

Theory of Columns

Q.1 A load P is acting on the diagonal of a square column of size D, as shown in figure below. For no tension, the maximum distance of the load from the centre O is

- (a) D/8
- (b) D/6
- (c) D√2/6
- (d) D√2/12
- Q.2 Match List-I (Euler's orippting load) with List-II
 (End conditions of column) and select the correct
 answer by using codes given below the lists:
 List-I
 List-II
 - _Δ π²Ε1
- 1. Both ends hinged
- B. $\frac{\pi^2 EI}{AI^2}$
- 2. Both ends fixed
- C. $\frac{2\pi^2 EI}{I^2}$
- 3. One end fixed, other

end free

 $D. \frac{4\pi^2 EI}{I^2}$

4. One end fixed, other

end hinged

Codes:

ABC

- (a) 1 3 2
- (b) 4 1 3 2
- (c) 1 3 4 2
- (d) 4 1 2 3

Q.3 Consider the following statements:

- The buckling load is less than the crushing load in long columns.
- The buckling load is more for long columns and relatively less for short columns.
- When an axia(i) loaded compression member just buckles, it is said to develop an elastic instability.

Which of the above statements are correct?

- (a) both 1 and 2
- (b) both 2 and 3
- (c) both 1 and 3
- (d) all 1, 2 and 3
- Q.4 Euler's formula is based on the following assumptions:
 - The column is initially perfectly straight and is axially loaded.
 - 2. The column will fail by bucking only.
 - The length of the column is very large in comparison to the lateral dimension.

Which of the above statements is/are correct?

- (a) only 3
- (b) both 1 and 3
- (c) both 2 and 3
- (d) 1, 2 and 3
- Q.5 Consider the following statements:
 - Euler's formula for columns is valid when the slenderness ratio is less than 80.
 - 2. Rankine formula for column is valid for any value of slenderness ratio.
 - 3. The effective length of the column becomes half when both its ends are fixed.

Which of the above statements are correct?

- (a) both 1 and 3
- (b) both 1 and 2
- (c) both 2 and 3
- (d) 1, 2 and 3
- Q.6 A column of length 2.4 m, area of cross-section 2,000 mm² and moment of inertia of $I_{xx} = 720 \times 10^4 \text{ mm}^4 \text{ and } I_{yy} = 80 \times 10^4 \text{ mm}^4 \text{ is}$ subjected to buckling load. Both the ends of the column are fixed. What is the slenderness ratio of column?
 - (a) 120
- (b) 80
- (c) 60
- (d) 40
- Q.7 The Rankine's constant in the formula for axial loads on column made of material of crushing strength I, and modulus of elasticity E is

- Q.8 The curve shown below is the Euler's curve for stability of column. With reference to the figure, match List-I with List-II and select the correct answer using the codes given below:

List-I

List-II

- A. C,
- 1. Long, unsafe
- B. C_n
- 2. Long sale
- C. Cm
- 3. Short, unsafe
- D. $C_{n'}$
- 4. Intermediate, sale

Codes:

- ABCD
- (a) 1 2 3 4
- (b) 2 4 3 1
- (c) 3 1 4 2
- (d) 3 4 2 1
- Q.9 Four columns of same material and same length are of rectangular cross-section having same breadth 'b'. The depth of the cross-section and the end conditions are as given below:

Column	Dopth	End conditions
1.	0.65	Fixed-Fixed
2.	4 8,0	Fixed-Hinged
3.	1.0 b	Hingod-Hinged
4.	2.6 b	Fixed-Free

Which of the above column will have maximum Euler's buckling load.

- (a) Column-1
- (b) Column-2
- (c) Column-3
- (d) Column-4
- Q.10 Match List-I (shape of column) with List-II (shape of kern) and select the correct answer using the codes given below:

List-I

List-II

- A. Rectangular
- 1. Square
- 8. Square
- 2. Circle
- C. I-section
- 3. I-section

- 4. Hollow circular section:
- 4. Rhombus

Codes:

- ABCD
- 3 2 (c) 4 1
- (d) 4 2 3 1
- 2 (c) 1 4
- (d) 4 1 4 2
- Q.11 Consider the following statements about Rankine's theory of columns.
 - 1. It is applicable for long columns only.
 - 2. It assumes buckling and crushing modes of failure.
 - 3. It takes into account the initial crookedness of column and imperfections in loading

Which of the above statement(s) is(are) correct?

- (a) 1 and 2
- (b) 1 and 3
- (c) 2 and 3
- (d) 1, 2 and 3
- Q.12 Match List-I (Columns with length L having partially restrained end conditions) with List-II (Range of effective length) and select the correct answer using codes given below:

List-II

3. 2L < let < ∞

Codes:

- A B C
- (a) 1 2 3
- (b) 2 · 1
- (c) 2 3 1
- (d) 1 3 2

Answers Theory of Columns

- 1. (d) 2. (c)
- 11. (c) 12. (b)

Explanations (Theory of Columns)

1. (d)

Core of section for no tension is having half diagonal

3. (c)

$$= \frac{D}{6} \text{ from OA or OB}.$$

ZOAB = 45°

$$OP = OA \cos 45 = \frac{D}{6} \times \frac{1}{\sqrt{2}}$$

5. (c)

Euler's buckling formula is based on Euler-Bernoulli's theorem and does not account for effect of transverse shear deformation. It is valid for long column range *Uh* > 80, the failure is elastic and Euler's equation is valid.

6. (c)
Stenderness ratio of column is given by

$$\lambda = \frac{I_{eff}}{I_{min}}$$

$$I_{eff} = \frac{1}{2} \times 2.4$$
(for both ends fixed)
$$= 1.2 \text{ m} = 1200 \text{ mm}$$

$$I_{min}$$

where, $I_{mh} = I_{yy} = 80 \times 10^4 \text{ mm}^4$

$$r_{\text{min}} = \sqrt{\frac{80 \times 10^4}{2000}} = 20 \,\text{mm}$$

$$\lambda = \frac{1200}{20} = 60$$

7. (a)

6. (c)

7. (a)

5. (c)

$$P = \frac{\int_{c} A}{1 + \left(\frac{f_{c}}{\pi^{2} E}\right) \left(\frac{L}{f}\right)^{2}}$$

8. (d)

9. (b) 10. (d)

Here, $\frac{I_c}{\pi^2 E}$ = Rankine constant

9. (t

$$P_{CI_1} = \frac{\pi^2 EI}{L_{eff}^2} = \frac{\pi E \left(\frac{b \times (0.6b)^3}{12}\right)}{\left(\frac{L}{2}\right)^2}$$

$$= \frac{4\pi^2 E b^4}{12L^2} \times 0.6^3 = 0.864 \frac{\pi^2 E b^4}{12L^2}$$

$$P_{G2} = \frac{\pi^2 E \left(\frac{b \times (0.8b)^2}{12} \right)}{\left(\frac{L}{\sqrt{2}} \right)^2}$$

$$= \frac{2\pi^2 E b^4}{12L^2} \times 0.8^3 = 1.024 \frac{\pi^2 E b^4}{12L^2}$$

$$P_{\omega_3} = \frac{\pi^2 E b^4}{12L^2}$$

$$P_{\alpha_4} = \frac{\pi^2 E \times \left(\frac{2.6b \times b^3}{12}\right)}{\left(2L\right)^2}$$

$$=\frac{\pi^2 E b^4}{12 \ell^2} \times \frac{2.6}{4} = \frac{0.65 \pi^2 E b^4}{12 \ell^2}$$

(c)
 Ranking's theory is applicable for short and long columns.