
31

Learning Objectives

At the end of this chapter the students will
be able to:

• Know the basics and technical
perspective of algorithms.

• Understand the effi ciency, time and
space complexity of an algorithm.

• Develop and analyze algorithms for
searching and sorting.

• Learn about dynamic programming
through algorithmic approach.

Introduction to Algorithmic
strategies

4.1

 An algorithm is a fi nite set of
instructions to accomplish a particular task.
It is a step-by-step procedure for solving
a given problem. An algorithm can be
implemented in any suitable programming
language.

 Algorithms must have input,
output and should satisfy the following
characteristics such as defi niteness,
correctness and eff ectiveness. Data are
maintained and manipulated eff ectively
through data structures. Algorithms can be
developed to store, manipulate and retrieve
data from such data structures. Examples
for data structures are arrays, structures, list,
tuples, dictionary etc.

Unit I
CHAPTER 4

ALGORITHMIC STRATEGIES

Search
To search an item in a data
structure using linear and
binary search.

Sort
To sort items in a certain
order using the methods such
as bubble sort, insertion sort,
selection sort, etc.

Insert To insert an item (s) in a data
structure.

Update To update an existing item (s)
in a data structure.

Delete To delete an existing item (s) in
a data structure.

 Th e way of defi ning an algorithm is
called algorithmic strategy. For example to
calculate factorial for the given value n then
it can be done by defi ning the function to
calculate factorial once for the iteration-1
then it can be called recursively until the
number of required iteration is reached.

 Th e word Algorithm comes
from the name of a Persian author,
Abu Jafar Mohammed ibn Musa al
Khowarizmi(c. 825 AD(CE)), who

wrote a textbook on mathematics. Th e
word Algorithm has come to refer to a
method to solve a problem.

4.1.1Characteristics of an Algorithm

 An algorithm should have the
following characteristics:

32 33XII Std Computer Science Algorithmic Strategies

Input Zero or more quantities
to be supplied.

Output At least one quantity is
produced.

Finiteness Algorithms must
terminate after finite
number of steps.

Definiteness All operations should be
well defined. For example
operations involving
division by zero or
taking square root for
negative number are
unaccept able .

Effectiveness Every instruction must
be carried out effectively.

Correctness The algorithms should be
error free.

Simplicity Easy to implement.

Unambiguous Algorithm should be
clear and unambiguous.
Each of its steps and their
inputs/outputs should
be clear and must lead to
only one meaning.

Feasibility Should be feasible with
the available resources.

Portable An algorithm should be
generic, independent of
any programming
language or an operating
system able to handle all
range of inputs.

Independent An algorithm should
have step-by-step
directions, which should
be independent of any
programming code.

4.1.2 Writing an Algorithm
 Algorithms are generic and not
limited to computer alone. It can be used in
various real time activities also. Knowingly or
unknowingly we perform many algorithms
in our daily life such as packing books in
school bag, finding shortest path to search
a place, scheduling day-to-day activities,
preparation for examination, etc. As we
know that all programming languages share
basic code constructs like conditions and
iterations can be used to write an algorithm.
A typical algorithm is shown in the following
Figure 4.1.

Input Process Output

A Typical Algorithm
Example

 Consider the example of Coffee
preparation. To make coffee, we need to
have the following ingredients: Water, milk,
coffee powder and sugar. These ingredients
are the inputs of an algorithm. Preparing a
cup of coffee is called process. The output of
this process is coffee.

The procedure for preparing coffee is as
follows:

1. Take a bowl with coffee powder

2. Boil the water and pour it into the
bowl

32 33XII Std Computer Science Algorithmic Strategies

3. Filter it

4. Boil milk

5. Mix sugar and filtered coffee along
with boiled milk

6. Pour the coffee into the cup to serve

 This kind of procedure can be
represented using an algorithm. Thus,
the algorithm consists of step-step-by
instructions that are required to accomplish
a task and helps the programmer to develop
the program.

Problem: Design an algorithm to find
square of the given number and display the
result.

