Chemistry

Chapterwise Practise Problems (CPP) for JEE (Main & Advanced)

Chapter - Electrochemistry

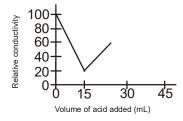
Level-1

SECTION - A

Straight Objective Type

This section contains multiple choice questions. Each question has 4 choices (A), (B), (C) and (D) for its answer, out of which **ONLY ONE** is correct.

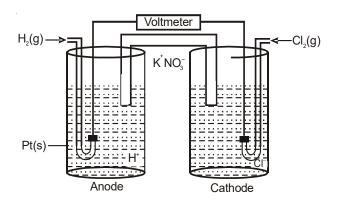
 A solution containing one mol per litre each of Cu(NO₃)₂, AgNO₃, Hg₂(NO₃) and Mg(NO₃)₂ is being electrolysed by using inert electrodes. The values of the standard oxidation potentials in volts are


Ag / Ag⁺ = -0.8; Hg / Hg₂²⁺ =

-0.79 ; Cu / Cu $^{2+}=-0.34$; Mg / Mg 2

The order in which metal will be formed at the cathode, will be :

(A)	Ag, Cu, Hg, Mg	(B)	Ag, Hg, Cu, Mg
(C)	Ag, Hg, Cu	(D)	Cu, Hg, Ag.


2. 20 ml of KOH solution was titrated with 0.20 M H_2SO_4 solution in a conductivity cell. The data obtained were plotted to give the graph shown below :

The concentration of the KOH solution was :

(A)	0.30 mol L ⁻¹	(B)	0.15 mol L ⁻¹
(C)	0.12 mol L ⁻¹	(D)	0.075mol L ^{_1}

3. Consider the following Galvanic cell.

By what value the cell voltage change when concentration of ions in anodic and cathodic compartments both increased by factor of 10 at 298 K ?

Calculate the cell potential of a cell having reaction:

 $Ag_2S + 2e^- \square 2Ag + S^{2-}$ in a solution buffered at

pH=3 and which is also saturated with 0.1 MH₂S.

For
$$H_2S: K_1 = 10^{-8} \text{ and } K_2 = 10^{-13},$$

$$K_{SP}(Ag_2S) = 10^{-49}, E^{\circ}_{Ag+/Ag} = 0.8.,$$

$$\frac{2.303RT}{F} = 0.06$$
(A) -0.19V
(B) 1.19V
(C) -1.19V
(D) -0.49V

4.

5. Calculate molar conductivity at infinite dilution of

the salt $\left| { \begin{matrix} COO^-K^+ \\ | & \\ COO^-Na^+ \end{matrix} \right|$. If the ionic conductivities at

infinite dilution of Ox $^{-2},\,K^{+}$ and Na $^{+}$ are 148.2, 50.1 and 73.5 $\Omega^{-1}\,\,cm^{2}mol^{-1}$ respectively

- (A) 271.8 Ω^{-1} cm²mol⁻¹
- (B) 135.9 Ω^{-1} cm²mol⁻¹
- (C) 543.6 Ω^{-1} cm²mol⁻¹
- (D) 67.9 Ω⁻¹cm²mol⁻¹

SECTION - B

Multiple Correct Answer Type

This section contains multiple choice questions. Each question has 4 choices (A), (B), (C) and (D) for its answer, out of which **ONE OR MORE** is/are correct.

6. If $Sn^{+2} + 2e^{-} \rightarrow Sn; E^{o} = -0.14V$

 $Sn^{+4} + 2e^- \rightarrow Sn^{+2}; E^o = -0.13V$

Then :

- (A) Sn⁺² is unstable and disproportionates to Sn⁺⁴ and Sn.
- (B) Sn⁺² is stable and disproportionation reaction is not spontaneous.
- (C) Sn⁺⁴ is easily reduced to Sn in aqueous solution.
- (D) $Sn^{+4} + Sn \rightarrow 2Sn^{+2}$ is spontaneous.
- 7. Electrolyte KCI KNO3 HCI NaOAc NaCI

 $\wedge_{\rm m}^{\infty}({\rm Scm}^2{\rm mol}^{-1})$ 149.9 145 426.2 91 126.5

Which of the following is/are correct ?

