RELATIONS AND FUNCTIONS Multiple Choice Questions [MCQ]

 R is (a) an equivalence relation (c) reflexive and transitive but not symmetric 3. Let A = {1, 2, 3} and consider the relation R = { (a) reflexive and symmetric but not transitive 	 (b) reflexive and symmetric but not transitive (d) reflexive but neither symmetric nor transitive 1, 1), (2, 2), (3, 3), (1, 2), (2, 3), (1,3), (3, 1)}. Then (b) reflexive and symmetric but not transitive (d) reflexive but neither symmetric nor transitive 1, 1), (2, 2), (3, 3), (1, 2), (2, 1)}. Then R is (b) reflexive but neither symmetric nor transitive 					
 (c) an equivalence relation 4. Let A = {1, 2, 3} and consider the relation R = { 	(d) reflexive and transitive but not symmetric (1, 1), (1, 2), (2, 1)}. Then R is					
 (a) reflexive and symmetric but not transitive (c) reflexive but neither symmetric nor transitive 5. Let A = {1, 2, 3} and consider the relation R = { 	(b) symmetric but neither reflexive nor transitive(d) reflexive and transitive but not symmetric(1, 3)}. Then R is					
(a) transitive	(b) symmetric					
(c) reflexive	(d) none of these					
6. Let $A = \{1, 2, 3\}$ and consider the relation $R = \{$						
(a) reflexive and symmetric but not transitive	• •					
(c) reflexive and symmetric and transitive	• • •					
7. Let A = {1, 2, 3} and R = {(1, 1), (2, 3), (1, 2)} t						
ordered pairs to be added in R to make R reflexive						
(a) 4	(b) 2					
(c) 3	(d) 1					
8. The maximum number of equivalence relations of						
(a) 6	(b) 4					
(c) 3	(d) 5					
9. Let R be a relation on the set N be defined by $\{(x \in \mathbb{N}) : x \in \mathbb{N}\}$						
(a) reflexive	(b) symmetric					
(c) transitive	(d) none of these					
10. Relation R in the set Z of all integers defined as $(x, y) = (x, y)$						
(a) reflexive and transitive	(b) symmetric and Transitive					
(c) reflexive and symmetric (d) an equivalence relation						
11. Let R be the relation on the set of all real numbers defined by a R b iff $ a - b \le 1$. Then, R is						
(a) reflexive and transitive	(b) symmetric and Transitive					
(c) reflexive and symmetric	(d) an equivalence relation					
12. Consider the non-empty set consisting of childr is sister of b. Then R is						
(a) symmetric but not transitive	(b) transitive but not symmetric					
(c) both symmetric and transitive	(d) neither symmetric nor transitive					
13. Relation R in the set A = $\{1, 2, 3, 4, 5, 6, 7, 8\}$ as R = $\{(x, y) : x \text{ divides } y\}$ is						
(a) reflexive and symmetric but not transitive	(b) reflexive and transitive but not symmetric					
(c) reflexive but neither symmetric nor transitive	(d) symmetric but neither reflexive nor transitive					