The algorithm can be written as:

Step 1 – start the process

Step 2 – get the input x

Step 3 –calculate the square by
multiplying the input value ie.,
square ← x* x

Step 4 − display the result square

Step 5 − stop

 Algorithm could be designed to get
a solution of a given problem. A problem
can be solved in many ways. Among many
algorithms the optimistic one can be taken
for implementation.

 An algorithm that yields
expected output for a valid input
is called an algorithmic solution.

Algorithm Program
• Algorithm

helps to solve a
given problem
logically and
it can be
contrasted with
the program

• Program is an
expression of
algorithm in a
programming
language

• Algorithm can
be categorized
based on their
implementation
methods, design
techniques etc

• Algorithm
can be
implemented
by structured
or object
oriented
programming
approach

• There is no
specific rules
for algorithm
writing but
some guidelines
should be
followed.

• Program
should be
written for
the selected
language with
specific syntax

• Algorithm
resembles a
pseudo code
which can be
implemented in
any language

• Program
is more
specific to a
programming
language

Table 4.1 Algorithm Vs Program

4.1.3. Analysis of Algorithm
 Computer resources are limited.
Efficiency of an algorithm is defined by the
utilization of time and space complexity.

34 35XII Std Computer Science Algorithmic Strategies

Analysis of an algorithm usually deals with
the running and execution time of various
operations involved. The running time of
an operation is calculated as how many
programming instructions executed per
operation.

 Analysis of algorithms and
performance evaluation can be divided into
two different phases:

1. A Priori estimates: This is a theoretical
performance analysis of an algorithm.
Efficiency of an algorithm is measured
by assuming the external factors.

2. A Posteriori testing: This is called
performance measurement. In this
analysis, actual statistics like running
time and required for the algorithm
executions are collected.

 An estimation of the time and
space complexities of an algorithm
for varying input sizes is called
algorithm analysis.

Complexity of an
Algorithm

4.2

 Suppose A is an algorithm and n is
the size of input data, the time and space
used by the algorithm A are the two main
factors, which decide the efficiency of A.

Time Factor -Time is measured by
counting the number of key
operations like comparisons
in the sorting algorithm.

Space Factor - Space is measured by the
maximum memory space required by the
algorithm.

 The complexity of an algorithm f (n)

gives the running time and/or the storage
space required by the algorithm in terms of
n as the size of input data.

4.2.1 Time Complexity

 The Time complexity of an algorithm
is given by the number of steps taken by the
algorithm to complete the process.

4.2.2. Space Complexity

 Space complexity of an algorithm
is the amount of memory required to run
to its completion. The space required by
an algorithm is equal to the sum of the
following two components:

 A fixed part is defined as the total
space required to store certain data and
variables for an algorithm. For example,
simple variables and constants used in an
algorithm.

 A variable part is defined as the
total space required by variables, which sizes
depends on the problem and its iteration.
For example: recursion used to calculate
factorial of a given value n.

Efficiency of an algorithm4.3

 Computer resources are limited that
should be utilized efficiently. The efficiency
of an algorithm is defined as the number
of computational resources used by the
algorithm. An algorithm must be analyzed to
determine its resource usage. The efficiency
of an algorithm can be measured based on
the usage of different resources.

 For maximum efficiency of algorithm
we wish to minimize resource usage. The
important resources such as time and space
complexity cannot be compared directly,

34 35XII Std Computer Science Algorithmic Strategies

so time and space complexity could be
considered for an algorithmic efficiency.

4.3.1 Method for determining Efficiency

 The efficiency of an algorithm depends
on how efficiently it uses time and memory
space.

 The time efficiency of an algorithm is
measured by different factors. For example,
write a program for a defined algorithm,
execute it by using any programming
language, and measure the total time it takes
to run. The execution time that you measure
in this case would depend on a number of
factors such as:

• Speed of the machine

• Compiler and other system Software
tools

• Operating System

• Programming language used

• Volume of data required

 However, to determine how
efficiently an algorithm solves a given
problem, you would like to determine how
the execution time is affected by the nature
of the algorithm. Therefore, we need to
develop fundamental laws that determine
the efficiency of a program in terms of the
nature of the underlying algorithm.