- (A) \wedge_{AcOH}^{∞} is 517.2 (B) $\wedge_{HNO_2}^{\infty}$ is 450
- (C) \wedge_{AcOH}^{∞} is 390.7 (D) $\wedge_{HNO_3}^{\infty}$ is 421.3
- 8. Perdisulphuric acid $(H_2S_2O_8)$ can be prepared by electrolytic oxidation of H_2SO_4 as $2H_2SO_4 \rightarrow H_2S_2O_8 + 2H^+ + 2e^-$

Which of the following statements(S) is (are) correct for this electrolysis ?

- (A) Oxygen and hydrogen gases are formed as other products at anode and cathode respectively.
- (B) Concentrated H_2SO_4 solution can be used during this electrolysis to get $H_2S_2O_8$.
- (C) Equivalents of $H_2S_2O_8$ formed is the difference between equivalents of H_2 and O_2 formed.
- (D) Equivalents of $H_2S_2O_8$ formed is the sum of equivalents of H_2 and O_2 formed.
- 9. The cell given is Mg|Mg²⁺||Ag⁺|Ag(s) $\left(E^{o}_{Mg/Mg^{2+}} = 2.37 \text{ V}\right) \left(E^{o}_{Ag^{+}/Ag} = 0.80 \text{ V}\right)$

For the cell which of the following statements are correct (T=298K)?

- (A) The value of $log_{10}K_{eq}$ is 107.457 for the reaction; Mg + 2Ag⁺ \square Mg²⁺ + 2Ag
- (B) ϵ^0 for the cell is 1.57 V
- (C) ϵ^0 for the cell is 3.17 V
- (D) The maximum work done is $-6.118 \times 10^5 \text{ J}$
- 10. Standard electrode potential data are useful for understanding the suitability of an oxidant in a reaction. Some half-cell reactions and their standard potential are given below :

$$MnO_4^{-}(aq) + 8H^+(aq) + 5e^- \rightarrow Mn^{2+}(aq) + 4H_2O(1) E^\circ = 1.5 V$$

 $Cr_2O_7^{2-}(aq) + 14H^+(aq) + 6e^- \rightarrow 2Cr^{3+}(aq) + 7H_2O(l) E^\circ = 1.38 V$

 $Fe^{3+}(aq) + e^{-} \rightarrow Fe^{2+}(aq)$ $E^{\circ} = 0.77 V$

 $Cl_2(g) + 2e^- \rightarrow 2Cl^-(aq)$ $E^\circ = 1.40 \text{ V}$

Identify the correct statement(s) regarding the quantitative estimation of aqueous ferrous nitrate in solution.

- (A) MnO_4^- can be used in aqueous H_2SO_4
- (B) $Cr_2O_7^{2-}$ can be used in aqueous H_2SO_4
- (C) MnO_4^{-} can be used in aqueous HCI
- (D) $\operatorname{Cr}_2 \operatorname{O}_7^{2-}$ can be used in aqueous HCl

11. For the given half-cell, $Ag | AgCl | Cl^{-}(M)$ The reaction is : $Ag(s) \rightarrow Ag^{+}(aq) + e^{-}(i)$ $Ag^{+}(aq) + Cl^{-}(aq) \Longrightarrow AgCl(s) - (ii)$

 $Ag(s) + Cl^{-}(aq) \rightarrow AgCl(s) + e^{-}$ (iii)

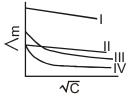
Which of the following is (are) true about this half cell?

