2)$

$$= 1 + ad + bd + d^{2} - ac - a^{2}cd - abcd - acd^{2} - bc$$
$$- abcd - b^{2}cd - bcd^{2} + c^{2} + adc^{2} + bdc^{2} + c^{2}d^{2}$$

$$= 1 + ad + bd + d^{2} - ac - a^{2} - 1 - ad - bc - 1 - b^{2}$$
$$- bd + c^{2} + ac + bc + 1$$

[:
$$ab = cd = 1$$
]
= $c^2 + d^2 - a^2 - b^2 = (c + d)^2 - 2cd - (a + b)^2 + 2ab$
= $q^2 - 2 - p^2 + 2 = q^2 - p^2 = LHS$. **Proved.**

2nd Method:

RHS =
$$(ab - c(a + b) + c^2) (ab + d(ab + d(a + b) + d^2)$$

= $(c^2 + pc + 1) (1 - pd + d^2)$...(1)

Since c & d are the roots of the equation $x^2 + qx + 1 = 0$

$$\therefore c^2 + qc + 1 = 0 \Rightarrow c^2 + 1 = -qc \& d^2 + qd + 1 = 0$$
$$\Rightarrow d^2 + 1 = -qd.$$

:. (i) Becomes =
$$(pc - qc) (-pd - qd) = c(p - q) (-d)$$

 $(p + q) = -cd (p^2 - q^2)$
= $cd (q^2 - p^2) = q^2 - p^2 = LHS$. **Proved.**

23. [73] ::
$$\alpha$$
, β are roots of $\lambda x^2 - (\lambda - 1) x + 5 = 0$

$$\therefore \alpha + \beta = \frac{\lambda - 1}{\lambda} \text{ and } \alpha\beta = \frac{5}{\lambda}$$

$$\therefore \frac{\alpha}{\beta} + \frac{\beta}{\alpha} = 4 \qquad \Rightarrow \qquad \frac{\alpha^2 + \beta^2}{\alpha\beta} = 4$$

$$\Rightarrow (\alpha + \beta)^{2} = 6 \alpha \beta \Rightarrow \frac{(\lambda - 1)^{2}}{\lambda^{2}} = \frac{30}{\lambda}$$

$$\Rightarrow \lambda^{2} - 32\lambda + 1 = 0 \qquad ...(1)$$

$$\therefore \lambda_{1}, \lambda_{2} \text{ are roots of (1)}$$

$$\therefore \lambda_{1} + \lambda_{2} = 32 \text{ and } \lambda_{1}\lambda_{2} = 1$$

$$\therefore \frac{\lambda_{1}}{\lambda_{2}} + \frac{\lambda_{2}}{\lambda_{1}} = \frac{(\lambda_{1} + \lambda_{2})^{2} - 2\lambda_{1}\lambda_{2}}{\lambda_{1}\lambda_{2}} = \frac{(32)^{2} - 2}{1}$$

$$= 1022 \Rightarrow \left(\frac{\lambda_{1}}{\lambda_{2}} + \frac{\lambda_{2}}{\lambda_{1}}\right) = 73$$

24.
$$[10] \alpha.\beta = b; \gamma \delta = b - 2$$

 $\Rightarrow \alpha \beta \gamma \delta = b(b - 2) = 24$
 $\therefore bx^2 + ax + 1 = 0 \text{ has roots } \frac{1}{\alpha}, \frac{1}{\beta}$
 $\Rightarrow \frac{1}{\alpha} + \frac{1}{\beta} = \frac{-a}{b}$
 $(b-2)x^2 - ax + 1 = 0 \text{ has root } \frac{1}{\gamma}, \frac{1}{\delta} \Rightarrow \frac{1}{\gamma} + \frac{1}{\delta} = \frac{a}{b-2}$
 $\frac{1}{\gamma} + \frac{1}{\beta} + \frac{1}{\gamma} + \frac{1}{\delta} = \frac{-a}{b} + \frac{a}{b-2} = \frac{5}{6}; \frac{+2a}{b(b-2)} = \frac{5}{6};$
 $\frac{+2a}{24} = \frac{5}{6}; a = 10.$