 A way of designing algorithm
is called algorithmic strategy

4.3.2 Space-Time tradeoff

 A space-time or time-memory

tradeoff is a way of solving in less time by
using more storage space or by solving
a given algorithm in very little space by
spending more time.

 To solve a given programming
problem, many different algorithms may
be used. Some of these algorithms may
be extremely time-efficient and others
extremely space-efficient.

 Time/space trade off refers to a
situation where you can reduce the use
of memory at the cost of slower program
execution, or reduce the running time at the
cost of increased memory usage.

 The best algorithm to solve
a given problem is one that
requires less space in memory
and takes less time to execute its
instructions to generate output.

4.3.3 Asymptotic Notations

 Asymptotic Notations are languages
that uses meaningful statements about time
and space complexity. The following three
asymptotic notations are mostly used to
represent time complexity of algorithms:

(i) Big O

 Big O is often used to describe the
worst-case of an algorithm.

(ii) Big Ω

 Big Omega is the reverse Big O, if
Bi O is used to describe the upper bound
(worst - case) of a asymptotic function, Big
Omega is used to describe the lower bound
(best-case).

36 37XII Std Computer Science Algorithmic Strategies

(iii) Big Θ

 When an algorithm has a complexity
with lower bound = upper bound, say that an
algorithm has a complexity O (n log n) and
Ω (n log n), it’s actually has the complexity
Θ (n log n), which means the running time
of that algorithm always falls in n log n in
the best-case and worst-case.

4.3.4 Best, Worst, and Average ease
Eff icienc y

 Let us assume a list of n number of
values stored in an array. Suppose if we want
to search a particular element in this list,
the algorithm that search the key element
in the list among n elements, by comparing
the key element with each element in the list
sequentially.

 The best case would be if the first
element in the list matches with the key
element to be searched in a list of elements.
The efficiency in that case would be expressed
as O(1) because only one comparison is
enough.

 Similarly, the worst case in this
scenario would be if the complete list is
searched and the element is found only
at the end of the list or is not found in the
list. The efficiency of an algorithm in that
case would be expressed as O(n) because
n comparisons required to complete the
search.

 The average case efficiency of an
algorithm can be obtained by finding the
average number of comparisons as given
below:

Minimum number of comparisons = 1

Maximum number of comparisons = n

If the element not found then maximum
number of comparison = n

 Therefore, average number of
comparisons = (n + 1)/2

 Hence the average case efficiency will
be expressed as O (n).

Algorithm for Searching
Techniques

4.4

4.4.1 Linear Search

 Linear search also called sequential
search is a sequential method for finding a
particular value in a list. This method checks
the search element with each element in
sequence until the desired element is found
or the list is exhausted. In this searching
algorithm, list need not be ordered.

Pseudo code

1. Traverse the array using for loop

2. In every iteration, compare the target
search key value with the current value
of the list.

• If the values match, display the current
index and value of the array

• If the values do not match, move on to
the next array element.

3. If no match is found, display the search
element not found.

 To search the number 25 in the array
given below, linear search will go step by
step in a sequential order starting from the
first element in the given array if the search
element is found that index is returned
otherwise the search is continued till the last
index of the array. In this example number
25 is found at index number 3.

36 37XII Std Computer Science Algorithmic Strategies

index 0 1 2 3 4

values 10 12 20 25 30

Input: values[] = {5, 34, 65, 12, 77, 35}
target = 77
Output: 4
Example 2:
Input: values[] = {101, 392, 1, 54, 32, 22, 90, 93}
target = 200
Output: -1 (not found)

Example 1:

4.4.2. Binary Search

 Binary search also called half-interval
search algorithm. It finds the position of a
search element within a sorted array. The
binary search algorithm can be done as
divide-and-conquer search algorithm and
executes in logarithmic time.

Pseudo code for Binary search
1. Start with the middle element:

• If the search element is equal to the
middle element of the array i.e., the
middle value = number of elements in
array/2, then return the index of the
middle element.

• If not, then compare the middle element
with the search value,

• If the search element is greater than the
number in the middle index, then select
the elements to the right side of the
middle index, and go to Step-1.

• If the search element is less than the
number in the middle index, then select
the elements to the left side of the middle
index, and start with Step-1.