- (A) E^o of reaction (i) and E^o of reaction (iii) are same
- (B) E° of reaction (ii) is zero
- (C) E of reaction (i) is same as E of reaction (iii)
- (D) Moles of AgCl precipitated is same as moles of Ag used
- 12. Which of the following electrolytic arrangement(s) will produce oxygen at anode during electrolysis?
 - (A) Fused NaOH with inert electrodes
 - (B) Dilute H_2SO_4 with Cu electrodes
 - (C) Dilute H₂SO₄ with Pt electrodes
 - (D) Concentrated NaCl with Pt electrodes
- 13. Which one of the following statement(s) is/are incorrect regarding an electrochemical cell ?
 - (A) The electrode on which oxidation takes place is called anode
 - (B) Anode is the negative pole
 - (C) The direction of the current is same as that of the direction of flow of electrons
 - (D) The flow of current is partly due to flow of electrons and partly due to flow of ions.
- 14. Pick up the false Statement(s)

 $\left[{E^{0}_{\ Ca^{2+}/Co}}=-0.28, {E^{0}_{\ Cd^{2+}/Cd}}=-0.4\right]$

- (A) Galvanic cell reactions are always redox reactions
- (B) In a galvanic cell made of cobalt and cadmium electrodes, cobalt electrode acts as cathode
- (C) Standard potential increases with increasing concentration of the electrolyte
- (D) Calomel electrode is reference electrode having 0.00 potential
- 15. A metal rod is dipped in a solution of its ions. Its electrode potential is independent of

- (A) temperature of the solution
- (B) concentration of the solution
- (C) area of the metal exposed
- (D) nature of the metal
- 16. After sometime, the voltage of an electrochemical cell becomes zero. This is because
 - (A) their electrode potential becomes zero
 - (B) their reduction potential become equal but have opposite sign
 - (C) their reduction potential become equal and have the same sign
 - (D) the ions of the electrolyte in the salt bridge stop moving
- Consider certain observations about electrolysis and mark the correct Statement(s) :
 - (A) Electric current is used to drive a nonspontaneous reaction
 - (B) ∆G is negative for chemical process in electrolytic cell during electrolysis.
 - (C) Cations and anions move towards the cathode and anode, respectively.
 - (D) Over-voltage is generally associated with evolution of O₂ gas


SECTION - C

Linked Comprehension Type

This section contains paragraph. Based upon this paragraph, 2 multiple choice questions have to be answered. Each question has 4 choices (A), (B), (C) and (D) for its answer, out of which **ONE OR MORE THAN ONE** is correct.

Paragraph for Question Nos. 18 and 19

See the graph below and answer the related questions

The variation of Λ_m for four electrolytes are shown above against \sqrt{C} . They are KCl, CuSO₄, CH₃COOH and HCl

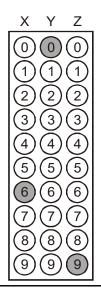
1

- 18. Find the correct match of line number against the name of electrolyte
 - (A) I-KCI, II-CuSO₄, III-HCI, IV-CH₃COOH
 - (B) I-HCI, II-KCI, III-CuSO₄, IV-CH₃COOH
 - (C) I-KCI, II-HCI, III- CH₃COOH, IV-CuSO₄
 - (D) I-KCI, II-CH₃COOH, III-HCI, IV-CuSO₄
- 19. Find the correct explanation relative to figure given above
 - (A) Line-I could be that of KCI as K⁺ is a faster moving ion as compared to H⁺
 - (B) Line-II could be that of HCl as it is a strong electrolyte
 - (C) Faster increase with lowering concentration in line-III as compared to line-I could be that of $CuSO_4$ as both Cu^{+2} and SO_4^{-2} are bivalent ions
 - (D) Line-IV is for CuSO₄ as it is the weakest electrolyte amongst the species given

SECTION-D

Matrix-Match Type

This **Section D** have "match the following" type question. Question contains two columns, **Col-I** and **Col-II**. Match the entries in **Col-I** with the entries in **Col-II**. One or more entries in **Col-I** may match with one or more entries in **Col-II**.