25. [3]
$$x^2 + px + 1 = 0$$

Roots = a,b

$$a + b = -p$$
; $ab = 1$...(i)

$$x^2 + qx + 1 = 0 \Rightarrow c + d = -q$$
; $cd = 1$...(ii)

Roots = c,d

Also,
$$c^2 + qc + 1 = 0$$
; $d^2 + qd + 1 = 0$...(iii)

$$(a-c)(b-c)(a+b)(b+d) = (ab-(a+b)c+c^2)(ab+(a+b)d+d^2)$$

$$= (1 + p.c + c^2) (1 - pd + d^2)$$
 from ...(i)

$$= (c^2 + 1 + pc) (d^2 + 1 - pd)$$

$$= (-qc + pc) (-qd - pd)$$
 from ...(iii)

$$=-c(p-q)(p+q)d$$

$$=-cd(p^2-q^2)$$

$$=-1(p^2-q^2)=q^2-p^2$$

Required value =
$$\frac{(a-c)(b-c)(a+d)(b+d)}{q^2 - p^2}$$

$$= \frac{q^2 - p^2}{q^2 - p^2} = 1$$

26.
$$[13]a^3 + b^3 + (-9)^3 = 3 \cdot a \cdot b (-9)$$

 $\Rightarrow a + b - 9 = 0$ or
 $a = b = -9$. Which is rejected.
As $a > b > -9$
 $\Rightarrow a + b - 9 = 0 \Rightarrow x = 1$ is a root
other root $= \frac{-9}{a}$. $\therefore \alpha = \frac{-9}{a}$, $\beta = 1$

$$\Rightarrow 4\beta - a\alpha = 4 - a\left(\frac{-9}{a}\right) = 4 + 9 = 13.$$

27. [6] Let
$$t^2 - 2t + 2 = k$$

$$\Rightarrow \alpha^2 - 6k\alpha - 2 = 0$$

$$\Rightarrow \alpha^2 - 2 = 6k\alpha$$

$$a_{100} - 2a_{98} = \alpha^{100} - 2 \cdot \alpha^{98} - \beta^{100} + 2 \cdot \beta^{98}$$

$$= \alpha^{98}(\alpha^2 - 2) - \beta^{98}(\beta^2 - 2) = 6k(\alpha^{99} - \beta^{99})$$

$$a_{100} - 2a_{98} = 6k \cdot a_{99}$$

$$\frac{a_{100} - 2a_{98}}{a_{99}} = 6k = 6(t^2 - 2t + 2) = 6[(t - 1)^2 + 1]$$

$$\therefore \text{ min. value of } \frac{a_{100} - 2a_{98}}{a_{99}} \text{ is 6.}$$

28. [11] Given that, roots of equation $x^2 - 10ax - 11b = 0$ are c, d

So c + d = 10a and cd = -11b and a, b are the roots of equation $x^2 - 10cx - 11d = 0$

$$a + b = 10c$$
, $ab = -11d$

So
$$a + b + c + d=10(a + c)$$
 and $(c + d)-(a + b)=10(a - c)$

$$(c-a)-(b-d)+10(c-a)=0$$

$$\Rightarrow$$
 b+d=9(a+c)(i)

abcd = 121 bd

$$\Rightarrow$$
 ac = 121(ii)

$$b-d = 11(c-a)$$
(iii)

c & a satisfies the equation $x^2 - 10ax - 11b$

= 0 and $x^2 - 10cx - 11d = 0$ respectively

$$c^2 - 10ac - 11b = 0$$

$$a^2 - 10ca - 11 d = 0$$

$$(c^2 - a^2) - 11(b - d) = 0$$

 $(c - a)(c + a) = 11(b - d) = 11.11(c - a)$
(by equation (iii))
 $c + a = 121$
 $\Rightarrow a + b + c + d = 10(c + a)$
 $\Rightarrow 10.121 \Rightarrow \frac{a + b + c + d}{110} = 11.$