2. When a match is found, display success
message with the index of the element
matched.

3. If no match is found for all comparisons,
then display unsuccessful message.

Binary Search Working principles

 List of elements in an array must be
sorted first for Binary search. The following
example describes the step by step operation
of binary search. Consider the following
array of elemnts, the array is being sorted so
it enables to do the binary search algorithm.
Let us assume that the search element is 60
and we need to search the location or index
of search element 60 using binary search.

10 20 30 40 50 60 70 80 90 99
0 1 2 3 4 5 6 7 8 9

First, we find index of middle element of the
array by using this formula :

 mid = low + (high - low) / 2

 Here it is, 0 + (9 - 0) / 2 = 4 (fractional
part ignored). So, 4 is the mid value of the
array.

10 20 30 40 50 60 70 80 90 99
0 1 2 3 4 5 6 7 8 9

38 39XII Std Computer Science Algorithmic Strategies

 Now compare the search element
with the value stored at mid value location
4. The value stored at location or index 4 is
50, which is not match with search element.
As the search value 60 is greater than 50.

10 20 30 40 50 60 70 80 90 99
0 1 2 3 4 5 6 7 8 9

Now we change our low to mid + 1 and find
the new mid value again using the formula.

low = mid + 1

mid = low + (high - low) / 2

Our new mid is 7 now. We compare the value
stored at location 7 with our target value 31.

10 20 30 40 50 60 70 80 90 99
0 1 2 3 4 5 6 7 8 9

 The value stored at location or index
7 is not a match with search element, rather
it is more than what we are looking for. So,
the search element must be in the lower part
from the current mid value location

10 20 30 40 50 60 70 80 90 99
0 1 2 3 4 5 6 7 8 9

The search element still not found. Hence,
we calculated the mid again by using the
formula.

high = mid -1

mid = low + (high - low)/2

Now the mid value is 5.

10 20 30 40 50 60 70 80 90 99
0 1 2 3 4 5 6 7 8 9

 Now we compare the value stored
at location 5 with our search element. We
found that it is a match.

10 20 30 40 50 60 70 80 90 99
0 1 2 3 4 5 6 7 8 9

 We can conclude that the search
element 60 is found at lcoation or index 5.
For example if we take the search element
as 95, For this value this binary search
algorithm return unsuccessful result.

Sorting Techniques4.5

4.5.1 Bubble sort algorithm

 Bubble sort is a simple sorting
algorithm. The algorithm starts at the
beginning of the list of values stored in an
array. It compares each pair of adjacent
elements and swaps them if they are in the
unsorted order. This comparison and passed
to be continued until no swaps are needed,
which indicates that the list of values stored
in an array is sorted. The algorithm is a
comparison sort, is named for the way
smaller elements "bubble" to the top of the
list. Although the algorithm is simple, it is
too slow and less efficient when compared
to insertion sort and other sorting methods.

 Assume list is an array of n elements.
The swap function swaps the values of the
given array elements.

Pseudo code

1. Start with the first element i.e., index =
0, compare the current element with the
next element of the array.

2. If the current element is greater than the
next element of the array, swap them.

3. If the current element is less than the
next or right side of the element, move
to the next element. Go to Step 1 and
repeat until end of the index is reached.

38 39XII Std Computer Science Algorithmic Strategies

 Let's consider an array with values {15, 11, 16, 12, 14, 13} Below, we have a pictorial
representation of how bubble sort will sort the given array.

15 11 16 12 14 13

16 12 14 1315 11

11 15 14 1316 12

11 15 12 14 16 13

11 15 12 14 13 16

11 15 1316 1412

15>11
So interchange

15>16
No swapping

16>12
So interchange

16>14
So interchange

16>13
So interchange

 The above pictorial example is for iteration-1. Similarly, remaining iteration can be
done. The final iteration will give the sorted array.

At the end of all the iterations we will get the sorted values in an array as given below:

11 12 13 14 15 16

4.5.2 Selection sort

 The selection sort is a simple sorting algorithm that improves on the performance of
bubble sort by making only one exchange for every pass through the list. This algorithm will
first find the smallest elements in array and swap it with the element in the first position of an
array, then it will find the second smallest element and swap that element with the element in
the second position, and it will continue until the entire array is sorted in respective order.