20. Match the following columns:

Column I	Column II
(A) Dilute solution of HCI	(p)O ₂ evolved at anode
(B) Dilute solution of NaCl	(q)H ₂ evolved at cathode
(C) Concentrated solution of Nat	CI (r) Cl ₂ evolved at anode
(D) AgNO ₃ solution	(s)Ag deposited at cathode

SECTION-E

Integer Answer Type

This section contains Integer type questions. The answer to each of the questions is a single digit integer, ranging from 0 to 9. The appropriate bubbles below the respective question numbers in the ORS have to be darkened. For example, if the correct answers to question numbers X, Y and Z(say) are 6, 0 and 9, respectively, then the correct darkening of bubbles will look like the following :

- 21. For a cell, $A(g) + B^{2+}(aq) \longrightarrow B + A^{2+}(aq)$. The standard emf of cell is found to be 0.295 volt at 25°C. The equilibrium constant at 25°C will be $x \times 10^{10}$
- An alloy of Pb-Ag weighing 1.08 g was dissolved in dilute HNO₃ and the volume made to 100 mL. A silver electrode was dipped in the solution and the emf of the cell set-up was 0.62 V.

 $Pt(s), H_2(g) | H^+(1 M) || Ag^+(aq) | Ag(s).$

If E_{cell}^{o} is 0.80 V, what is the percentage of Ag in the alloy ? (At 25°C, RT/F = 0.06)

- 23. The conductivity of a saturated solution of CaF_2 at 18°C was found to be 5.2×10^{-5} S cm⁻¹ and the conductivity of water used for making the solution was 2×10^{-6} S cm⁻¹. The molar ionic conductivities at infinite dilution of Ca²⁺ and F⁻ ions are 120 and 65 S cm² mol⁻¹ respectively. The solubility product of CaF₂ is 4y×10⁻¹²M³. The Value of y is ______.

(4)

Level-2

SECTION - A

Straight Objective Type

This section contains multiple choice questions. Each question has 4 choices (A), (B), (C) and (D) for its answer, out of which **ONLY ONE** is correct.

1. In acid medium, MnO_4^- is an oxidising agent.

 $MnO_4^- + 8H^+ + 5e^- \longrightarrow Mn^{2+} + 4H_2O$

If H⁺ ion concentration is doubled keeping the concentrations of Mn^{2+} and MnO_4^- unchanged, electrode potential (at 25°C) of the half-cell

- MnO_4^{-} , Mn^{2+} / Pt will :
- (A) Increase by 28.36 m V
- (B) Decrease by 28.36m V
- (C) Increase by 14.23m V
- (D) Decrease by 142.30m V
- 2. A hydrogen electrode X was placed in a buffer solution of sodium acetate and acetic acid in the ratio a : b and another hydrogen electrode Y was placed in a buffer solution of sodium acetate and acetic acid in the ratio b : a. If reduction potential values for two cells are found to be E₁ and E₂ respectively with respect to standard hydrogen electrode, the pK_a value of the acid can be given as

(A)
$$\frac{\mathsf{E}_1 + \mathsf{E}_2}{0.118}$$
 (B) $\frac{\mathsf{E}_2 - \mathsf{E}_1}{0.118}$
(C) $-\frac{\mathsf{E}_1 + \mathsf{E}_2}{0.118}$ (D) $\frac{\mathsf{E}_1 - \mathsf{E}_2}{0.118}$

3. Calculate the voltage, E, of the cell at 25°C

 $\begin{aligned} \mathsf{Mn}(\mathsf{s}) \,|\, \mathsf{Mn}(\mathsf{OH})_2(\mathsf{s}) \,|\, \mathsf{Mn}^{2+}(\mathsf{x} \; \mathsf{M}), \\ \mathsf{OH}^-(2 \times 10^{-4} \mathsf{M}) \,||\, \mathsf{Cu}^{2+}(0.675 \mathsf{M}) \,|\, \mathsf{Cu}(\mathsf{s}) \end{aligned}$

given that $K_{SP} = 2.7 \times 10^{-13}$ for $Mn(OH)_2(S)$,

$E^0_{Mn^{2+}/Mn} = -1.18V;$	$E^{0}_{Cu^{2+}/Cu} =34V$
(A) 1.67V	(B) 2.67V
(C) 1.12V	(D) 2.92V