14. Let L denote the set of all straight lines in a pla if l_1 is perpendicular to l_2 , $\forall l_1, l_2 \in L$. Then R	ne. Let a relation R be defined by $l_1 R l_2$ if and only is
(a) symmetric	(b) reflexive
(c) transitive	(d) reflexive and symmetric
15. If $A = \{a, b, c\}$ then number of relations contai	
symmetric but not transitive is	
(a) 4	(b) 3
(c) 2	(d) 1
16. The relation R in the set {1, 2, 3,, 13, 14} d	efined by $R = \{(x, y) : 3x - y = 0\}$ is
(a) symmetric	(b) reflexive
(c) transitive	(d) none of these
17. The relation R in the set of natural numbers N	defined by $R = \{(x, y) : x > y\}$ is
(a) reflexive and symmetric but not transitive	(b) transitive but neither reflexive nor symmetric
(c) reflexive but neither symmetric nor transitive	(d) symmetric but neither reflexive nor transitive
18. A function $f: X \rightarrow Y$ is one-one (or injective)	
(a) $\forall x_1, x_2 \in X, f(x_1) = f(x_2) \Longrightarrow x_1 = x_2.$	(b) $x_1 \neq x_2 \Longrightarrow f(x_1) \neq f(x_2)$.
(c) both (a) and (b) are true	(d) none of these
19. A function $f: X \to Y$ is said to be onto (or surj	ective), then which of the following is true?
(a) if $\forall y \in Y, \exists \text{ some } x \in X \text{ such that } y = f(x)$	(b) range of $f = Y$
(c) both (a) and (b) are true	(d) none of these
20. A function $f: X \to Y$ is said to be bijective, if	
(a) one-one only	(b) onto only
(c) one-one but not onto	(d) one-one and onto
21. If a set A contains m elements and the set B co	pontains n elements with $n > m$, then number of
bijective functions from A to B will be:	a v D
(a) $m \times n$	(b) m^n
(c) n ^m	(d) 0
22. Which of the following functions from I(Set of $(2, 2)$) $(3, 2)$	
(a) $f(x) = x^3$	
(c) $f(x) = 2x + 1$ 22 Let $Y = (-1, 0, 1)$, $Y = (0, 2)$ and a function f	(d) $f(x) = x^2 + x$
23. Let $X = \{-1, 0, 1\}, Y = \{0, 2\}$ and a function f (a) one-one onto	(b) one-one into $y = 2x$, is
(c) many-one onto	(d) many-one into
24. Let $f(x) = x^2 - 4x - 5$, then	(d) many-one into
(a) f is one-one on R	(b) f is not one-one on R
(c) f is bijective on R	(d) None of these
25. The function $f: R \to R$ given by $f(x) = x^2, x \in \mathbb{R}$	
(a) one-one and onto	(b) onto but not one-one
(c) neither one-one nor onto	(d) one-one but not onto
	$\int 1, \text{if } x > 0$
26. The signum function $f: \mathbb{R} \to \mathbb{R}$ is given by $f(\cdot)$	$\mathbf{x} = \begin{bmatrix} 0 & \text{if } \mathbf{x} = 0 \end{bmatrix}$
26. The signum function, $f : R \rightarrow R$ is given by $f(x)$	$1 \text{ if } \mathbf{x} < 0$
(a) one-one	(b) many-one (d) none of these
(c) onto	(d) none of these

27. Let $f: R \to R$ be defined by $f(x) = \begin{cases} 3x, & \text{if } x \le 1 \\ x^2, & \text{if } 1 < x \le 3 \\ 2x, & \text{if } x > 3 \end{cases}$, then f(-1) + f(2) + f(4) is

(a) 9

(c) 4

28. The greatest integer function $f : R \rightarrow R$ be defined by f(x) = [x] is

(a) one-one and onto

(c) one-one but not onto (d) neither one-one nor onto

29. The function $f: N \rightarrow N$, where N is the set of natural numbers is defined by

$$f(x) = \begin{cases} n^2, & \text{if } n \text{ is odd} \\ n^2 + 1, & \text{if } n \text{ is even} \end{cases}$$

(a) one-one and onto

(b) neither one-one nor onto

(b) onto but not one-one

(c) one-one but not onto (d) onto but not one-one

30. The total number of injective mappings from a set with m elements to a set with n elements, $m \le n$, is

(b) 3

(d) 8

(a)
$$n^m$$
 (b) m^n
(c) mn (d) $\frac{n!}{(n!)!}$

(d)
$$\frac{n!}{(n-m)!}$$

ANSWERS						
4	5	6				

Q. No.	1	2	3	4	5	6	7	8	9	10
Answer	(d)	(c)	(c)	(b)	(a)	(c)	(c)	(d)	(d)	(d)
Q. No.	11	12	13	14	15	16	17	18	19	20
Answer	(c)	(b)	(b)	(a)	(d)	(d)	(b)	(c)	(c)	(d)
Q. No.	21	22	23	24	25	26	27	28	29	30
Answer	(d)	(b)	(c)	(b)	(c)	(b)	(a)	(d)	(c)	(d)