 This algorithm repeatedly selects the next-smallest element and swaps in into the right
place for every pass. Hence it is called selection sort.

Pseudo code

1. Start from the first element i.e., index-0, we search the smallest element in the array, and
replace it with the element in the first position.

40 41XII Std Computer Science Algorithmic Strategies

2. Now we move on to the second element
position, and look for smallest element
present in the sub-array, from starting
index to till the last index of sub - array.

3. Now replace the second smallest
identified in step-2 at the second position
in the or original array, or also called first
position in the sub array.

4. This is repeated, until the array is
completely sorted.

Let's consider an array with values {13, 16,
11, 18, 14, 15}

Below, we have a pictorial representation of
how selection sort will sort the given array.

Initial
array

13

11

16

18

14

15

At the
end First

pass

At the
end Fifth

pass

At the end
Second

pass

14

13

11

18

15

16

At the
end Third

pass

13

18

16

15

14

11

At the end
Fourth

pass

13

15

14

11

18

16

13

16

18

14

15

11

13

15

18

14

11

16

In the first pass, the smallest element will be
11, so it will be placed at the first position.

 After that, next smallest element will
be searched from an array. Now we will get
13 as the smallest, so it will be then placed at
the second position.

 Then leaving the first element, next
smallest element will be searched, from
the remaining elements. We will get 13 as
the smallest, so it will be then placed at the
second position.

 Then leaving 11 and 13 because they
are at the correct position, we will search for
the next smallest element from the rest of
the elements and put it at third position and
keep doing this until array is sorted.

 Finally we will get the sorted array
end of the pass as shown above diagram.

4.5.3 Insertion sort

 Insertion sort is a simple sorting
algorithm. It works by taking elements from
the list one by one and inserting then in
their correct position in to a new sorted list.
This algorithm builds the final sorted array
at the end. This algorithm uses n-1 number
of passes to get the final sorted list as per the
pervious algorithm as we have discussed.

Pseudo for Insertion sort

Step 1 − If it is the first element, it is already
sorted.

Step 2 − Pick next element

40 41XII Std Computer Science Algorithmic Strategies

Step 3 − Compare with all elements in the
sorted sub-list

Step 4 − Shift all the elements in the sorted
sub-list that is greater than the value to be
sorted

Step 5 − Insert the value

Step 6 − Repeat until list is sorted

44 16 83 07 67 21 34 45 10

16 44 83 07 67 21 34 45 10

16 44 83 07 67 21 34 45 10

07 16 44 83 67 21 34 45 10

07 16 44 67 83 21 34 45 10

07 16 21 44 67 83 34 45 10

07 16 21 34 44 67 83 45 10

07 16 21 34 44 45 67 83 10

07 10 16 21 34 44 45 67 83

Assume 44 is a sorted
list of 1 item

inserted 16

inserted 83
inserted 07
inserted 67

inserted 21
inserted 34

inserted 45

inserted 10

 At the end of the pass the insertion
sort algorithm gives the sorted output in
ascending order as shown below:

07 10 16 21 34 44 45 67 83

Dynamic programming4.6.

 Dynamic programming is an
algorithmic design method that can be
used when the solution to a problem can
be viewed as the result of a sequence of
decisions. Dynamic programming approach
is similar to divide and conquer. Th e given
problem is divided into smaller and yet
smaller possible sub-problems.

 Dynamic programming is used
whenever problems can be divided into
similar sub-problems. so that their results
can be re-used to complete the process.
Dynamic programming approaches are
used to fi nd the solution in optimized way.
For every inner sub problem, dynamic

algorithm will try to check the results of
the previously solved sub-problems. Th e
solutions of overlapped sub-problems are
combined in order to get the better solution.

Steps to do Dynamic programming

• Th e given problem will be divided into
smaller overlapping sub-problems.

• An optimum solution for the given
problem can be achieved by using result
of smaller sub-problem.

• Dynamic algorithms uses Memoization.