4. Calculate the voltage, E, of the cell

 $Ag(s) | AgIO_3(s) | Ag^+(x M), HIO_3(0.300M) || Zn^{2+}(0.4M) | Zn(s)$

if $K_{SP} = 3 \times 10^{-8}$ for AgIO₃(s) and $K_a = 0.15$ for HIO₃.

$$E^{0}_{Ag^{+}/Ag} = 0.8 \text{ V}$$
; $E^{0}_{Zn^{2+}/Zn} = -0.76 \text{ V}$

Given :
$$\frac{2.303 \text{RT}}{\text{F}} = 0.06$$

(A) -1.17 V (B) -2.17V
(C) -3.02V (D) +1.43

 Estimate the cell potential of a Daniel cell having 1 MZn⁺⁺ and originally having 1 M Cu⁺⁺ after sufficient NH₃ has been added to the cathode compartment to make NH₃ concentration 2 M.

 K_f for $[Cu(NH_3)_4]^{2+} = 1 \times 10^{12}$, E^0 for the reaction,

$Zn + Cu^{2+} \longrightarrow$	$Zn^{2+} + Cu \text{ is } 1.1 \text{ V}.$
(A) 0.92V	(B) 0.704V
(C) 1.23V	(D) 3.26V

 The overall formation constant for the reaction of 6 mol of CN⁻with cobalt (II) is .

 $_{1\times10^{19}}.$ The standard reduction potential for the reaction

$$\begin{split} & [\text{Co}(\text{CN})_6]^{3-} + e^- \rightarrow \left[\text{Co}(\text{CN})_6\right]^{4-} \text{is } -0.83 \text{ V.} \\ & \text{Calculate the formation constant of } \left[\text{Co}(\text{CN})_6\right]^{3-} \end{split}$$

Given $Co^{3+} + e^- \rightarrow Co^{2+}$; $E^0 = 1.81 V$ (A) $K_f = 10^{43}$ (B) $K_f = 10^{32}$ (C) $K_f = 10^{63}$ (D) $K_f = 10^{38}$

7. Calculate the equilibrium concentrations of all ions in an ideal solution prepared by mixing 25.00 mL of 0.100MT ℓ^+ with 25.00mL of 0.200M Co³⁺.

 $E^{0}(T\ell^{+}/T\ell^{3+}) = -1.25 V$; $E^{0}(Co^{3+}/Co^{2+}) = 1.84 V$, $\sqrt[3]{1.25} \cong 1$

(A) $T\ell^+ = 10^{-4}$, $Co^{3+} = 2 \times 10^{-8}$ (B) $T\ell^+ = 10^{-6}$, $Co^{3+} = 2 \times 10^{-4}$ (C) $T\ell^+ = 10^{-2}$, $Co^{3+} = 4 \times 10^{-6}$

(D) $T\ell^+ = 10^{-8}$, $Co^{3+} = 2 \times 10^{-8}$

SECTION - B

Multiple Correct Answer Type

This section contains multiple choice questions. Each question has 4 choices (A), (B), (C) and (D) for its answer, out of which **ONE OR MORE** is/are correct.

8. Which of the following is true about the given cell,

Ag | saturated AgCl || saturated Ag₂CrO₄ | Ag?

$$(K_{sp}AgCl = 10^{-10}M^2)$$
 $(K_{sp}Ag_2CrO_4 = 3.2 \times 10^{-11}M^3)$

- (A) It is an electrolyte concentration cell
- (B) It is a non-spontaneous concentration cell.
- (C) The net reaction is $Ag_c^+ \longrightarrow Ag_A^+$
- (D) The EMF of cell is 0.0944V
- 9. An aqueous solution containing 1M NiSO₄ and 1M $S_2O_8^{2-}$ is electrolysed using palladium electrodes at 25°C.

Ni² + 2e⁻
$$\rightarrow$$
 Ni E° = -0.25V
O₂ + 4H⁺ + 4e⁻ \rightarrow 2H₂O E° = -1.23V
Pd²⁺ + 2e- \rightarrow Pd E° = 0.92V
S₂O₈²⁻ + 2e- \rightarrow 2SO₄²⁻ E° = 2.0V

pH of solution is assumed as 7.

Select the correct statement(s) on the basis of above given information (Ignore over-voltage)

- (A) Anode reaction : $Pd \rightarrow Pd^{2+} + 2e^{-}$
- (B) Anode reaction : $2H_2O \rightarrow O_2 + 4H^+ + 4e^-$
- (C) Cathode reaction : $Ni^{2+} + 2e^- \rightarrow Ni$
- (D) Cathode reaction : $2H^+ + 2e^- \rightarrow H_2$
- 10. For the following cell

Pt $|H_2 (1 \text{ atm})|CH_3COOH (0.1M)| |CH_3COOH (0.01M)|H_2 (1 \text{ atm})|Pt$

- K_a (CH₃COOH) = 1.8 × 10⁻⁵; log 3.6 = 0.5
- (A) Degree of ionization of CH₃COOH (L.H.S.) is 1.34×10^{-2}
- (B) Degree of ionization of CH_3COOH (R.H.S.) is 4.24 × 10⁻²

- (C) EMF for the cell is -0.4575
- (D) The given cell is non-spontaneous
- 11. Which of the following is correct about the following cell?

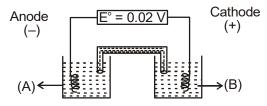
Pt |H₂ (1 atm)|C₂H₅COOH(0.15M)| |NH₄OH (0.01M)|H₂ (1 atm)|Pt

Given that, K_a for $C_2H_5COOH = 1.4 \times 10^{-5}$

(B) $\Delta G = 0$

- (C) [H⁺] in NH₄OH = 8.9 × 10⁻⁸
- (D) pH_{mixture} = 7

SECTION - C


Linked Comprehension Type

This section contains paragraph. Based upon this paragraph, 2 multiple choice questions have to be answered. Each question has 4 choices (A), (B), (C) and (D) for its answer, out of which **ONE OR MORE THAN ONE** is correct.

Paragraph for Question Nos. 12 to 15

The cell potential for the unbalanced chemical reaction:

$$\mathrm{Hg_2^{2^+}} + \mathrm{NO_3^-} + \mathrm{H_3O^+} \rightarrow \mathrm{Hg^{2^+}} + \mathrm{HNO_2} + \mathrm{H_2O^+}$$

is measured under standard conditions in the electrochemical cell shown in the accompanying diagram.

- 12. In which dish, the solution is acidic ?
 - (A) Dish A
 - (B) Dish B
 - (C) Both
 - (D) None of these
- 13. What is the equilibrium constant for the reaction ?
 - (A) 1.97 (B) 4.76 (C) 2.18 (D) 1.40

14. How many moles of electrons pass through the circuit when 0.60 mole of Hg^{2+} and 0.30 mole of HNO_2 are produced in the cell that contains 0.50 mole of Hg_2^{2+} and 0.40 mole of NO_3^{-} at the beginning of the reaction?

(A) 0.30	(B) 0.60
----------	----------

(C) 0.15 (D) 1.20

15. How long will it take to produce 0.10 mole of HNO_2 by this reaction if a current of 10 A passes through the cell ?

(C) 1930 s (D) 482.5 s

Paragraph for Question Nos. 16 to 19

The Edison storage cell is represented as $Fe(s)|FeO(s)|KOH(aq)|Ni_2O_3(s)|Ni(s)$. The half cell reactions are

 $Ni_2O_3(s) + H_2O(I) + 2e^- \Box 2NiO(s) + 2OH^-; E^o = +0.40 V$

 $FeO(s) + H_2O(I) + 2e^- \Box Fe(s) + 2OH^-; E^o = -0.87 V$

- 16. What is the cell reaction ?
 - (A) $\text{Ni}_2\text{O}_3 + \text{Fe}(s) \rightarrow 2\text{NiO}(s) + \text{FeO}(s)$
 - (B) 2NiO + FeO(s) \rightarrow Ni(s) + Fe₂O₃(s)
 - (C) 2NiO + FeO(s) \rightarrow Ni₂O₃(s) + Fe(s)
 - (D) None of these
- 17. What is the standard cell emf?