 Memoization or memoisation
is an optimization technique used
primarily to speed up computer
programs by storing the results of
expensive function calls and returning
the cached result when the same inputs
occur again.

Note

42 43XII Std Computer Science Algorithmic Strategies

4.6.1 Fibonacci Series – An example
 Fibonacci series generates the
subsequent number by adding two previous
numbers. Fibonacci series starts from two
numbers − Fib 0 & Fib 1. The initial values
of Fib 0 & Fib 1 can be taken as 0 and 1.

Fibonacci series satisfies the following
conditions :

Fibn = Fibn-1 + Fibn-2

Hence, a Fibonacci series for the n value 8
can look like this

Fib8 = 0 1 1 2 3 5 8 13

4.6.2 Fibonacci Iterative Algorithm with
Dynamic programming approach

 The following example shows a
simple Dynamic programming approach
for the generation of Fibonacci series.

Initialize f0=0, f1 =1

step-1: Print the initial values of Fibonacci
f0 and f1

step-2: Calculate fibanocci fib ← f0 + f1

step-3: Assign f0← f1, f1← fib

step-4: Print the next consecutive value of
fibanocci fib

step-5: Goto step-2 and repeat until the
specified number of terms generated

For example if we generate fibobnacci series
upto 10 digits, the algorithm will generate
the series as shown below:

The Fibonacci series is : 0 1 1 2 3 5 8 13 21
34 55

• An algorithm is a finite set of instructions to accomplish a particular task.

• Algorithm consists of step-step-by instructions that are required to accomplish a task
and helps the programmer to develop the program.

• Program is an expression of algorithm in a programming language.

• Algorithm analysis deals with the execution or running time of various operations
involved.

• Space complexity of an algorithm is the amount of memory required to run to its
completion.

• Big Oh is often used to describe the worst-case of an algorithm.

• Big Omega is used to describe the lower bound which is best way to solve the space
complexity.

• The Time complexity of an algorithm is given by the number of steps taken by the
algorithm to complete the process.

• The efficiency of an algorithm is defined as the number of computational resources
used by the algorithm.

Points to remember:

42 43XII Std Computer Science Algorithmic Strategies

Evaluation

Part - I

Choose the best answer: (1 Marks)

1. The word comes from the name of a Persian mathematician Abu Ja’far Mohammed ibn-i
Musa al Khowarizmi is called?

(A) Flowchart (B) Flow (C) Algorithm (D) Syntax

2. From the following sorting algorithms which algorithm needs the minimum number of
swaps?

(A) Bubble sort (B) Quick sort (C) Merge sort (D) Selection sort

3. Two main measures for the efficiency of an algorithm are

(A) Processor and memory (B) Complexity and capacity

(C) Time and space (D) Data and space

4. The complexity of linear search algorithm is

(A) O(n) (B) O(log n) (C) O(n2) (D) O(n log n)

5. From the following sorting algorithms which has the lowest worst case complexity?

(A) Bubble sort (B) Quick sort (C) Merge sort (D) Selection sort

• A way of designing algorithm is called algorithmic strategy.

• A space-time or time-memory tradeoff is a way of solving a problem or calculation in
less time by using more storage space.

• Asymptotic Notations are languages that uses meaningful statements about time and
space complexity.

• Bubble sort is a simple sorting algorithm. It compares each pair of adjacent items and
swaps them if they are in the unsorted order.

• The selection sort improves on the bubble sort by making only one exchange for every
pass through the list.

• Insertion sort is a simple sorting algorithm that builds the final sorted array or list one
item at a time. It always maintains a sorted sublist in the lower positions of the list.

• Dynamic programming is used when the solutions to a problem can be viewed as the
result of a sequence of decisions.

Points to remember:

44 45XII Std Computer Science Algorithmic Strategies

6. Which of the following is not a stable sorting algorithm?

(A) Insertion sort (B) Selection sort (C) Bubble sort (D) Merge sort

7. Time complexity of bubble sort in best case is

(A) θ (n) (B) θ (nlogn) (C) θ (n2) (D) θ (n(logn) 2)

8. The Θ notation in asymptotic evaluation represents

(A) Base case (B) Average case (C) Worst case (D) NULL case

9. If a problem can be broken into subproblems which are reused several times, the problem
possesses which property?

(A) Overlapping subproblems (B) Optimal substructure

(C) Memoization (D) Greedy

10. In dynamic programming, the technique of storing the previously calculated values is
called ?

(A) Saving value property (B) Storing value property

(C) Memoization (D) Mapping

Part - II

Answer the following questions (2 Marks)

1. What is an Algorithm?

2. Define Pseudo code.

3. Who is an Algorist?

4. What is Sorting?

5. What is searching? Write its types.

Part - III

Answer the following questions (3 Marks)

1. List the characteristics of an algorithm.

2. Discuss about Algorithmic complexity and its types.

3. What are the factors that influence time and space complexity.

4. Write a note on Asymptotic notation.

5. What do you understand by Dynamic programming?

44 45XII Std Computer Science Algorithmic Strategies

Part - IV

Answer the following questions (5Marks)

1. Explain the characteristics of an algorithm.

2. Discuss about Linear search algorithm.

3. What is Binary search? Discuss with example.

4. Explain the Bubble sort algorithm with example.

5. Explain the concept of Dynamic programming with suitable example.

Reference Books

1. Fundamentals Computer Algorithms, Ellis Horowitz, Sartaj Sahni, Sanguthevar,
Rajasekaran, Second Edition, University press (India) Limited, 2013.

2. Design and Analysis of Algorithms, S. Sridhar, Oxford University Press, 2015

Web References

www.wickipedia.org

1. Create an algorithm for grading systems of your class student’s Quarterly examination
marks by satisfying all necessary conditions.

CASE STUDY/ STUDENT’S ACTIVITY

 This is the question that is fretting
the minds of teachers and students.
 The present book is organized in
such a way that even a novice reader can
grasp and work on python programming.
Testimonies
• "Python has been an important part

of Google since the beginning and
remains so as the system grows and
evolves. Today dozens of Google
engineers use Python, and we're
looking for more people with skills
in this language." -- Peter Norvig,
director of search quality at Google,
Inc.

• "Python is fast enough for our
site and allows us to produce
maintainable features in record times,
with a minimum of developers,"
-- Cuong Do, Software Architect,
YouTube.com

 Python’s popularity has seen
a steady and unflagging growth over
the recent years. Today, familiarity
with Python is an advantage for every
programmer, as Python has infiltrated
every niche and has useful roles to play in
any software solution.
 Python has experienced an
impressive growth as compared to the
other languages. The IEEE Spectrum
magazine published by the Institute
of Electrical & Electronics Engineers,
New York, ranks Python as the top language
for 2018, for the second consecutive year.

 The above statistical data has
maintained its grip with Python scoring
100 and C++ language stands second
nipping at its heels with a 99.7 score.
Python being popular is used by a number
of tech giants like Google, Instagram,
Pinterest, Yahoo, Disney, IBM, Nokia etc.

1. Python

2. C++

3. Java

4. C

5. C#

6. PHP

7. R

8. JavaScript

9. Go

10. Assembly

100.0

99.7
97.5

96.7

89.4

84.9
82.8

82.6

76.4

74.1

Many businesses are advised to choose
Python for the following reasons:-
• Easy syntax and readability
• High level scripting language with

oops
• famous for enormous functions, add-

on modules, libraries, frameworks and
tool-kits.

• Built-in functions supports scientific
computing.

 With the advent of computers,
there have been significant changes in the
way we work in almost all the fields. The
computerization has helped to improve
productivity and accelerate decision
making in every organization. Even for
individuals, be it engineers, doctors,
chartered accountants or homemakers, the
style of working has changed drastically.
So as we go, let us accept the change and
move towards a brighter day ahead.

Why Python in standard XII curriculum?

XII Std - CS EM Python Interleaf Page.indd 46 1/19/2020 10:53:10 AM

	XII Std - CS EM Introduction Pages
	XII Std - CS EM Chapter-1
	XII Std - CS EM Chapter-2
	XII Std - CS EM Chapter-3
	XII Std - CS EM Chapter-4
	XII Std - CS EM Python Interleaf Page