(A) 1.27 V (B)	0.47 V
----------------	--------

- (C) -1.27 V (D) -0.47 V
- 18. How does cell emf change on increasing the concentration of KOH ?

(A) increases	(B) decreases
---------------	---------------

- (C) remains unaffected (D) none of these
- 19. What is the maximum amount of electrical energy that can be obtained from one mole of Ni₂O₃?

(A) 2.54 J	(B) 245.1 kJ
(C) 122.56 kJ	(D) 90.7 kJ

Paragraph for Question No. 20 and 21

Copper reduces NO₃⁻ into NO and NO₂ depending upon of HNO₃ in solution. Assuming [Cu²⁺] = 0.1 M, and P_{NO} = P_{NO2} = 10⁻³ atm and using given data answer the following questions.

$$E^{o}_{Cu^{2+}/Cu} = +0.34 \text{ volt}$$

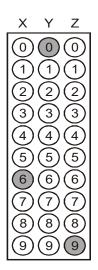
 $E^{o}_{NO_{3}/NO} = +0.96 \text{ volt}$

$$E^{o}_{NO_{3}^{-}/NO_{2}} = +0.79 \text{ volt}$$

at 298 K
$$\frac{\text{RT}}{\text{F}}$$
 (2.303) = 0.06 volt

20. E_{cell} for reduction of

$$NO_3^- \longrightarrow NO$$
 by Cu (s), when $[HNO_3] = 1M$ is $[At T = 298]$


21. At what HNO_3 concentration thermodynamic tendency for reduction of NO_3^- into NO and NO_2 by copper is same ?

(A) 10 ^{1.23} M	(B) 10 ^{0.56} M
(C) 10 ^{0.66} M	(D) 10 ^{0.12} M

SECTION-E

Integer Answer Type

This section contains Integer type questions. The answer to each of the questions is a single digit integer, ranging from 0 to 9. The appropriate bubbles below the respective question numbers in the ORS have to be darkened. For example, if the correct answers to question numbers X, Y and Z(say) are 6, 0 and 9, respectively, then the correct darkening of bubbles will look like the following :

22. In the electrolysis of KI, I₂ is formed at the anode by the reaction;

$$2l^- \rightarrow l_2 + 2e^-$$

After the passage of current of 0.5 ampere for 9650 seconds, I_2 formed required 40 ml of 0.1 M $Na_2S_2O_3 \cdot 5H_2O$ solution in the reaction;

$$I_2 + 2S_2O_3^{2-} \rightarrow S_4O_6^{2-} + 2I_2^{2-}$$

What is the current efficiency ?

- 23. Consider the cell, $Ag | AgBr | Br^{-} || Cl^{-} | AgCl | Ag$ at 25°C. The K_{sp} of AgBr and AgCl are 5 ×10⁻¹³ and 1×10⁻¹⁰. The concentration ratio of $\frac{[Cl^{-}]}{[Br]}$ ions when the emf of the cell is 0.118V, will be
- 24. When 0.5 L of 16 M SnSO₄ is electrolysed for a period of 100 minutes using a current of 96.5 A and inert electrodes, the final concentration of Sn²⁺ in the solution will be _____.

ANSWERS

LEVEL-1

1. (C)	2. (A)	3. (C)	4. (A)	5. (A)	6. (B,D)
7. (C,D)	8. (A,B,C)	9. (A,C,D)	10. (A,B,D)	11. (C,D)	12. (A,C)
13. (C)	14. (C,D)	15. (C)	16. (C)	17. (A,C)	18. (B)
19. (C)	20. (A-p,q,B-p,q,C-o	q,r,D-p,s)	21. (1)	22. (1)	23. (8)

LEVEL-2

1. (A)	2. (C)	3. (A)	4. (A)	5. (B)	6. (C)
7. (D)	8. (A,C)	9. (B,C)	10. (A,B,D)	11. (A,C)	12. (B)
13. (B)	14. (B)	15. (C)	16. (A)	17. (A)	18. (C)
19. (B)	20. (B)	21. (A)	22. (8)	23. (2)	24. (4)